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Abstract. The precipitation forecasts of three ensemble pre-
diction systems (EPS) and two multi-model ensemble pre-
diction systems (MM EPS) were assessed by comparing
with observations from 19 rain gauge stations located in the
Dapoling-Wangjiabasub-catchment of Huaihe Basin for the
period from 1 July to 6 August 2008. The sample Probabilis-
tic Distribution Functions (PDF) of gamma distribution, the
Relative Operating Characteristic (ROC) diagrams, the per-
centile precipitation and a heavy rainfall event are analyzed
to evaluate the performances of the single and multi-model
ensemble prediction system (EPS).

The three EPS were from the China Meteorological Ad-
ministration (CMA); the United States National Centre for
Environment Predictions (NCEP); and the European Centre
for Medium-Range Weather Forecasts (ECMWF), all were
obtained from the TIGGE-CMA archiving centre (THOR-
PEX Interactive Grand Global Ensemble, TIGGE). The MM
EPS were created using the equal weighting method for ev-
ery ensemble member over the test area, the first ( MM-1)
consisted of all three EPS, the second (MM-2) consisted of
the ECMWF and NCEP EPS.

The results demonstrate the level of correspondence be-
tween deterioration in predictive skill and extended lead
time. Compared with observations and with a lead time of
one day, ECMWF performs a little better than other centre’s.
With over five days in advance, all the three EPS and the
two MM EPS don’t give reliable probabilistic precipitation
forecasts. Both MM EPS can outperform CMA and NCEP
for most of the forecasted days, but still perform a little worse
than ECMWF. Though variation of daily percentile precipita-
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tion and ROC areas show MM-2 outperforms MM-1, gamma
distribution indicates much similar performances for all 10-
day forecast, and neither is superior to ECMWF.

1 Introduction

Ensemble forecasting was developed as a result of attempts
to understand the limits of deterministic prediction of the
atmospheric state by the setting of initial state conditions.
After decades of development, short-range and, especially,
medium-range precipitation forecasts, have been greatly im-
proved by employing ensemble prediction systems (Charba
and Klein, 1980; Charba et al., 2003). However, sin-
gle EPS usually have restrictions in capturing specific at-
mospheric conditions; consequently multi-model prediction
system (MMS) and probabilistic prediction were devel-
oped by considering the characteristics of many EPS. Thus
TIGGE, a key component of THORPEX (The Observing
System Research and Predictability Experiment) was estab-
lished, providing a very good basis for probabilistic precipi-
tation, which also facilitates the establishment of the hydro-
logic ensemble prediction experiment (HEPEX) (Schaake et
al., 2007). Detailed descriptions of the characteristics of the
10 ensemble systems collected by TIGGE are made by Park
et al. (2008) and Matsueda and Tanaka (2008). Buizza (2008)
summarized two of the main advantages of ensemble-based
probabilistic forecasts as: the ability of an EPS to predict
the most likely scenario; and the ability of an EPS to predict
the probability of occurrence of any event, and provide more
consistent successive forecasts. Many other meteorologists
(Wandishin and Mullen, 2001; Verbunt 2007; Pappenberger
2008; Fowler et al., 2007) have documented the advantages
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of ensemble-based precipitation forecasts but they also note
that many problems need to be solved.

Rainfall is one of the most important weather phenom-
ena which can result in severe floods and huge economic
loss. Providing timely and accurate quantitative precipita-
tion forecast (QPF) is a primary goal of operational predic-
tion, and it is a major factor that affects the issuance of flood
warning (Gourley and Vieux, 2005). Unfortunately, quantita-
tive precipitation forecasts lose skill more rapidly with range
than forecasts of any other surface elements (Sanders, 1986;
Roebber and Bosart, 1998). Precipitation obtained from the
TIGGE-CMA portal was broadly verified and compared with
observations over theDapoling-Wangjiabasub-catchment.

This paper is organized as follows. The test area and the
data are described in Sect. 2. The methodology used to ac-
cess the ensemble skill is discussed in Sect. 3. The per-
formance of the different ensemble configurations are vali-
dated and compared in Sect. 4, and Sect. 5 is the summary
and discussion.

