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Abstract. Sediment transport is studied as a function of the
grain to fluid density ratio using two phase numerical simu-
lations based on a discrete element method (DEM) for parti-
cles coupled to a continuum Reynolds averaged description
of hydrodynamics. At a density ratio close to unity (typically
under water), sediment transport occurs in a thin layer at the
surface of the static bed, and is called bed load. Steady, or
‘saturated’ transport is reached when the fluid borne shear
stress at the interface between the mobile grains and the
static grains is reduced to its threshold value. The number
of grains transported per unit surface therefore scales as the
excess shear stress. However, the fluid velocity in the trans-
port layer remains almost undisturbed so that the mean grain
velocity scales with the shear velocityu∗. At large density ra-
tio (typically in air), the vertical velocities are large enough
to make the transport layer wide and dilute. Sediment trans-
port is then called saltation. In this case, particles are able
to eject others when they collide with the granular bed. The
number of grains transported per unit surface is selected by
the balance between erosion and deposition and saturation is
reached when one grain is statistically replaced by exactly
one grain after a collision, which has the consequence that
the mean grain velocity remains independent ofu∗. The in-
fluence of the density ratio is systematically studied to re-
veal the transition between these two transport regimes. Fi-
nally, for the subaqueous case, the grain Reynolds number is
lowered to investigate the change from turbulent and viscous
transport.

1 Introduction

Despite a wide literature, some fundamental aspects of sed-
iment transport in turbulent flows are still only partly under-
stood. In particular, derivations of transport laws, relating the
sediment flux to the flow velocity, have a strong empirical
or semi-empirical basis (see e.g. among many othersMeyer-
Peter and Müller(1948), Ribberink (1998), Camemen and
Larson(2005), Greeley et al.(1996), Iversen and Rasmussen
(1999), Kok and Renno(2009) and references therein), thus
lacking more physics-related inputs. Also, the dynamical
mechanisms limiting sediment transport, in particular the
role of the bed disorder (Charru, 2006) and turbulent fluctua-
tions (Marchioli et al., 2006; Baas, 2008; Le Louvetel-Poilly
et al., 2009), remain matter of discussion.

Here we investigate the properties of steady homogeneous
sediment transport using a novel numerical description of
particle-laden flows, using two-phase numerical simulations
based on a discrete element method for particles coupled to
a continuum Reynolds averaged description of hydrodynam-
ics. In particular, we examine the transition from bed-load to
saltation by studying the influence of the grain to fluid den-
sity ratioρp/ρf . A similar approach has recently been used
to study the onset of aeolian saltation (Carneiro et al., 2011).
This paper mostly summarises the talk addressing these ques-
tions, given at the workshop SALADYN , Institut de Physique
du Globe de Paris, 5–7 November 2012. More details on this
work, as well as a more developed bibliography on the sub-
ject, can be found inDurán et al.(2012).
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Table 1. Units used in the model, expressed in terms of the grain
density (ρp), the fluid density (ρf ), the gravity (g) and the mean
grain diameter (d)

General: lengthl d

acceleration g

time t
√

d/g

velocityv
√

gd

Particles: angular velocityω
√

g/d

massm π
6 ρpd3

moment of inertiaI md2

forcef mg

contact stiffnessk mg/d

damping constantγ m
√

g/d

Fluid: shear stressτ (ρp − ρf )gd

2 The model

The idea is to use a continuum description of hydrodynamics,
averaged at a scale larger than the grain size. This means that
the feedback of the particles on the flow is treated in the mean
field manner. This method allows us to perform very long
numerical simulations (typically 1000

√
d/g), using a (quasi)

2D large spatial domain (typically 15000 spherical grains in
a xyz box of respective dimensions 1000d × 1d × 1000d),
while keeping the complexity of the granular phase. Periodic
boundary conditions are used in thex (flow) direction. We
will now detail the different ingredients of the model – see
table1 for notations.

2.1 Forces on particles

The grains have a spherical shape and are described by their
position vectorr, velocityu and angular velocityω. A given
grain labelledp inside a fluid obeys the equations of motion,

m
dup

dt
= mg +

∑
q

f p,q
+ f

p

fluid

I
dωp

dt
=

d

2

∑
q

np,q
× f p,q (1)

whereg is the gravity acceleration,I = md2/10 is the mo-
ment of inertia of a sphere,f p,q is the contact force with
grain q, np,q is the contact direction, andf p

fluid encodes
forces of hydrodynamical origin.

