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Abstract. An Artificial Neural Networks (ANNs) approach
was used to reproduce the precipitation anomalies for the
rainy seasons over the south and north parts of the North-
east of Brazil (NEB) during 1982–2009 period. The seasonal
hindcasts of precipitation anomalies from Climate Forecast
System v2 (CFSv2) model and the observed dominant modes
of anomalous Sea Surface Temperature over the South and
North Atlantic Ocean were used as explanatory variables
separately. The reduction of dispersion between the explana-
tory and dependent variables after the fit of the networks sug-
gest the ANN as an important complementary technique for
the climate studies over the NEB. However, a large dataset
are required to the models capture the non-linear process in
more details. The practical implication of the results is that
ANNs constructed here could be applied in further analyses,
for example, to explore the ANN’s ability in improving the
seasonal climate forecasts considering that the numerical and
statistical methods must be complementary tools.

1 Introduction

The Northeast of Brazil (NEB) is located on a large por-
tion of the tropics on the South American continent between
1◦2′30′′ S–18◦20′07′′ S; 34◦47′30′′ W–48◦45′24′′ W and is
bounded to the east and north by the Atlantic Ocean. Al-
though the General Circulation Models (GCMs) have high
ability in reproducing the precipitation variability over this
region there are serious difficulties in modeling the monthly
or even the seasonal precipitation regimes. Part of the prob-
lem is due to poor spatial resolution that smooths the orog-
raphy. However, the GCMs are usually effective in repro-
ducing the main modes of Sea Surface Temperature (SST)
variability over the tropical and subtropical oceanic basins.

An alternative to minimize the deficiencies of the GCMs is
to explore the Artificial Neural Network – ANN (Gardner
and Dorling, 1998). The technique allows the establishment
statistical links between the observed large-scale circulation
and the precipitation or temperature fields by applying trans-
fer functions to the GCM outputs. Based in this context the
present study focuses in two issues:

– To evaluate the ability of statistical downscaling based
on ANNs and applied to Climate Forecast System v2
(CFSv2) hindcasts in reproducing more efficiently the
observed precipitation for the rainy seasons over the
north and south parts of NEB during 1982–2009 period;

– For the same period to verify how the trends in behavior
of seasonal observed precipitation anomalies could be
reproduced by the ANNs using as explanatory variables
only the observed dominant modes of anomalous SST
variability in the South and North Atlantic Ocean.

The motivation is use the ANN as a complementary tech-
nique to improve the GCM hindcasts over the NEB consid-
ering that most studies are focused in Southeast, South and
Amazon regions of Brazil. We emphasize that no lag in time
is applied between the explanatory and dependent climate
variables whereas the focus is on investigation of local con-
tribution excluding the persistence of explanatory variables.
Similar analysis is found in studies of Cardoso and da Silva
Dias (2004) and Mendes and Marengo (2010). In the follow-
ing section, the data and methodology are described with a
brief outline of the ANNs, CFSv2 model and the Empirical
Orthogonal Functions (EOF) analysis. The results are pre-
sented in Sect. 3 and the discussion is made in Sect. 4.
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2 Data and methodology

Two grid boxes were selected over the NEB region: to the
north (2◦ S–7◦ S; 40◦ W–45◦ W) and south (10.5◦ S–15.5◦ S;
42◦ W–47◦ W); and their locations were nearly similar to
those used in the study of Nobre and Shukla (1996). The an-
alyzed period covers 1982–2009 years equivalent to longest
period of CFSv2 hindcasts data. Mendes and Marengo
(2010) mentioned that a large amount of data is required to
use the ANNs, e.g., 40–50 yr or more. However, we did not
use a longer period to verify whether statistical relationships
could be established for the recent climate.

The observed dataset were: the Climate Prediction Center
Merged Analysis of Precipitation – CMAP (Xie and Arkin,
1997), the SST OIv2 from Reynolds et al. (2002) both with
1◦ resolution and the Sea Level Pressure (SLP) from the re-
analysis 1 project from each 2.5 grid point (Kalnay et al.,
1996) that were interpolated to horizontal resolution as 1◦

latitude-longitude.
A comparison between the annual cycle of observed and

simulated monthly precipitation averaged over the selected
two grid boxes was made. The rainy seasons for the both
grid boxes were selected and their respective hindcasts of
precipitation were downscaled by using the nonlinear trans-
fer functions. This information provides diagnostic informa-
tion related to the ability of the ANN improving the seasonal
hindcasts.

