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Abstract. This paper presents the conditioning of a precipita-
tion model to objectively classified circulation patterns (CP).
The application of CPs is considered useful with regards to
model accuracy improvement and preparation of a downscal-
ing model by using CPs classified with climate model data.
As this study aims to produce rainfall as input for derived
flood frequency analyses, the validation focuses on extreme
values and precipitation events. The analysis is carried out by
modifications of a well tested alternating renewal precipita-
tion model.

1 Introduction

Extreme value statistics of floods are of key importance in
climate impact analyses. Changes in floods cannot directly
be derived from climate models. Therefore it is necessary to
obtain long time series of future high resolution precipitation
data as input for rainfall-runoff models.

Different downscaling methods were developed to utilize
climate model data on a local scale. First there are dynami-
cal downscaling methods, which use regional climate mod-
els (RCM) to obtain regional data which is consistent to the
large scale data gained from the general circulation models
(GCM). An alternative are statistical downscaling methods,
which use statistical relations between regional data and se-
lected parameters of the GCMs to access changes on a local
scale.

For climate impact analyses focusing on floods in
mesoscale catchments some features are of major interest.
The precipitation data must be available in a high tempo-
ral resolution (e.g. hourly) and for a long time period. A
long time period is necessary to minimize the sampling error.

This effect is shown in Fig. 1 which compares confidence
intervals of a bootstrap of different sample sizes of simu-
lated discharge values. A larger sample produces a signifi-
cantly smaller confidence band and, hence, the uncertainties
are minimized.

This is where we see the main disadvantages of existing
models. In northern Germany the major RCM is the REMO
model (see e.g. Jacob and Podzun, 1997). This model has a
comparably short time series output and only few realizations
are available. Although different statistical downscaling data
sets are available, e.g. WETTREG (Spekat et al., 2007) or
STAR (Werner and Gerstengarbe, 1997), most of these con-
centrate on a daily time step, which is insufficient for flood
modeling.

Therefore alternatives are desirable which feature long
simulation periods and high resolution data. Here a precip-
itation model is proposed with parameters conditioned to
special GCM predictors. This model has to be tested to de-
liver usable flood model input data. The hybrid precipitation-
model according to Haberlandt et al. (2008) was chosen to
be the basis of the new downscaling approach. The model
parameters will be estimated related to circulation patterns
(CP). As CPs can be obtained using climate model pressure
data as input for an objective CP-classification (see Bárdossy
et al., 2002) a downscaling is thus possible. Nevertheless re-
cent research concluded that merely of CPs is not sufficient
to accomplish a downscaling. This is shortly discussed in the
conclusions chapter and will hopefully be addressed in a later
article.

This work presents the results of the precipitation model
conditioned on circulation patterns.
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Fig. 1. 90 % bootstrap confidence band of simulated flood values
(resampled 1000 times) using different sample sizes.

2 Methods

The precipitation model creates synthetic data on the points
of observed precipitation. For hydrological use it is possi-
ble to regionalize the model to places without observations.
This is not discussed in this paper though. The model consists
of two separate parts. First part of the model is a statistical
precipitation generator consisting of an alternating-renewal-
model (ARM) to simulate rainfall for single points. Second
part is an optimization algorithm which reproduces the spa-
tial dependencies of the synthetic data with a simulated an-
nealing resampling (SA).

2.1 First part: Alternating-Renewal-Processes-Model
(univariate)

The ARM differentiates between external and internal struc-
tures. The methods core is the external part which defines
rainfall as events (Fig. 2). These events are sub divided into
wet spells and dry spells. The wet spells are defined through
length (wsd) and mean intensity (wsi). They are illustrated as
red empty boxes. The dry spells are only defined by length
(dsd).

In the synthesis the spells (wsd + wsi and dsd) are gener-
ated alternately with theoretical distribution functions (Ta-
ble 1). The fitting is accomplished with l-moments. In order
to choose the best fitting distribution function several good-
ness of fit tests and graphical analyses were carried out. In
this study other distribution found to be best fitting than in
Haberlandt et al. (2008), which is plausible as Haberlandt et
al. (2008) focused on low mountain range, while this study
considers stations from the coastal area (0 m a.m.s.l.) up to
mountainous areas (609 m a.m.s.l.). The dependency of wsd
and wsi is considered with a copula function. Copulas allow
considering dependencies of the two variables, while using
univarite distribution functions. The internal structure of the
precipitation events is reproduced with statistical model pro-
files (see Haberlandt, 1998). In Fig. 2 they are shown as grey
filled boxes. To consider the differences in summer and win-
ter rainfall different parameter sets are used for each of the
two seasons.

Table 1.Methods used in the ARM.

Variable Method

dsd Kappa distribution
wsd generalized Pareto distributions
wsi generalized Pareto distributions
wsd-wsi dependency Franks Copula

Fig. 2.Alternating Renewal Model (wsd-wet spell duration, dsd-dry
spell duration, wsi-wet spell intensity).