We model the contact forces following a standard ap-
proach for the modeling of contact forces in MD codes (see
e.g.DEM book (2011) and references therein), where nor-
mal and tangential components are described by spring dash-
pot elements. A microscopic friction coefficient is also intro-
duced but cohesion is neglected. For simplicity we assume
that the net hydrodynamical force (f

p

fluid) acting on a grain
p due to the presence of the fluid is dominated by the drag

and Archimedes forces,f p

drag andf
p

Arch, respectively. The
lift force, lubrication forces and the corrections to the drag
force (Basset, added-mass, Magnus, etc.) are neglected, as
they do not have any qualitative influence on the results pre-
sented here.

Drag force— We hypothesize here that the drag force ex-
erted by a homogeneous fluid on a moving grain only de-
pends on the difference between the grain velocityup(x,z)

and the fluid velocityu(z) at grain’s heightz. Introducing
the Reynolds numberRu based on this fluid-particle velocity
differenceRu = |u − up

|d/ν, the drag force can be written
under the form

f
p

drag=
π

8
ρf d2Cd(Ru)|u − up

|(u − up) (2)

whereCd(Ru) is the drag coefficient. We use the follow-
ing convenient phenomenological approximationCd(Ru) =(√

C∞

d +
√

Rc
u/Ru

)2
(Ferguson and Church, 2004). C∞

d '

0.5, is the constant drag coefficient of the grain in the tur-
bulent limit (Ru → ∞). Rc

u ' 24 is the transitional Reynolds
number below which the drag force scales linearly with the
velocity difference.

Archimedes force— This force results from the stress
which would have been exerted on the grain, if the grain had
been a fluid. Thus,

f
p

Arch =
π

6
d3divσ f (3)

whereπ
6 d3 is the grain volume andσ f

ij = −pf δij +τ
f
ij is the

undisturbed fluid stress tensor (written in terms of the pres-
surepf and the shear stress tensorτ

f
ij ). In first approxima-

tion, the stress is evaluated at the center of the grain.

2.2 Hydrodynamics and coupling

In the presence of particles occupying a volume fraction
φ, the hydrodynamics is described by the two-phase flow
Reynolds averaged Navier-Stokes equations:

ρf (1− φ)Dtui = −∂ip
f

+ ρf (1− φ)gi + ∂j τ
f
ij − Fi (4)

where Dtui ≡ ∂tui+uj∂jui denote the fluid inertia.τf
ij is the

total shear stress tensor resulting both from viscous diffusion
of momentum (viscous stress) and transport of momentum by
turbulent fluctuations (Reynolds stress).F is the body force
exerted by the grains on the fluid. In the steady and homo-
geneous case investigated here, These RANS equations sim-
plify into

∂zp
f

= −ρf g, (5)

∂zτ
f

= Fx, (6)

where we noteτf
= τ

f
xz the fluid shear stress, and later on

u = ux for the fluid horizontal velocity.
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Fig. 1. Vertical profiles of the rescaled volume fractionφ/φb,
flow velocity u+

= u/u∗, mixing length `+
= `/d, fluid borne

shear stressτf +
= τf /ρf u2

∗, viscous shear stressτf +
ν = ν∂zu/u2

∗

and turbulent shear stressτ
f +

t = (`∂zu)2/u2
∗ (by definitionτf +

=

τ
f +
ν + τ

f +

t ). The reference heightz = 0 is set at the altitude such
thatφ = φb/2.

The coupling termF can then be obtained by averaging
the hydrodynamical forcef p

fluid acting on all the grains mov-
ing around altitudez, in a horizontal layer of areaA and
thickness dz:

F (z) =
1

Adz

〈 ∑
p∈{z;z+dz}

f
p

fluid

〉
. (7)

We take forA the total horizontal extent of the domain (i.e.
1000d × 1d). The symbols〈.〉 denote ensemble averaging.
Here, we retain itsx-component only, which simplifies into

Fx =
φ

1− φ

〈 ∑
p∈{z;z+dz}

f
p

drag,x

〉/ ∑
p∈{z;z+dz}

π

6
d3, (8)

where the grain’s volume fractionφ is defined as

φ(z) =
1

Adz

∑
p∈{z;z+dz}

π

6
d3. (9)

Eq.6 integrates asτf (z) = ρf u2
∗ −τp(z), where we have in-

troduced the shear velocityu∗, defined by the undisturbed
(grain free) wall shear stress, and the grain borne shear stress
τp, computed from the integration of (8) over sufficient ver-
tical extension to count all moving grains.