The EOF time series of observed SST anomalies in the
South and North Atlantic Ocean during the rainy periods of
the both grid boxes were used as explanatory variables in the
networks schemes. This allowed investigating the establish-
ment of statistical links between the simultaneous factors: the
large-scale circulation and the observed precipitation pattern
during the trimesters in analysis.

2.1 The Artificial Neural Network

The ANN is inspired in a human brain that learns through
the training (Haykin, 2008). For instance, a sequence of pat-
terns associated to a sequence of responses is provided for
the network. Based on a set of explanatory variables (input)
and through training the network fit weights for those that
can have contributed to the variability of explained variables
(target). It is required that the explanatory dataset should be
independent to avoid the problem of multicollinearity.

The network maps the explanatory dataset in a second set
of output variables that is compared with the desired target
and corrections are made until the model reaches the lowest
possible error. For this reason the ANN is a learning tech-
nique which is made in parallel. The output variables are ob-
tained through the mathematical transfer functions that are
non-linear. In summary to fit the network to a dataset is re-
quired to partition the data into three parts: the training (used
to obtain the network weights), validation (used to obtain the
accuracy of the model), and test (used to obtain the realistic

estimative of the performance of the model). The ANN archi-
tecture used in our study was the Multilayer Perceptron pre-
viously cited by many authors as adequate network for mete-
orological applications because the weather and the climate
can repeat along the chronological time but never exactly in
the same way (e.g., Cardoso and da Silva Dias, 2004). The
MATLAB were used to develop the ANN schemes. The dis-
crepancy between the target and the modelled values were
assessed by evaluating how goodness was the fit using the
Root Mean Squared Error (RMSE) and the linear correlation
coefficient.

2.2 The climate model

The Climate Forecast System v2 (CFSv2) is an ocean-
atmosphere-surface coupled model with the T126/100 km
horizontal resolution and 64 hybrid sigma-pressure levels.
The model showed improvements in data assimilation be-
tween atmosphere-ocean-surface and interaction between
cloud-aerosol-radiation compared with its previous version
the CFSv1 (Saha et al., 2013). The 24-member ensemble was
used which runs started on the first month of each rainy sea-
son on the first day and every five successive days of the
month and for all four times of each day (00, 06, 12 and
18 UTC).

According to Saha et al. (2013) the CFSv2 do not present
significant skill improvements in global land precipitation
forecast whereas the SST prediction has been improved over
most of the global oceans, mainly over the extratropics. Over
the tropical oceans the CFSv2 skill was slightly lower than
that from CFSv1. This is related to the subsurface initial
states of the reanalysis used in the model that showed sig-
nificantly warmer in predicted SST after 1999, due to the in-
troduction of the ATOVS satellite data.

For the second hindcasts period from 1999 to 2010, Silva
et al. (2013) found that the pattern of rainfall was particularly
well captured by the model in both Dec to Feb and Jun to
Aug trimesters; however, there were differences in the sea-
sonal averages that were more notable in tropical and mid-
latitude over the North Atlantic Ocean during the summer.
The model captured satisfactorily the interannual variability
pattern of SST although the maximum variance was shifted
slightly to the east than in the reanalysis. Also, the extratrop-
ical variability in both hemispheres was well reproduced by
the CFSv2.

2.3 The EOF analysis

The dominant modes of observed SST variability over the
South and North Atlantic Ocean, 0◦–40◦ S; 50◦ W–20◦ E and
0◦–40◦ N; 70◦ W–0◦, respectively, were obtained by Empir-
ical Orthogonal Functions analysis – EOF (Wilks, 1995) for
the rainy seasons from the selected grid boxes. The EOFs
were obtained by data covariance matrix of SST anomalies
being possible to identify the modes (patterns) that capture
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Fig. 1.Annual cycle of total rainfall (mm) for the two grid boxes defined over NEB region:(a) to the north;(b) to the south.
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Figure 2  2 

Fig. 2.Validation results to the north grid box over the NEB region:
(a) Scatterplots of observed× downscaled precipitation using the
nonlinear ANN (R-value = 0.83).(b) The corresponding monthly
time series. The scatterplots are adapted from the Matlab and the
solid gray line represents the fit model.