2 The test catchment and the datasets

2.1 The datasets preparation

The European Centre for Medium-Range Weather Forecasts
(ECMWF), the United States National Centre for Environ-
ment Predictions (NCEP), and the China Meteorological Ad-
ministration (CMA) multi-member 1–10 day total precipita-
tion forecasting with initial time 0000 GMT obtained from
the TIGGE-CMA portal were used in this study. Detailed in-
formation of the ensemble systems are listed (Table 1). The
ECMWF, NCEP and CMA have 51, 21 and 15 ensemble
members respectively. Only 1–10 days predicted precipita-
tion data are analyzed for comparing the EPS’s performance
in this paper.

There are 19 rain gauges in the test catchment providing
hourly accumulations of precipitation. The daily accumula-
tions of precipitation from the rain gauges were calculated
with quality control implemented by examining the coher-
ence in time and space, and consistency with the synoptic
situations. The total predicted precipitation data of ECMWF,
NCEP and CMA are used, and two multi-model ensem-
ble systems designed: one was composed with the EPS of
ECMWF, NCEP and CMA ( MM-1); and the other consisted
of ECMWF EPS and NCEP EPS only (MM-2). All five EPSs
were evaluated against observations of the 19 rain gauge sta-
tions in the test catchment. The test period lasts from 1 July
to 6 August, 2008. One heavy rainfall event occurred on
22 July during the test period. It was hoped that the multi-
model ensemble procedure would remove existing biases in
the single-model EPS, therefore, no quality control and bias
correction were implemented for EPS. The equal weighted
factor was arbitrarily imposed on the form of MM-1 and
MM-2 without considering the forecasting skills of individ-

ual EPS. The results will undoubtedly be affected by the en-
semble size of a single EPS used for the multi-model. How-
ever, as that is a complex problem related to a specific EPS, it
is beyond the scope of this study. Since the model resolutions
of different EPS vary from, in order to facilitate comparison
of the performances of different EPS, the predicted precipi-
tation of each EPS was interpolated to the 19 individual rain
gauge stations using the bilinear interpolation method. The
predicted total precipitation of the EPS over the catchment is
then computed from the interpolated predicted precipitation.

2.2 The Dapoling-Wangjiaba catchment

TheDapoling-Wangjiabacatchment is located at the south-
west of the Huaihe Basin, East-China, with a catchment area
of about 30 630 km2, and altitude ranging from 200 to 500 m.
The test catchment is also the origin of the Huaihe River.
Figure 1 illustrates the catchment and the locations of the 19
rain gauge stations. The main reason to choose this region
as the test catchment is that severe precipitation events usu-
ally happen over this area in summer and severe floods occur
frequently. Additionally, there is a dense rain gauge network
distributed in the test area.

3 Forecast validation techniques

Predicted precipitation at the rain gauge locations of EPS was
validated with methods such as the predicted probability dis-
tribution (Gamma function distribution), the Relative Operat-
ing Characteristic (ROC) and the variation of daily percentile
precipitation. The probability distribution of a heavy rainfall
event was also analyzed. To obtain these statistical character-
istics, all the 19 rain gauge observations and ensemble mem-
bers were treated equally.

3.1 Gamma distribution

The statistical distributions of precipitation are distinctly
asymmetric and skewed (Ison et al. 1971; Wilks, 1990,
2006), and the fact that the gamma distribution provides a
flexible representation involving only two parameters for de-
scribing precipitation data makes it widely used. The gamma
distribution is defined by the Probability Distribution Func-
tion (PDF) as following:

f (x) =
(x/β)α−1exp(−x/β)

β0(α)
x ≥ 0,α > 0,β > 0 (1)

In whichα andβ are shape and scale parameter, respectively.
0(α) is the gamma function defined as

0(α) =

∞∫
0

tα−1e−tdt (2)

To estimate the two parameters fitting for the gamma
distribution, a maximum likelihood approach is usually
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Table 1. Comparison of the ensemble systems used in this study.

