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Abstract. Ensemble forecasts can greatly benefit water re-
sources management as they provide useful information re-
garding the uncertainty of the situation at hand. However,
weather forecasting systems are evolving and the cost for re-
analysis and reforecasts is prohibitive. Consequently, series
of ensemble weather forecasts from a particular version of
the forecasting system are often short. In this case study, we
consider a hydrological event that took place in 2003 on the
Gatineau watershed in Canada and caused management dif-
ficulties in a hydropower production context. The weather
ensemble forecasting system in place at that time is now ob-
solete, but we show that with minimal post-processing of
the forecasts, it is still beneficial to exploit ensemble rather
than deterministic forecasts, even if the latter emerge from
a more advanced meteorological model and possess superior
spatial resolution.

1 Introduction

Ensemble forecasts allow decision makers to analyze the un-
certainty of the situation at hand, which potentially leads
to improved management compared to using point forecasts
(e.g.Krzysztofowicz, 2001). However, weather forecasts se-
ries from each version of the operational system are often
short or outdated as the system improves over the years. In
addition, it is virtually impossible to describe perfectly all
sources of uncertainty associated with hydrological forecast-
ing in order to directly obtain a perfect exhaustive estimate
of the total uncertainty of the forecast. For instance, in large
northern territories such as Canada, the precipitation gauges
networks are usually too coarse relatively to the territory un-
der study. This poses challenges regarding precipitation data,
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and in an even greater extent snow data, which in turn have
great incidence on timing and magnitude of the spring melt.

This causes Canadian meteorological ensemble forecasts
to be under-dispersed and has led many important industrial
users to turn their back on the ensemble product, in favor of
ESP-type forecasts (Day, 1985) forecasts. Dividing the fore-
casting horizon into stages, they use the deterministic fore-
casts in a rainfall-runoff model to obtain short-term stream-
flow forecasts, and then generate ensembles based on previ-
ous years climate for medium- to long-term streamflow fore-
casting, assuming that the climates of previous years are all
equiprobable between themselves and compare to the actual
climate. In the context of a warming climate, such palliative
strategy may become increasingly misleading.

Considering this, it becomes necessary to post-process the
ensemble forecasts before involving them into a decision-
making process so that the predictive distributions are reli-
able and properly reflect real world uncertainty. Many post-
processing strategies involve sophisticated statistical manip-
ulations, which can deter their operational use. In this case
study, we show that a kernel based post-processing method
can, at least partially, compensate for the uncertainties that
are not well captured by the hydrological ensemble forecast-
ing process (rainfall-runoff parameterization, uncertainties in
the observations, initial soil moisture or snowpack height, for
instance) and for the under-dispersion of the meteorological
ensembles used. Furthermore, we also show that even raw
ensembles can be beneficial for decision-making compared
with the use of a deterministic product.

Here we consider a flood event in fall 2003 in the Gatineau
watershed in Canada, which caused management complica-
tions for Hydro-Qúebec, the major hydropower producer in
the country. We use the weather ensemble forecasting system
that was operational in 2003 at Environment Canada, which
has a spatial resolution of 200 km and is formed by combin-
ing the outputs from two atmospheric models, the models
SEF (Ritchie, 1991; Ritchie and Beaudoin, 1994) and GEM
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(Côté et al., 1998). Temperature and precipitation forecasts
are then used to feed a physics-based distributed hydrologi-
cal model, which in turn produces streamflow ensemble fore-
casts for the outlets of the six sub-catchments in the basin,
for lead times between 48 h and 240 h. Because the raw
streamflow forecasts suffer from under-dispersion and bias,
the performance of the final product is then evaluated us-
ing the Continuous Ranked Probability Score (CRPS) and
its decomposition into reliability and potential components,
in addition to the logarithmic score and rank histograms. In
order to assess the benefits of using ensemble streamflow
forecasts, deterministic forecasts are also used in conjunc-
tion with the hydrological model. The 2003 ensemble fore-
casts have a 200 km spatial resolution, while the 2003 de-
terministic forecasts have a resolution of 45 km, the highest
available. Since the mean CRPS reduces to the mean abso-
lute error for deterministic forecasts (Gneiting and Raftery,
2007), we are able to compare deterministic and probabilistic
forecasting systems.