2.2 Second part: Simulated Annealing

Second part of the model is a simulated annealing algo-
rithm (SA). This non-linear optimization method is used
to reproduce the spatio-temporal dependencies in synthetic
rainfall data. For more information on the algorithm see
Bárdossy (1998). The principal of the algorithm is:

1. calculation of the objective function for the original sta-
tus of the time series;

2. two events are switched;

3. calculation of the objective function for the new status
of the time series;

4. decision about the acceptance of the switch according
to the SA (worsening of the objective function is al-
lowed to a certain degree, so the global optimum can
be found);

5. repetition of the procedure until the objective function
is minimal.

The elements of the objective function are shown in the Ap-
pendix. The single parts are added together to a single objec-
tive function with the use of weights. A detailed discussion
can be found in Haberlandt et al. (2008).

The 1st station is optimized univariately only regarding the
CP transition probabilities. The 2nd station is compared to
the 1st station, the 3rd station compared to both other stations
and so on until thenth station is compared to the 1st up to the
(n − 1)th station.
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Table 2. Percentage deviation between observed and simulated statistical moments with and without using CPs as mean values over all
stations (Var-Variance; Skew-Skewness, Kurt-Kurtosis); grey indicates an improved and dark grey a reduced accuracy through using CPs;
light grey indicates when no changes occurred.

Season Version Mean (dsd) Var (dsd) Skew(dsd) Kurt(dsd) Mean(wsd) Var(wsd) Skew(wsd) Kurt(wsd)

Winter
no CP 1 4 9 25 1 5 21 57
with CP 2 5 5 17 0 5 13 10

Summer
no CP 1 5 15 38 1 5 25 68
with CP 2 6 16 40 1 4 11 30

Year
no CP 1 4 12 28 1 5 19 45
with CP 2 5 13 31 0 4 12 27

Season Version Mean(wsi) Var(wsi) Skew(wsi) Kurt(wsi) Mean(wsa) Var(wsa) Skew(wsa) Kurt(wsa)

Winter
no CP 2 9 20 47 2 20 81 461
with CP 1 6 14 33 0 8 56 251

Summer
no CP 1 11 40 148 3 70 122 529
with CP 1 10 43 163 2 58 108 463

Year
no CP 1 9 37 132 2 46 126 582
with CP 1 8 39 147 1 37 108 500

2.3 Circulation pattern

Circulation patterns (CP) can be defined using the mean pres-
sure distribution on sea level or in the middle troposphere
over a large area and a time period of several days (Werner
and Gerstengarbe, 2010). There are two principles to define
CPs. It can be either classified by experts or by means of
an objective classification. The other one is to use an ob-
jective classification. Here the fuzzy rule based method of
Bárdossy et al. (2002) is used to realize an objective classi-
fication, where the applied method has two advantages. First
it is possible to define the objective function in a way which
is especially fitted to the hydrological purpose. Secondly the
automatic classification allows fast processing of hundreds
of years of data using reanalysis or GCM data as input. Thus
the model is usable to project future CPs in a daily solution.
As pressure data of a very large area (in this case Europe
plus outskirts) is necessary NCAR reanalysis data (Kistler et
al., 2001) is used for the CP classification. For climate pro-
jections ECHAM GCM data (Roeckner et al., 2003) will be
used in the classification of CPs for current and future cli-
mate in the following studies.

Under the assumption that change in precipitation is
caused by change in the CP frequency it is possible to com-
bine the precipitation model with the CP prognosis to form a
downscaling model. For the ARM the conditioning to CPs is
simply done by using a specific parameter set (see Sect. 2.1)
for each CP. The frequency of the CPs is calculated from the
empirical probability distribution. In the SA algorithm the se-
quence and synchrony of the CPs are considered via adjust-
ing the objective function. For the first station the temporal
sequence and for all other stations the synchrony of the CPs
had to be included. This study was carried out with 8 CPs.

Fig. 3.Study Area Lower Saxony (Niedersachsen) and precipitation
network with two stations indicated for extreme value comparison
(see. Fig. 5); the station shown in Fig. 5 marked with slightly bigger
points than the other stations.

3 Study area and data

The study area is the north-German federal state of Lower
Saxony (Niedersachsen) while a validation with a hydro-
logical model is planned in the Aller-Leine-catchment (see
Fig. 3). As the data availability for hourly rainfall is not ideal
a compromise between data length and station density is nec-
essary. As a result a core data set of twenty recording precip-
itation stations with an observation length of 11–15 yr with
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Fig. 4.Scatter-plots of statistical moments of observed (9–15 yr) vs. synthetic (1000 yr, CP-conditioned model) rainfall time series.

at least 11 overlapping years has been selected. This core set
consists only of data from the German Meteorological Ser-
vice (DWD). The extended data set also considers 9 stations
with a length of 7–9 yr and data from the Meteomedia AG.