In order to relate the fluid borne shear stress to the average
fluid velocity field, we adopt a Prandtl-like turbulent closure.
Introducing the turbulent mixing length̀, we write

τf
= ρf (ν + `2

|∂zu|)∂zu. (10)

ν is the viscosity (a constant independent of the volume frac-
tion). As for the mixing length̀ , we know it should vanish
below some critical Reynolds numberRc and should be equal
to the distance to the surfacez, far above the transport layer.
To avoid the need of a somewhat arbitrary definition of an
interface between he static and mobile zones of the bed, we
propose the differential equation

∂z` = κ

[
1− exp

(
−

√
1

Rc

(
u`

ν

))]
(11)

whereκ ' 0.4 is von Karman’s constant. We have checked
that, in the case of a turbulent flow over a smooth and flat
surface (no grains), we recover the prediction computed with
the phenomenological expression for the mixing length sug-
gested by van Driest (Pope, 2000), which reproduces well
classical experimental results. Comparison to measurements
determines the dimensionless parameterRc ' 7. Other em-
pirical expressions for the exponential term in Eq.11, e.g.

exp
(
−

[
1
Rc

(
u`
ν

)]γ )
, with other values ofγ give qualitatively

similar results.
Starting integration deep enough in the static bed to be in

the asymptotic limit that can be analytically derived, we ob-
tain the different hydrodynamical fields. They are displayed
in Fig. 1, in the case of subaqueous transport (ρp/ρf = 2).

3 Sediment flux

Steady and homogeneous sediment transport is quantified
by the volumetric saturated fluxqsat, i.e. the volume of the
particles (at the bed density) crossing a vertical surface of
unit transverse size per unit time. It has the dimension of a
squared length per unit time. In the simulations, we compute
it as

qsat=
1

Aφb

π

6
d3
∑
p

up, (12)

A key issue is the dependence ofqsaton the shear velocity or,
equivalently, its dimensionless counterpart the Shields num-
ber2, defined by

2 =
ρf u2

∗

(ρp − ρf )gd
, (13)

which encodes the strength of the flow. The two other
main control dimensionless parameters of the simulations
are the already mentioned density ratioρp/ρf and the grain

Reynolds numberR= d/ν

√(
ρp/ρf − 1

)
gd. Most of the
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Fig. 2.Rescaled saturated fluxqsat/
√

(ρp/ρf − 1)gd3 versus23/2

for water(a) and2 for air (b). Full lines are the predictions given
in the text.

simulations presented here have been performed forR= 10,
except in section 6 where the viscous regime is investigated
withR= 0.1.

We show in Fig.2 the saturated flux in both cases (wa-
ter and air). In agreement with experimental observations
(e.g.Meyer-Peter and Müller(1948), Ribberink(1998), La-
jeunesse et al.(2010), Rasmussen et al.(1996), Creyssels et
al. (2009)), we find thatqsat scales asymptotically as2 (or
u2

∗) for saltation, whileqsat scales as23/2 (or u3
∗) underwa-

ter. This figure also reveals the existence of a threshold shear
velocity below which the flux vanishes. More precisely, we
define the dynamical threshold Shield number2d from the
extrapolation of the saturated flux curve to 0, which gives in
our case2d ' 0.12 for water (ρp/ρf = 2) and2d ' 0.004
for air (ρp/ρf = 2000), respectively. These values are con-
sistent with experimental ones within a factor of 2 (see the
data gathered in the review ofDurán et al.(2011)).
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Fig. 3.Vertical profiles of the fluid borne shear stressτf for differ-
ent values of the shear velocity ratio

√
2/2d (see legend), in water

(a) and air(b).

4 Mechanisms at work within the transport layer

Bed load and saltation mainly differ by the vertical character-
istics of the transport layer. At small density ratios the motion
of grains is confined within a thin layer of few grain diam-
eters. By contrast, for large density ratios, grains experience
much higher trajectories: the transport layer is much wider
and the flux density decreases exponentially with height with
a characteristic size of the order of 50d, roughly indepen-
dent of the shear velocity. The transport layer thickness is ef-
fectively determined by the hop length forρp/ρf & 10. Be-
low this cross-over value, this thickness is given by the grain
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diameterd, as trajectories are almost horizontal. The tran-
sition from bed load to saltation therefore takes place when
the vertical velocities of the particles are sufficiently large for
these particles to escape the traps formed by the grains on the
static bed.