The paper is organized as follows. First, the context of
application is provided in Sect.2, describing the watershed,
the particular flood event considered, the meteorological en-
sembles as well as the hydrological model. The experimental
protocol is explained in Sect.3 and results are presented in
Sect.4, followed by a short conclusion.

2 Context of application

2.1 The Gatineau watershed

The Gatineau River watershed (1) covers 26 785 km2 and it is
490 m a.s.l. at its highest. The climate is typically continen-
tal, with warm and humid summer seasons and cold, humid
and cloudy winters. There are, however, important climatic
variations between the downstream part of the catchment and
its upstream part. The upper part of the catchment can be
considered sub-polar, while the central part is described as
mild sub-polar and the lower part presents a moderate cli-
mate. Although the climate exhibits some variations, the
precipitation regime is the same throughout the catchment:
mean total rain of 80–100 cm and mean total snow of 200–
250 cm.

The Gatineau River crosses several urban areas, the largest
of which is the town of Maniwaki. The system comprises
two large upstream reservoirs (Cabonga and Baskatong). As
illustrated by Fig.1, the Gatineau watershed can be subdi-
vided into six sub-catchments. Table1 provides additional
information regarding the mean observed daily streamflow
for each sub-catchment.

2.2 The flood event of fall 2003

Because the Gatineau River basin comprises inhabited areas,
certain operating constraints prevail over hydropower pro-
duction. For instance, from 1 June to 15 September, the

Table 1. Mean daily streamflow for the six sub-catchments of the
Gatineau River basin, from 1 January 1950 to 4 November 2004.

Basin Mean daily
streamflow

(m3 s−1)

Chelsea 25.14
Paugan 92.14
Maniwaki 54.53
Baskatong 232.17
Cabonga 41.74
Ceizur 127.46

Fig. 1. The Gatineau watershed divided in six sub-catchments:
Ceizur (red, 6840 km2), Cabonga (green, 2662 km2), Baskatong
(purple, 6200 km2), Maniwaki (yellow, 4145 km2), Paugan (orange,
2790 km2) and Chelsea (turquoise, 1148 km2).

Baskatong reservoir must be filled almost to its capacity to
allow boating and recreational activities for nearby residents.
The river level must be kept above a specific level to ensure
adequate drinking water supply for nearby towns. Finally,
the river must also be kept below another level for flooding
prevention.

The average volume of a spring flood in the Baskatong
reservoir is 3600 hm3, but the capacity of the Baskatong
reservoir is only 3049 hm3. The routine strategy is to lower
the level of the Baskatong reservoir at the end of the winter
as much as possible and then let the level rise during spring.
Then, the reservoir level is kept all summer within 2.5 to
1.3 m of its maximum level until mid-September. During the
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Fig. 2. Scatter plots of 48 h ahead deterministic precipitation fore-
casts and corresponding observations for(a) Station 7031360 (near
outlet of the basin)(b) Station 7038885 (upper Baskatong, middle
of the basin) and(c) Station 7038975 (Paugan).

fall, the reservoir is managed so that a sufficient water reserve
is cumulated to anticipate electricity demand during winter.

The operating margin for the operation of the Baskatong
reservoir is quite small considering the above mentioned con-
straints and the inflows it receives during certain periods.
Consequently, spillage is sometimes inevitable at the hy-
dropower stations in spring and fall. The most significant
flood occurred in the spring of 1974. On this occasion, 3000
residents were required to evacuate the area, over one-third
of Maniwaki was flooded and 2.9-million Canadian dollars
had to be provided in disaster relief. More recently, heavy
precipitation in fall 2003 caused important flooding in the
municipality of Gracefield south of Maniwaki.
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Fig. 3. Boxplots of 48 h ahead ensemble precipitation forecasts
compared to 48 h ahead high resolution deterministic precipitation
forecasts for(a) Station 7031360 (near outlet of the basin)(b) Sta-
tion 7038885 (upper Baskatong, middle of the basin) and(c) Station
7038975 (Paugan).

2.3 Environment Canada’s meteorological forecasts

Two types of forecasts are compared for the events of fall
2003: the high resolution deterministic forecast (45 km) and
the ensemble forecasts (200 km). The latter are known to be
biased and underdispersed.