4 Analyses and results

First step was to fit the precipitation model without CPs to the
new study area. Afterwards, the results of the original ARM
were compared to the CP-conditioned model results. For the
validation statistical rainfall characteristics and extreme val-
ues were considered.

Figure 4 compares observed short term and synthetic
1000 yr precipitation data of the model conditioned to CPs.
The statistical properties of the events are overall satisfy-
ingly reproduced. Only the dsd’s moments are slightly un-
derestimated in the synthesis. As a result of the dsd’s un-
derestimation the mean yearly event number is overesti-
mated. Combined with the correctly modeled average wet
spell amounts, the overestimation of the number of wet spells
leads to a slight overestimation of the mean yearly precipita-
tion. Changing the dsd’s distribution function may solve this
issue.

Table 2 shows the comparison of statistical parameters of
the synthetic precipitation data modeled with and without
CPs. The results are indifferent as the accuracy of the repro-
duction of some parameters is improved, while reduced for
others. Nevertheless, more than half of the parameters are im-
proving and the changes in the improved parameters are more
significant (higher delta) than those in the parameters that get

Fig. 5. Extreme values, 10 synthetic time series (100 yr) vs. obser-
vation (9–15 yr).

reproduced less accurate. Thus we can conclude that overall
the use of CPs lead to an improvement in the reproduction
of rainfall time series. Only the accuracy of the estimation
of the dsd values has been slightly reduced. The synthesis of
wsd and wsa (wet spell amount) is significantly improved by
including CPs. For the variable wsi the lower order statisti-
cal moments are modeled slightly better and the higher order
moments slightly less accurate.

Figure 5 compares observed and simulated extremes of
hourly and 3-hourly sums of both model types. Overall the
extremes are reproduced quite well. Hourly extremes are re-
produced slightly better than extreme values of longer rain-
fall duration. The conditioning of the model to CPs did not
improve the simulation of hourly extremes. However the
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3-hourly extremes are simulated significantly better, as visi-
ble in the example given in the figure. This visual observation
was confirmed by statistical tests. So overall the reproduction
of extreme values in the synthetic data could be improved by
using CPs.

The results of the simulated annealing resampling are not
measurably affected by considering CPs.

5 Conclusions

In this paper a precipitation model was fitted to circulation
patterns. This is the first step towards a stochastic downscal-
ing of high resolution precipitation with projected CPs. The
conditioned model was compared to the original version. The
CPs were classified using reanalysis data. Through the con-
ditioning of the precipitation model an improvement of per-
formance in respect of reproduction of statistical parameters
and extreme values was achieved.

An analysis carried out by Haberlandt et al. (2011) found
that not only the occurrence frequency of the CPs will change
in the future but also their internal structure. This means that
e.g. a wet CP can get wetter or dryer. Therefore the condi-
tioning of a precipitation model to CPs alone is not sufficient
for downscaling. The internal changes of the CPs have to be
addressed too. For this reason a simple statistic-dynamic ap-
proach will be developed.

Appendix A

Elements of the simulated annealing objective function

Probability of bivariate occurrence:

Pij

(
zi > 0|zj > 0

)
=

n11

(n01+ n10+ n11+ n00)
,

nxy – number of intervals with rain in stationx andy; 1: rain-
ing 0: not raining;zx – precipitation at stationX. Bivariate
correlation:

ρij =
cov

(
zi,zj

)√
var(zi) · var(zj )

zi > 0,zj > 0.

Bivariate continuity:

Cij =
E

(
zi |zi > 0,zj = 0

)
E

(
zi |zi > 0,zj > 0

) E(...) − expected value,

see Wilks (1998).
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regional hoch aufgelösten Wetterlagen für Deutschland und
Bereitstellung regionaler Klimaszenarios auf der Basis von
globalen Klimasimulationen mit dem Regionalisierungsmod-
ell Wettreg auf der Basis von globalen Klimasimulationen mit
ECHAM5/MPI-OM T63L31 2010 bis 2100 für die SRESSzenar-
ios B1, A1B und A2, 1–149, 2007.

Werner, P. C. and Gerstengarbe, F.-W.: Proposal for the develop-
ment of climate scenarios, Clim. Res., 8, 171–182, 1997.

Werner, P. C. and Gerstengarbe, F.-W.: Katalog der Großwetter-
lagen Europas (1881–2009) nach Paul Hess und Helmut Bre-
zowsky, 7. verbesserte und ergänzte Auflage PIK Report, 119,
146 pp., 2010.

Wilks, D. S.: Multisite generalization of a daily stochastic precipi-
tation generation model, J. Hydrol., 210, 178–191, 1998.

www.adv-geosci.net/32/93/2012/ Adv. Geosci., 32, 93–97, 2012

http://dx.doi.org/10.5194/hess-12-1353-2008