Another difference between bed load and saltation is how
the grain’s feedback on the flow is distributed within the
steady state transport layer. Fig.3 presents the vertical pro-
files of the fluid shear stress, rescaled by the dynamical
thresholdτd = 2d(ρp/ρf −1)gd (as defined by the saturated
flux), for different shear velocities. For bed load (Fig.3a),
the different profiles of the fluid shear stress seems to con-
verge to the threshold value very close to the surface (z = 0).
In this transport layer, the fluid momentum decays over few
grain sizes, in agreement with the vertical extension of the
transport layer. By contrast, the fluid shear stress is below
the threshold in the bed (z < 0) but some (weak) transport
still occurs there, which is sustained not by the fluid itself
but by the momentum transferred to the surface by grain col-
lisions.

This general picture is still valid for saltation (Fig.3b),
however now the dynamical threshold is reached much far-
ther from the surface (atz ' 10d) which implies that the ki-
netic energy of impacting grains is large enough as to sus-
tain the transport below this height. Above it, the transport is
driven by the fluid and most of its momentum is dissipated
in a much larger layer (comprising tens of grain diameters)
again in agreement with the size of the saltation layer. Notice
that although this surface sublayer below 10d contains most
of the grains, it still represents a small fraction of the overall
transport layer.

An important consequence of this distinction in the ver-
tical structure of the grain’s feedback is that although for
bed load transport is equilibrated when the fluid shear stress
reaches its dynamical threshold below the transport layer,
this condition is not enough for saltation to equilibrate. For
saltation there is a sub-layer where transport is not directly
driven by the fluid and thus its equilibration is not dictated
by the threshold. There, the properties of grain’s collisions
become relevant and the equilibrium is described by the con-
servation of the number of saltating grains i.e. when the num-
ber of grains entering the flow exactly balance those grains
trapped by the bed.

5 Scaling laws

The saturated flux can then be decomposed as the product
of the numbern of transported grains per unit area by the
mean grain horizontal velocitȳup: qsat=

1
φb

π
6 d3nūp In the

numerical simulations, we computen andūp as

n =

(∑
p up

)2

A
∑

p u2
p

, and ūp
=

∑
p u2

p∑
p up

. (14)

These quantities are plotted as functions of the Schields num-
ber in Fig.4. A scaling lawn ∝ 2−2d is well verified over
two decades, independently ofρp/ρf . By contrast, the den-
sity ratio has a strong effect ofūp. The mean grain velocity
is independent of2 for largeρp/ρf (aeolian case), whereas
it varies linearly with the fluid shear velocity at low density
ratio (sub-aqueous case). Interestingly,ūp remains finite at
the threshold, at a value independent ofρp/ρf . These be-
haviours are in agreement with experimental findings in the
case of bedload (Lajeunesse et al., 2010).

We can derive these scaling laws from simple models.
Following Bagnold’s original ideas for the case of bedload
(Bagnold, 1956), we write the grain born shear stressτp as
proportional to the moving grain densityn and to the drag
force fd acting on a moving grain. As these grains are in
steady motion,fd balances a resistive force due granular
friction, collisions with the bed, etc. These different dissi-
pative mechanisms can be modeled as an overall effective
friction force characterized by a friction coefficientµd , lead-
ing to fd =

π
6 µd(ρp − ρf )gd3. Saturation is reached when

the fluid shear stress equals the transport threshold at the
surface of the static bed, i.e. whenτp

= ρf u2
∗ − τd , with

τd = 2d(ρp/ρf − 1)gd = ρf u2
d . As consequence, the num-

ber of transported particles per unit area is solely deter-
mined by the excess shear stress:n = (ρf u2

∗ − τd)/fd . As-
suming that the transported grains do not disturb the flow,
the flow velocity around grainsu must be proportional to the
shear velocity, so thatu/ud =

√
2/2d . One can then de-

duce:ūp
= ud (

√
2/2d −

√
µd/µs), whereµs is a friction

coefficient characterising the drag force necessary to set into
motion a static grain. This predicts that the grain velocity
does not vanish at the threshold, if friction is lowered dur-
ing motion (µd < µs). The velocity at threshold can be inter-
preted as the velocity needed by a grain to be extracted from
the bed and entrained by the flow.