Forecasts were issued by Environment Canada, with the
forecasting system that was in operation from January 1996
to July 2007. The ensemble forecasts are obtained by the
outputs from two atmospheric models, SEF (regional) and
GEM (global). Each model issues eight members, in addition
to the control forecast.

Environment Canada’s forecasting system has since been
improved, especially regarding the spatial resolution that is
now 100 km.

Figure2 shows scatter plots of the observed and forecasted
precipitation for three measurement stations: 7031360, lo-
cated in Chelsea sub-catchment, at the outlet of the Gatineau
Watershed, station 7038885, in the middle of the basin,
and station 7038975, in Paugan sub-catchment. Forecasted
precipitation is often underestimated, especially at station
7038975.

As for ensemble forecasts, boxplots of the daily ensemble
precipitation forecasts (17 members) are plotted in Fig.3,
against corresponding observations, for an excerpt of the fall
2003 period and for the same geographical locations (mea-
surement stations) as Fig.2. Forecasts for all stations an-
nounce a major precipitation event around 22 November,
which appears to be a false alarm since it is not recorded
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Fig. 4. Hydrograph for(a) Ceizur, calibration,(b) Ceizur, validation,(c) Maniwaki, calibration,(d) Maniwaki, validation,(e) Chelsea,
calibration and(f) Chelsea, validation. Calibration data is from 2 March 2002 to 15 July 2003 and validation data is from 1 September 2003
to 17 December 2003.

at station 7031360 (Fig.3a) and only a small amount of rain-
fall is recorded at the two other stations. Also, forecasts for
station 7038885 over predict an event at the end of October.
Generally speaking, ensemble precipitation forecasts seem to
over predict low precipitation events. While the lower values
of the ensembles are close to the observed precipitation, the
ensemble mean is often too high (see for example Fig.3b,
between 15 and 25 October).

2.4 Hydrological model

HYDROTEL (Fortin et al., 1995, 2001) is a physics-based
distributed hydrological model. It is used operationally as a
short term forecasting tool by Hydro-Québec as well as by
the Qúebec provincial government. The major strength of
HYDROTEL is its capacity to directly use GIS inputs. For a
physics-based model, it is also relatively unextensive regard-
ing the amount of data needed, since it can be run using only
precipitation and temperature observations. Like all hydro-
logical models, it was designed from a deterministic point of
view, so the generation of ensemble forecasts is not direct
and requires a lot of additional manipulations.

Figure 4 shows the hydrographs for the calibration (2
March 2002 to 15 July 2003) and validation (1 September
2003 to 7 December 2003) periods. In both cases, these
are daily streamflow observations and the upper plots are for
Ceizur, the most upstream sub-catchment, the second row
plots (Fig. 4c and d) correspond to Maniwaki, where the
events of fall 2003 took place and the third row plots show
data for Chelsea, the most downstream sub-catchment. For
Chelsea and Ceizur, it can be noted that the maximal ob-
served streamflow during the calibration period is higher that
the one recorded during the validation period.

This study focuses on two to ten day ahead streamflow
forecasts, which are used operationally at Hydro-Québec for
short-term production management. The precipitation and
temperature data needed by the model are available respec-
tively every 12 and 6 h.

A basic updating method for the state of the model was
used to ensure that the forecast process always starts from
adequate hydrological state. The updating method consists in
running HYDROTEL in simulation mode first, and correct-
ing the inputs (precipitation and temperature) until a good
fit between simulated and observed streamflow is achieved.
Then, the states (soil moisture, snowpack height, surface
runoff and streamflows) are saved and used later in the fore-
casting process. Considering the uncertainty related to rain-
fall observations and the low density of the gauging network,
it is realistic to allow small corrections on those inputs. Re-
garding temperature corrections, they are mostly restricted to
1–3 degrees (subtracted or added) and used during spring to
adjust snowmelt.