the largest portion of total variance on the original dataset.
Before the computation the trend in time series of the ob-
served monthly SSTs in each grid point were scaled by the
square root of the cosine of the latitude and then only the
anomaly field was computed. The association with the main
modes captured and the SST anomalies over the global ocean
basins was verified through the linear correlation between the
EOF time series and observed SST anomalies between 40◦ S
and 40◦ N. Also, the correlations between these EOF time se-
ries and the SLP anomalies over the dominium 40◦ S–20◦ N;
90◦ W–0◦ were also calculated. The establishment of statisti-
cal links between the large-scale circulation and the observed
precipitation for the rainy seasons over the two grid boxes 3 
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Figure 3.  1 

Fig. 3. As in Fig. 2 but for the south grid box over the NEB region.
In (a) R-value = 0.71.

were obtained by using their respective EOF time series as
explanatory data. As in Hurrell et al. (2006) no statistical
significant test was applied in the correlation fields once the
purpose was to emphasize the physical aspects.

3 Results

3.1 Statistical downscaling from the CFSv2 hindcasts

The mean total annual rainfall of observed precipitation on
the north grid box over the NEB was 43 mm and the wet-
season occurred during Feb-Mar-Apr (FMA) concentrating
56 % of this total (Fig. 1a). The CFSv2 well simulated the
annual cycle of rainfall, however, with an underestimation

www.adv-geosci.net/35/79/2013/ Adv. Geosci., 35, 79–88, 2013



82 G. A. M. Silva and D. Mendes: Comparison results for the CFSv2 hindcasts and statistical downscaling

4 
 

a) 

 

 

b) 

 

 

c) 

 

d) 

 
 

Figure 4.   1 
Fig. 4. First EOF for NDJ of 1982–2009 over the South Atlantic Ocean:(a) loading patterns;(b) time series;(c) linear correlation between
the EOF time series and observed anomalous SST and(d) linear correlation between the EOF time series and observed anomalous SLP. The
statistical analyses and the respective maps were constructed by the IRI/LDEO Climate Data Library.

of 0.71 mm on the average of the wet-season. On the south
grid box the mean total annual rainfall was 35 mm and Nov-
Dec-Jan (NDJ) was the wettest season with 50 % of the total
accumulated. The model also showed a fairly representation
of the annual cycle however with some underestimation of
0.35 mm during this wet season (Fig. 1b).

For each grid box the nonlinear ANN’s created consisted
of 2 layers with 10 neurons on the hidden layer and 1 on
the output layer. For both rainy seasons (FMA and NDJ) the
input and target data were the hindcasts and observed pre-
cipitation, respectively. For the training we used 60 % of the
observed precipitation data, 20 % for validation and 20 % for
test. The hyperbolic tangent sigmoid and the retropropaga-
tion were the transfer function and the training algorithm
used, respectively. The hyperbolic tangent sigmoid function
applied in both layers ranged from−1 to +1 and allowed
the transfer of relative weights from the targets to the out-
puts. The retropropagation method seemed to be faster for
the present problem.

Figures 2 and 3 illustrate the comparison between ob-
served and downscaled precipitation during FMA (NDJ) sea-
son on the north (south) grid box over the NEB region. In
both figures the top shows the corresponding scatterplots
and the bottom shows the monthly time series to validation
period. For the north grid box the validation performance

reached a minimum error at 36th iteration and 6 more itera-
tions were made before the training stopped. The RMSE was
1.53 and the validation and test curves were very similar (fig-
ure not shown). The correlation coefficient between the time
series of observed precipitation and simulated by the CFSv2
during FMA season was 0.80 whereas after downscaling the
R-value was 0.83 represented by the scatterplot in Fig. 2a.
However, the Fig. 2b shows that in some years the network
was unable to reproduce the observed precipitation extremes
values.

Regarding the south grid box during NDJ season the net-
work was successfully trained with 15 iterations and RMSE
was 2.14. Before the training the correlation coefficient be-
tween the time series of precipitation observed and simu-
lated by the CFSv2 was 0.64 whereas after the training the
value obtained increased to 0.71 (Fig. 3a). In some years the
downscaled time series shows an underestimation of the pre-
cipitation mainly during the first decade. However in others
years, for example, 2001, 2006 and 2007 the network tended
to overestimate the precipitation values.