We can proceed in a similar manner for the aeolian salta-
tion regime, following ideas initially proposed byOwen
(1964) andUngar and Haff(1987). The momentum balance
τp

= ρf u2
∗ − τd still holds, so thatn has the same form as

in the bed-load case, but with a different effective drag force
fd , not related to friction anymore but to grain velocities.
For saltation, steady transport also implies that the number of
grains expelled from the bed into the flow exactly balances
those trapped by the bed, i.e. a replacement capacity equal to
one. Due to the grain feedback on the flow, in contrast with
bed load, grains in the transport layer feel a flow independent
of the wind strength (see Fig.3b). Thus, new moving grains
come only from high energy bed collisions. Since the number
of ejected grains is a function of the impact energy (or equiv-
alently, of the impact velocity), the mean grain velocityūp

must be constant, independent of the shear velocity, scaling
with ud . In fact, all particle surface velocities also scale with
ud , so thatfd is a constant too, leading again ton ∝ 2−2d .

These scaling laws forn andūp as functions of the Shields
number explain the different behaviour ofqsat(2) in the
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sub-aqueous bedload and aeolian saltation cases, as shown
in Fig. 2.

6 Viscous transport

We have also investigated the case of sediment transport in
the viscous regime, setting the grain Reynolds number at a
small valueR= 0.1 (in comparison toR= 10 for all other
simulations), and for a water-like density ratioρp/ρf = 2.
The data displayed in Fig.5a show that the sediment flux in-
creases more rapidly with the Shields number than in the tur-
bulent case for whichqsat∼ 23/2 above the threshold. This

is mainly due to the behaviour of the mean grain velocity
whose scaling with the shear velocity

√
2 is not linear any

more but rather quadratic (Fig.5c). By contrast, the linear
scaling of the moving grain densityn with 2 − 2d is still
fairly verified, except close to the threshold (Fig.5b).

These dependences ofūp and n on 2 are what we can
expect in the viscous case. In this regime, the flow veloc-
ity at the distancez = d close to the bed isu ' u2

∗d/ν,
so that u/ud = 2/2d . From the expression of the drag
force in the limit Ru � 1, one can then deduce:̄up

=

ud (2/2d − µd/µs), whereud is found proportional to the
grain Reynolds numberR. This relationships is effectively
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in agreement with the data. As for the moving grain den-
sity, the momentum balanceτp

= nfd = ρf u2
∗ − τd , leading

to n ∝ 2 − 2d should hold. The reason for the discrepancy
between the data and this scaling law close to the thresh-
old could be due to a non-frictional behavior of the transport
layer, but clearly necessitates further investigation. Finally,
taking the product ofn andūp to getqsat, we obtain a flux that
scales asymptotically like22, which is in agreement with the
experiments ofCharru et al.(2004) performed with a bed of
particles sheared by a viscous flow.

Extending these experiments, these authors have further
investigated the flow and velocity profiles inside and close to
the bed of particles (Mouilleron et al., 2009). We can directly
compare their data to the simulations. As shown in Fig.6, the
overall agreement is good. One can, however, note that the
model predict slightly larger velocities very close to the bed
than in the experiment, both for the fluid and the particles.
Again, this requires further studies in this regime.

7 Conclusions

The aim of this paper was to present a novel numerical ap-
proach for sediment transport based on a discrete element
method for particles coupled to a continuum Reynolds av-
eraged description of hydrodynamics. We have studied the
effect of the grain to fluid density ratioρp/ρf and showed
that we can reproduce both (sub-aqueous) bed load atρp/ρf

close to unity, where transport occurs in a thin layer at the

surface of the static bed, and (aeolian) saltation at large
ρp/ρf , where the transport layer is wider and more dilute.
Scaling laws for the density of moving grains, and for the
average velocity of these grains, as functions of the Schields
number are found in agreement with experiments, and sup-
port simple mechanisms at work in steady and homogeneous
transport.

Further work will be focused on transient situations, in or-
der to study the time and length scales encoding the relax-
ation properties of out-of-equilibrium transport. In particu-
lar, it would be crucial to analyse how bothn and ūp in-
dividually relax, in order to understand what are the physi-
cal mechanisms responsible for the response of the flux to
a given flow. Also, it would be interesting to investigate the
case of bimodal or more polydisperse grains (Houssais and
Lajeunesse, 2012).
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