3 Experimental protocol

3.1 Weighting of the scenarios

Before comparing deterministic and ensemble forecasts, the
question whether or not the forecasts issued by SEF and by
GEM should have the same weight has to be raised. The anal-
ysis is based on the assumption that the observed valuexobs,t ,
given the ensemble forecastsyS,t = yS,1,t ,yS,2,t ,...,yS,8,t

andyG,t = yG,1,t ,yG,2,t ,...,yG,8,t is drawn from a weighted
mixture of two gamma distributions.yS,t andyG,t are re-
spectively the ensemble members issued by SEF (S) and by
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GEM (G) at time stept . First, a gamma distribution is fitted
separately toyS,t and toyG,t using the method of moments.
Second, the weighted mixture given by Eq. (1) is used to es-
timatew, the weight of model SEF

f (xobs,t |yS,t ,yG,t ) = w GAM(xobs,t |α̂S,β̂S)

+(1−w)GAM(xobs,t |α̂G,β̂G) (1)

In this equation,α̂S, β̂S, α̂G and β̂G are the parameters
of the gamma distribution (GAM) estimated withyS,t and
yG,t . The value ofw is estimated over the entire forecasts-
observation calibration archive between 3 March 2002 and
31 August 2003, using the maximum likelihood method.
Consequently, there is only one estimated value ofw, for
each lead time, while the gamma distribution parameters
change with time.

3.2 Evaluation of performance

The performances of the different types of forecasts were
compared using three numerical criteria, in addition to the
rank histogram for ensemble forecasts (Talagrand et al.,
1997). In order to compare deterministic and ensemble fore-
casts, the Continuous Ranked Probability Score (CRPS) and
the absolute error (AE) were used. As formally demonstrated
by Gneiting and Raftery(2007), the mean CRPS is the prob-
abilistic counterpart of the mean absolute error (MAE) for
deterministic forecasts and the two scores are therefore di-
rectly comparable. Like for the MAE, the lower the CRPS,
the better and both scores have a lower bound of zero.

The CRPS is a proper score, which implies that it
can be separated into reliability and resolution components
(Brocker, 2008). Its reliability and potential components
can be evaluated followingHersbach(2000). The reliability
component evaluates the extent to which probabilistic fore-
casts are reliable, meaning for example that the observed
coverage probabilities of the confidence intervals correspond
to the nominal confidence levels. The potential CRPS is the
lowest possible CRPS that could be attained if the forecasts
were made perfectly reliable (through post-processing, for
example). The CRPS is a global score, meaning that its
calculation involves the whole probability distribution. To
complete our comparison of the performance of the ensem-
ble forecasts, we also use the logarithmic score (Good, 1952),
which is local. The calculation of a local score is based on the
probability density function (pdf) evaluated at the observa-
tion xobs,t and hence does not involve the whole pdf. For the
specific case of the logarithmic score, it is evaluated by com-
puting the negative logarithm of the pdf evaluated at the ob-
servation for each forecast-observation group and then taking
the average over all forecasts. Some authors suggested that
“locality” is a desirable characteristic for a scoring rule (e.g.
Bickel, 2007; Benedetti, 2010). There is no perfect value to
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Fig. 5. Raw streamflow ensemble forecasts for Maniwaki sub-
catchment,(a) 48 h ahead and(b) 240 h ahead.

use as a reference for the logarithmic score and no determin-
istic counterpart.

To provide the reader with a more tangible view of the
forecasts, Fig.5 illustrates the raw ensemble forecasts (in
red) and the observed streamflow (in black) for Maniwaki
sub-catchment, both for 48 h (a) and 240 h (b) forecasts. As
expected, the 48 h forecasts are less dispersed than the 240 h
forecasts, for which some ensemble members seem to go
astray sometimes and issue random streamflow peaks. This
is clearly shown in Fig.5b, where the lower members of the
ensemble remain relatively close to the observed streamflow,
while some members are much higher. This is observed in
all other sub-catchments (not shown).

3.3 Post-processing of the ensemble forecasts

Ensemble forecasts post-processing follows the non-
parametric kernel based method proposed byRoulston and
Smith (2003). Generally speaking, a kernel based post-
processing method consists in dressing each raw ensemble
member with a probability function (the kernel) defined by a
spread parameter (the bandwidth) and summing all the ker-
nels to form a density mixture. This has the effect of in-
creasing the spread of the ensemble, so such post-processing
methods only suit under-dispersed ensembles. The extent to
which the spread of the post-processed ensemble is greater
than the spread of the raw ensemble depends on the band-
width, so this parameter has to be calibrated. While kernel
dressing can serve post-processing, it is a non parametric dis-
tribution fitting tool. Many textbooks can provide additional
information about this technique, among whichWand and
Jones(1995).