ECMWF NCEP CMA
Country/Domain Europe USA China

Ensemble members 51 21 15
Forecast length (in days) 15 16 10
Perturbation method Singular Vectors Ensemble Transform Bred Vectors
Spatial Resolution 1◦ ×1◦ 1◦

×1◦ 0.5625◦ ×0.5625◦

Number of levels 62 28 31

 1 

2 

3 

 

Fig. 1. Illustration of the test catchment and the locations of 19 stations in the test area. 

 13

Fig. 1. Illustration of the test catchment and the locations of 19
stations in the test area.

recommended (Wilks, 1990). A maximum likelihood
approximation for the gamma distribution presented by
Thom (1958) was employed in this study. By which the
Thom estimator for the shape parameter could be given as

α̂ =
1

4B

(
1+

√
1+

4B

3

)
(3)

WhereB is the difference between the natural log of the sam-
ple mean and the mean of the logs of the data, derived as

B = ln(x̄)−
1

n

n∑
i=1

ln(xi) (4)

And then the scale parameter is estimated by

β̂ =
x̄

α̂
(5)

For cases where the scale parameterβ̂ does not equal to 1.0,
the transformation ofx′ = x/β̂ should be performed to obtain
standardized variables. In this study, the sample size (N )

varied greatly as ensemble members varied from EPS to EPS.
N can be given as:

N = n ·M ·D (6)

Wheren is the station number in the test area,M is the en-
semble member used in each EPS, andD is the total tested
days. Both the observation and prediction whose daily pre-
cipitation amount is less than 0.01 mm day−1 are treated as
“no precipitation”.

3.2 ROC curve

The ROC curve has become increasingly popular as a mea-
surement of forecast discrimination to distinguish between
an event and non-event (Buizza and Palmer, 1998; Kharin
and Zwiers, 2003). The area under the ROC curve is a scalar
measure that is frequently used to summarize the resolution.
The perfect value is 1.0 and the no-skill value is 0.5. Here,
hits and false alarm rate pairs were computed according to
the thresholds of 0.1 mm, 5.0 mm, 10.0 mm, 15.0 mm and
25.0 mm, to reveal the performance of the five EPS over the
test area.

3.3 Areal percentile precipitation

An established percentile method presented by Hynd-
man (1996) was adopted for the areal percentile precipita-
tion. The equation can be given as

Qi(p) = (1−γ )A(j) +γA(j+1) (7)

Wherej = int(p ·n+ (1+p)/3), γ = p ·n+ (1+p)/3− j ,
p is the percentile,Qi(p) is thei-th percentile areal precip-
itation, A is the array of the forecasted areal precipitation
in ascending order, andn the ensemble members. The areal
precipitation was obtained by averaging the records of 19 ob-
servations or simulated precipitation values.

4 Results

The probability of predicted daily precipitation of different
EPS and MM-1 and MM-2 is compared in Fig. 2 using fitted
gamma distribution functions. Furthermore, to evaluate how
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Fig. 2. Gamma distribution density function of daily precipitation of 5 EPSs, CMA (orange line), ECMWF (red line), NCEP (green line),
MM-1 (olive line) and MM-2 (black line) with a lead time of 1-day(a), 3-day(b), 5-day(c), and 10-day(d). The Gamma distribution density
function of observation is blue line. The histogram is observation sample frequencies of the daily precipitation.

closely the probability density function of gamma distribu-
tion fits with the observation, the sample frequency curve of
daily precipitation records is shown here too.

For 1-day forecasts, all the five EPS give high probability
of predicted precipitation which are less than 8.0 mm day−1.
Though the three single EPS show similar results, the curve
of probability density function for ECMWF is close to the
frequency of the observations’ daily precipitation. Both the
MM-1 and MM-2 which are slanted to the left strongly show
no apparent superiority compared to the three single EPS.
Compared to observation, both ECMWF and NCEP slightly
underestimate showers and light rain and overestimate mod-
erate rain. CMA tends to overestimate the daily precipitation
less than 8.0 mm day−1 and underestimate heavy rainfall es-
pecially heavier than 20 mm day−1.