The results indicated that the networks constructed showed
a reasonable skill in reproducing seasonal precipitation on
the two grid boxes over the NEB. This efficacy was obtained
by analyzing the dispersion between the output and target
data before and after training of the network.

Adv. Geosci., 35, 79–88, 2013 www.adv-geosci.net/35/79/2013/
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Figure 5.   1 
Fig. 5.As in Fig. 4 but for the North Atlantic Ocean.

3.2 The main modes of observed anomalous SST and
their relationship with the precipitation

The dominant modes of observed SST variability over the
South and North Atlantic Ocean for NDJ and FMA seasons
were captured by EOF analysis. The choice to compute the
EOF modes applied to the seasonal instead to annual SST
was that changes on trends shows to be more remarkable
among the seasons. Figure 4 illustrates the result of EOF
analysis for NDJ season. In Fig. 4a the main spatial pat-
tern captured 24.1 % of variance in SST anomalies over the
South Atlantic Ocean being characterized by positive anoma-
lies over most area except on central west between 25◦ S–
40◦ S. The largest amplitude occurred in the central and east
nearest the coast of Africa. The pattern captured is defined as
South Atlantic Dipole – SAD (Haarsma et al., 2003; among
others). According to Bombardi and Carvalho (2010), the
positive (negative) SST anomalies over the Tropical Atlantic
Ocean and negative (positive) over the subtropics are associ-
ated with anticipation (delay) of onset of monsoon in South
America and wet summers (dry) on the Northeast of Brazil.

The corresponding EOF time series (Fig. 4b) was marked
by intraseasonal and interannual variability and showed good
correlation with the El Nĩno Southern Oscillation – ENSO
(Kousky et al., 1984), the negative phase of the North At-
lantic Oscillation – NAO (Hurrell et al., 2003) and positive
phase of the Indian Ocean Dipole – IOD (Saji et al., 2010)
(Fig. 4c). The correlation with the SLP anomalies showed

negative values over the subtropical South Atlantic Ocean
and positive over the most part of the tropical North Atlantic
Ocean, North and Northeast regions of Brazil that are cli-
matologically influenced by the South Atlantic Convergence
Zone – SACZ (Fig. 4d). It suggested that during NDJ the pos-
itive phase of the SAD is associated with the weakening of
the South Atlantic Subtropical High followed by its displace-
ment to south and weakening of the northeast trade wind.
This implies in a high pressure values and inhibition of con-
vection over the SACZ region, North and Northeast of Brazil
with opposite regime on the south of Brazil. Also, the pattern
of canonical El Nĩno seemed to influence the subsidence over
NEB during this period. According Chan et al. (2008) the
IOD(+) contributes to displacement of Subtropical Atlantic
High to the south by the Rossby waves train that extends
from the Southern Indian and South Atlantic Ocean reaching
the subtropical latitudes. Our analysis suggested a combined
effect of the canonical El Niño, NAO(−), IOD(+) and posi-
tive phase of the SAD modulating the drought over the NEB.
Opposite impact may occur when the opposite phase of these
patterns occurs.

The SST variability over the North Atlantic Ocean dur-
ing NDJ season was represented by the NAO mode (Fig. 5a)
and the variance captured was 24.2 % in this area exhibit-
ing a periodicity in intraseasonal and interannual scales
(Fig. 5b). Negative correlations were presented almost all
oceanic basins being more intense in isolated regions of the
tropical western Pacific and Indian Oceans suggesting a com-

www.adv-geosci.net/35/79/2013/ Adv. Geosci., 35, 79–88, 2013
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Figure 6.  1 

Fig. 6.As in Fig. 4 but for FMA of 1982–2009 over the South Atlantic Ocean.

bined persistence of cooling of the tropical Pacific, IOD(−)
and cooling South Atlantic Ocean (Fig. 5c). The positive cor-
relations were more intense and centred at 150◦ W, 40◦ N and
45◦ W, 40◦ N. The spatial pattern revealed that the positive
phase of the NAO acts together with the negative phase of the
PDO – PDO(−) and IOD(−) contributing to negative corre-
lations in with SLP field over most of Brazil (except on the
South region) and South Atlantic Ocean (Fig. 5d). It sug-
gested a reduction of the SLP over this region in agreement
with the intensification of the northeast trade winds and up-
ward motion due to PDO(−) influence.