In the specific case of the best member method, the band-
width is estimated through the errors between ensemble
members and corresponding observations. First, for each
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Fig. 6. Likelihood functions of the gamma mixture for the ensemble forecasts issued by models SEF and GEM, as a function of model SEF’s
weight, for Maniwaki sub-catchment and 48 h, 120 h, 192 h and 240 h lead time.

time step, the absolute difference between each ensemble
member and the observation is computed. Note that this is
done on a portion of the data (calibration data) which does
not comprise the fall 2003 data that are used for validation
and comparison. Here, the calibration data spans from 3
March to 31 August 2003. The calibration period is rather
short, but as shown above by the hydrographs of Fig.4, this
may not be a problem since the highest observed streamflow
values are included in this period.

Once all the absolute differences are obtained, the daily
minimums are put in a vector, which constitute the “best
member’s errors”. The errors made by the other ensem-
ble members are greater and keeping them would increase
the risk of obtaining a post-processed ensemble that is over-
dispersed.

Since there is a proportionality relation between the mag-
nitude of the errors and the magnitude of the observations, it
is not realistic to post-process forecasts of all magnitudes us-
ing a single kernel bandwidth. Ensemble forecasts for small
streamflow values usually do not require as much correction
than ensemble forecasts for extreme events. Consequently,
the forecasts have to be categorized according to their mag-
nitude, and corrected with an appropriate bandwidth.

In order to define the different categories, the streamflow
observation database for each sub-catchment is used to fit a
probability density function (gamma), from which the 25%,
50% and 75% percentiles are obtained. These percentiles
become the limits of four categories, and a different band-
width is estimated for each of those categories. To do so, the

best member’s errors are divided into those four categories
depending on the magnitude of the corresponding observed
flow. For instance, if the observed streamflow value is greater
than the 50% percentile but less than the 75% percentile,
the best member error of the corresponding ensemble fore-
cast will be archived in a vector corresponding to the third
category.

Subsequently, for each of these categories, the variance of
the errors is calculated and serves as the bandwidth of the
kernels in the smoothing method, which is applied to the re-
maining portion of the data. In this study, they are the fall
2003 data, from 1 September 2003 to 17 December 2003.
The ensemble mean is used to divide the forecast into the
same categories that were used to calibrate the bandwidth
parameter, so the corresponding bandwidth is applied to ob-
tain the post-processed ensemble. Table2 presents the vari-
ance of the best member errors (the bandwidths) for all four
streamflow categories for Maniwaki sub-catchment.

4 Results

The maximum likelihood estimates for the weightw of the
two-component mixture of gamma distributions were ob-
tained for each forecasting lead time. These are given in
Table 3 for each sub-catchment. We notice that SEF’s
weight is higher than 0.5, but the corresponding likelihood
functions, presented in Fig.6 for Maniwaki, are quite flat,
which indicates that the corresponding estimates display high
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Fig. 7. Reliability (green) and Potential (blue) components of the
mean CRPS before post-processing of the ensembles for(a) Paugan
and(b) Baskatong.

Table 2. Variance of the best member errors for Maniwaki sub-
catchment, divided according to the percentiles of the distribution
of observed streamflow, for calibration period (2 March 2002 to 15
July 2003).

Horizon Variance of best member errors

0 to 25% 25% to 50% 50% to 75% 75% to 100%

48-h 6.48 6.05 9.68 15.96
72-h 5.55 5.06 9.37 10.92
96-h 4.66 4.92 10.81 10.41
120-h 4.02 4.71 11.44 12.19
144-h 3.63 5.95 11.33 12.15
168-h 2.72 7.03 10.10 13.30
192-h 3.28 7.21 14.53 14.83
216-h 3.81 6.62 17.79 11.50
240-h 4.46 4.80 18.51 9.09

uncertainty and that it is not clear that one model outperforms
the other. Consequently, SEF and GEM ensemble members
are considered equiprobable hereafter.
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Figure7 shows the two components of the total CRPS as
a function of the forecasting horizon, for unprocessed fore-
casts. The potential component of the CRPS (in blue) in-
creases with the forecasting horizon. This means that the best
attainable score gets higher (worst) as the lead time progress.
For example, it is thus possible, through post-processing, to
achieve a better score for two-day ahead forecasts than for
ten-day ahead forecasts. As for the reliability component,
it reveals that the forecasts becomemorereliable for longer
lead times.