For 3-day forecasts, ECMWF shows a similar perfor-
mance to the 1-day forecasts. Both PDFs of NCEP and
CMA illustrate strong skew to the left, indicating overes-
timates of moderate rain. The skew to the left for MM-1
and MM-2 were both greatly improved compared to the 1-
day forecasts, however, both show overestimates for show-

ers and light rain and underestimates for precipitation heav-
ier than 4.0 mm day−1. The results of the 5-day forecasts
are very similar to the 3-day forecasts, except that ECMWF
gives an overestimate for all precipitation less than approxi-
mately 16.0 mm day−1. However, for 10-day forecasts, only
ECMWF has a similar PDF to the PDF of observed precipita-
tion albeit with overestimates for light and moderate rain and
underestimates for heavier rain. Both NCEP and CMA have
similar gamma distributions compared to 3-day and 5-day
forecasts. The two multi-model MM-1 and MM-2 EPSs have
α̂ approach 1.0 and̂β approximately 10.0 mm, and the func-
tion intersects the vertical axis at about 0.1 forx = 0.0 mm.
However, the two MM EPS PDFs apparently overestimate
daily rainfall intensities higher than 3.0 mm day−1, in con-
trast to any of the three single EPS.

Comparing the all 1-day, 3-day, 5-day and 10-day lead
times (from Fig. 2a to d), it is clear thatα̂ for ECMWF uni-
formly decreases from 0.802 (1-day) to 0.475 (10-day), while
β̂ uniformly increases from 10.68 mm (1-day) to 15.38 mm
(10-day), which is closest to the observation values as the
lead time extends from 1-day to 10-day.
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Fig. 3. Variation of ROC areas as forecast lead days ranging from 1
to 10 days.

Comparison of the ROC curves (not shown) with a lead
time of 1-day, 3-day, 5-day, and 10-day, and calculating
the areas under the ROC curves using the simple trape-
zoid method, yields conclusions largely consistent with those
drawn from the previously analysis. One notable exception
is that NCEP and MM-2 outperform ECMWF for 2-day and
3-day forecast, but NCEP also gives the worst result for lead
times longer than 5-day. Note that except NCEP, all EPS
show areas below the ROC curves greater than 0.5 for all
10 day forecasts, thus showing the ability to discriminate
precipitation events. The areas under the fitted ROC curves
displayed very similar behavior (Fig. 3). Even though they
were constructed with two or three of the EPS, the MM-1 and
MM-2 showed no improvement compared to ECMWF with
all 10 day’s forecast. MM-2 is a little superior to MM-1 as
the ROC area is always higher.

Figure 4 shows the variation of daily areal observed and
predicted rainfall with lead times of 1-day, 5-day, and 10-day
for all EPSs. All EPSs illustrate the temporal variation of the
precipitation well compared to the observations. For 1-day
forecasts, most of the observations are well included within
the 5-th and 99-th percentile precipitation of ECMWF and
MM-2. CMA shows a severe underestimation of the proba-
bility of precipitation compared to observation. The proba-
bility of precipitation from NCEP is a little worse than that
from ECMWF, but much better than that from CMA. MM-1
which is the combination of three EPSs usually shows large
extension of the box-and-whisker plots. An inspection of
Fig. 4 shows that, as lead times increase from 1-day to 10-
day, the extension of the box-and-whisker plots increases in-
dicating an increase of spread. With MM-1 and MM-2, a
combination of three and two EPSs respectively, more prob-
abilities were presented: e.g. on 13, 16, 18, July, for 1-day
forecasts, the observations were contained in the 5-th to 99-
th percentile precipitation, but only part was contained by

a single EPS. With the lead time of 10 days, the 50-th per-
centile precipitation decreases to 0.0 mm while most of the
maximum precipitations have apparent overestimates com-
pared to observations, this means that at least 50 percent of
ensemble members give underestimates; much worse than
the 1 and 5 day forecasts. MM-2 provides an advantage for
1-day and 5-day forecasts as the spread shows, but not for
10-day forecasts.