For the FMA season the main mode captured over the
South Atlantic Ocean showed a variance of 30.3 % that was
higher compared to that found in NDJ, however, with similar-
ities in spatial pattern (Fig. 6a). The time series showed pre-
dominance of intraseasonal and interannual scales (Fig. 6b)
and during the years of more intense ENSO the signal
showed a larger amplitude and change of phase when com-
pared with the time series captured for NDJ (Fig. 4b). This
indicates that the variability of SST anomalies in the South
Atlantic Ocean during FMA season responds with lag of
nearly 3 months after the occurrence of a maximum ENSO
event been in agreement with the results of Haarsma et
al. (2003). Also, according to our results, the SAD mode
during FMA trimester may be associated with positive SST
anomalies over almost the entire Indian Ocean while over the

equatorial Pacific the correlations are very weak and negative
(Fig. 6c).

The warming of the Indian Ocean could be related with
the remote response of El Niño events occurred in NDJ.
Such mechanism was suggested by Taschetto and Ambrizzi
(2012) leading to the positive phase or heating mode of the
Indian Ocean basin-wide or IOBW(+). The correlation be-
tween the SAD with the SLP anomalies during FMA indi-
cated negative correlations over all the South Atlantic and
Tropical North Oceans and central-east Brazil (Fig. 6d). In
other words, the weakening of Subtropical Atlantic High and
consequent weakening of the southeast trade winds and the
slightly reduction of the northeast trade winds contributes to
the positioning of the Intertropical Convergence Zone to the
south of its climatology and more rain over the NEB. In this
case the local effect of the South Atlantic Ocean seems to be
largest than remote impact of Indian Ocean.

The first eigenvector of SST anomalies over the North At-
lantic during FMA trimester captured 28 % of the variability
on this basin (Fig. 7a) being associated with the NAO show-
ing anomalies of opposite signs between the south-central
and northwest area. The time series showed intraseasonal and
interannual frequencies (Fig. 7b) and the positive phase of
the NAO suggested a combined influence with the cooling
of the central-eastern Equatorial Pacific and Indian Oceans
(Fig. 7c). Negative correlation values predominated in most
part of the South Atlantic and positive to the north (Fig. 7d)

Adv. Geosci., 35, 79–88, 2013 www.adv-geosci.net/35/79/2013/
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Figure 7.  1 

Fig. 7.As in Fig. 6 but for the North Atlantic Ocean.

suggesting an intensification of the northeast trade winds by
the intensification of the Azores High (NAO(+)) and weak-
ening of Subtropical Atlantic High. Moreover, the analyzed
trimester showed the contribution of La Nina and IOBW(−)
by increasing the rainfall on the north part of the NEB.

3.3 The EOF time series used as explanatory variables

The correlation between the observed anomalous precipita-
tion during NDJ (FMA) over the south (north) grid box and
the time series of the SAD mode was 0.11 (0.21) whereas
with the NAO mode was 0.10 (0.34). The low values of the
linear correlations reflect the high climate variability and the
non-linearity over the NEB that is also indicated by the cor-
relations values between the EOF time series and the oth-
ers oceanic basins in Figs. 4c, 5c, 6c and 7c. Also, we be-
lieve that the precipitation anomalies observed during the
trimesters NDJ and FMA could be more influenced by the
captured modes if a lag in time was used.

The possible reduction in dispersion between the observed
anomalous precipitation and the modes of SST was exam-
ined by applying the ANN technique. The network created
consisted of two layers: 20 neurons in hidden layer and 1
in output layer. We used 60 % of the observed precipita-
tion data during FMA season for training, 20 % for valida-
tion and 20 % for test. The explanatory variables were the
main modes of SST anomalies captured in this season. The

transfer function was the hyperbolic tangent sigmoid and the
training algorithm was the Levenberg–Marquardt backprop-
agation. This training algorithm provides a fewer number of
interactions until reaching the lowest error and highest cor-
relation coefficient being more efficient for approximation
of nonlinear relationships as in climate diagnostics studies.
Also, it was used in previous studies based on EOF modes to
reproduce the precipitation in other regions of the globe (e.g.,
Trigo and Palutikof, 2001).We tested some parameters dur-
ing the construction of the networks, for example, the num-
ber and percentage of neurons for training-validation-test.
The network showed to be more efficient for the fit with 20
neurons and 60 %-20 %-20 % between training-validation-
test than using 10 neurons, 70 %-15 %-15 % relationship or
10 neurons and 60 %-20 %-20 % relationship.

Figures 8 and 9 show the validation for the south and north
of NEB region, respectively. When the time series of the
SAD and NAO modes were used as explanatory variables,
the correlations with the CMAP anomalies (target) were 0.59
and 0.58 and the network was able in simulating the trends
and reduced the dispersion between the output and target data
(Fig. 8a and c, respectively). However, the RMSE of 2.57 and
2.71 in fit of Fig. 8b and d, respectively, suggest some defi-
ciency in reproducing the extreme values of the observed pre-
cipitation anomalies. Likewise, after training when the time
series of the SAD and NAO modes were used as explanatory
dataset for the north grid box during the FMA (Fig. 9a and c,

www.adv-geosci.net/35/79/2013/ Adv. Geosci., 35, 79–88, 2013
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Figure 8.  1 

Fig. 8.Validation results for NDJ season when the time series of the(a) South Atlantic Dipole and(c) North Atlantic Oscillation modes were
used as explanatory variables. On the left-hand column is the monthly time series of observed (blue) and downscaled anomalous precipitation
(green). On the right-hand column is the corresponding scatterplots(b) and(d), respectively. The R-values are 0.59 and 0.58 for panels(b)
and(d), respectively. The scatterplots are adapted from the Matlab tool and solid gray line represents the fit model.

respectively) the correlations increased to 0.57 and 0.56. The
respective RMSE of 2.39 and 2.48 in fit of Fig. 9b and d,
respectively, indicated that these values were slightly smaller
compared to those found during NDJ season. It suggests that
the SAD and NAO modes were more efficient in reproducing
the precipitation variability during FMA season compared to
NDJ season.

4 Discussions

The CFSv2 model exhibited fairly ability to reproduce the
annual cycle of precipitation over the south and north parts
of the NEB during 1982–2009 period. However, a slight un-
derestimation on the average of the wet-seasons of the both
parts was found. The ANN showed to be an efficient tool
to reduce the dispersion between the explanatory and depen-
dent variables when compared with both dataset before and
after training and even with no lag in time. This improvement
was higher when the dispersion before training was higher.
However, the statistical method showed a typical problem of
underestimating or, in some cases, of overestimating the sim-
ulated precipitation extremes during some years.

The SAD and NAO modes captured in both NDJ and FMA
seasons showed associations with SST anomalies over differ-
ent oceanic basins and consequently different impacts in at-
mospheric circulations and rainfall over the NEB were found.
Comparing FMA and NDJ seasons the SAD mode showed
opposite influence on the rainy regime over the NEB. Low
correlation values between the EOF time series and the ob-
served precipitation anomalies over the NEB during the same
season were found suggesting the presence of the high vari-
ability. However, when the EOF time series were used as
input in the networks an increase in correlations was noted
indicating that the SST modes contained sufficient informa-
tion to explain the precipitation anomalies even using a short
dataset (28 yr). However, a longer dataset in the network is
required to capture the contribution of the non-linear pro-
cess in more detail. The smallest RMSE and the best explain-
ing on the variability in the observed precipitation anomalies
were obtained by fitting EOF time series of the SAD and
NAO modes during the FMA season. In a future analysis we
intend to investigate the decadal modulation of these modes
by the Pan Atlantic Oscillation and impacts over the NEB.

Adv. Geosci., 35, 79–88, 2013 www.adv-geosci.net/35/79/2013/
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 2 

Fig. 9.As in Fig. 8 but for FMA season. The R-values are 0.57 and 0.56 for panels(b) and(d), respectively.

Although the networks constructed in the present study
were limited, the ANNs showed to be an important comple-
mentary tool for the climate studies over the NEB. We sug-
gest that is possible to use them in further analyses, for exam-
ple, for seasonal forecast purposes based in statistical down-
scaling but applying a longer period (e.g., 40 yr or more) and
lag in time. Also, additional input variables (i.e., moisture
content, temperature, wind) are required to improve the per-
formance of the statistical downscaling models discussed in
this work.
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