The heavy rainfall event on 22 July was further analyzed.
For all EPSs 1-day, 5-day and 10-day forecasts the possibil-
ity of a heavy rainfall event is well indicated by the variation
of daily forecasts, even though the observation was not in-
cluded between the 5-th and 99-th percentiles of predicted
precipitation. Fig. 5 shows, for 22 July, the spatial distri-
bution of precipitation probability exceeding 50.0 mm day−1

with a 1-day lead time. The heavy rainfall event on 22 July
registered extreme rainfall of approximately 200.0 mm day−1

from one station. It can be seen from Fig. 5a that the whole
Huaihe Basin was covered by heavy rainfall, with the max-
ima lying east-west oriented, and a little to the north of the
test catchment. All of the three EPS captured this precipita-
tion event, but the high probability area varied greatly. CMA
gave two high probability centres, both lying far from the
test area. ECMWF performs better than NCEP for the heavy
rainfall event prediction with one day lead time. MM-1 and
MM-2 give similar results with feasible high probability and
better spatial distribution than ECMWF albeit with a lower
probability.

5 Summary and discussion

In this paper, the performance of the ECMWF, NCEP, CMA,
and two MM EPS combining the EPS during the verified pe-
riod over the test area are investigated using the total precip-
itation data obtained from the TIGGE-CMA portal. Valida-
tion and comparison was performed between each other and
the observations of 19 rain gauges located in the test catch-
ment, and the main results were summarized.

The CMA usually shows poor performance for forecasting
moderate and heavier rainfall while the probability of weak
precipitation was usually enhanced. The approximate dis-
tribution function, variation of ROC areas indicate forecast
accuracy was highly dependant on the lead time. Forecast
accuracy deteriorates quickly as lead time extends. The two
MM EPS don’t show much improvement with comparison
to ECMWF, but outperform CMA and NCEP for almost all
10 day forecasts. Effects of CMA to the MM EPS should
be overlooked as MM-1 and MM-2 usually give similar re-
sults. The percentile areal rainfall shows that the observed
precipitation values were usually included by the 25-th and
75-th percentile precipitation with short time forecasts, and
for 10 days in advance, moderate and heavier precipitation
were captured. However, the box-and-whisker plots spread
wider as the forecast time extended, indicating an increase in
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Fig. 4. Percentile area-averaged-precipitation of CMA, NCEP, ECMWF, MM-1 and MM-2 overDapoling-Wangjiabacatchment for lead
time of (a) 1-day,(b) 5-day, and(c) 10-day during the study period. The five short lines in every box-and-whisker plot indicate the 5-th,
25-th, 50-th, 75-th, and 99-th percentile precipitation, respectively.

uncertainty. Further analysis of the case of heavy rainfall ex-
ceeding 50 mm day−1 shows that all EPS could forecast the
heavy precipitation event with a short lead time, however,
tending to fall outside or skewing the affected area compared
to observation.

With the use of EPS and methodology of probabilistic
forecasts, especially our understanding of the scientific bases
on forecasting extreme precipitation events, providing 3–
10 day’ probability flood forecast is well developed. Due
to advances in numerical weather prediction, the feasibility
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Fig. 5. Precipitation spatial distribution in millimetres of observation(a) and predicted probability of exceeding 50.0 mm day−1 with the
EPS of(b) CMA, (c) ECMWF, (d) NCEP,(e)MM-1, and(f) MM-2 with a 1-day lead time.

and opportunities for developing probability forecasts have
been well documented (Krzysztofowicz, 2001; Thielen et
al., 2009). It should be noted that, in this study, the bilin-
ear interpolation method was implemented, and the effect
of topography was not considered. In addition, Buizza and
Palmer (1998) and Verbunt et al. (2007) pointed out that pre-
cipitation is usually affected by the total number of ensemble
members, consequently, the effect of member size of the EPS
and MM EPS used in this study should be examined. Finally,
more work should be done on how best to set the weight of
each member of the Multi-Model ensemble forecast.
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