This behavior also illustrates the effect of a delay caused
by the response time of the catchment (Velazquez et al.,
2009). For forecasting horizons shorter than this response
time, the hydrological state of the watershed prevails over
the forecasts and therefore a gain could be achieved through
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Fig. 9. Comparison between post-processed (blue solid line) and raw (dashed blue line) ensemble forecasts according to the logarithmic
score(a) Chelsea(b) Paugan(c) Maniwaki (d) Baskatong(e)Cabonga(f) Ceizur.

Table 3. Maximum likelihood estimates for SEF model’s weight
in predictive distributions formed by a mixture of two gamma
distributions.

Basin Horizon (h)

48 120 192 240

Chelsea 0.70 0.68 0.62 0.61
Paugan 0.62 0.62 0.62 0.55
Maniwaki 0.63 0.67 0.61 0.59
Baskatong 0.63 0.58 0.59 0.60
Cabonga 0.66 0.64 0.68 0.65
Ceizur 0.61 0.65 0.70 0.67

post-processing, as shown by low potential CRPS. As the
horizon lengthens, the forecasts become dominant over the
observations. The potential CRPS becomes higher, meaning
that even with appropriate post-processing methods, the low-
est possible CRPS that could be attained is higher than for
shorter lead times.

In order to assess the effect of the post-processing treat-
ment, rank histograms were plotted for each lead-time. Fig-
ure8 compares the raw ensemble (left-hand column) with the
post-processed ensemble (right-hand column) for each sub-

catchment and for two-day ahead forecasts. The logarithmic
score and CRPS are also included in each plot.

All rank histograms are more uniformly distributed for
post-processed forecasts and it is reflected in the scores,
which are lower for the post-processed ensembles for all
catchments except for Ceizur. However, for longer fore-
casting horizons and for some sub-catchments, the post-
processing method does not significantly improve the fore-
casts (not shown). Figure9 also shows that the logarithmic
score systematically improves after post-processing. This
is because the logarithmic score harshly penalizes forecasts
that do not include the observed value as a possible outcome
or attribute a very low probability to its occurrence. Con-
sequently, when the dispersion increases and covers the ob-
served value, the mean logarithmic score improves greatly.

Figure10 compares the performance of the ensemble and
deterministic forecasts. This is done using the CRPS and
the MAE, for the post-processed ensembles (solid blue line)
as well as for the unprocessed ensembles (dashed blue line)
and high resolution deterministic forecasts (red line).The low
resolution ensemble forecasts outperform the high resolu-
tion deterministic forecasts, except for the first forecasting
horizons for some sub-catchments ((a) Chelsea, (b) Paugan
and (c) Maniwaki). Moreover, this performance gap of-
ten increases with the lead time. As for the benefit of the

Adv. Geosci., 29, 85–94, 2011 www.adv-geosci.net/29/85/2011/



M.-A. Boucher et al.: Comparison between ensemble and deterministic hydrological forecasts 93

10

20

30
(a)

C
R

P
S

, M
A

E
 (

m
3 /s

)

25

50

75

100
(b)

12

27

42

55
(c)

C
R

P
S

, M
A

E
 (

m
3 /s

)

60

120

180
(d)

2 4 6 8 10
15
20
25
30
35

(e)

C
R

P
S

, M
A

E
 (

m
3 /s

)

Lead time (days)
2 4 6 8 10

40

80

120

(f)

Lead time (days)

Fig. 10. Comparison between high resolution deterministic forecasts (red line) and low resolution post-processed (blue solid line) and
raw (dashed blue line) ensemble forecasts in terms of CRPS and MAE(a) Chelsea(b) Paugan(c) Maniwaki (d) Baskatong(e) Cabonga
(f) Ceizur.

post-processing method, it varies from one sub-catchment
to another and also depends on the lead time. In Fig.10a,
it can be seen that the post-processed ensembles always
have a lower (better) CRPS than the raw ensembles. Con-
versely, for Baskatong, Cabonga and Ceizur, which are the
uppermost sub-catchments, the raw ensembles offer a greater
performance than the processed ones. However, as illus-
trated in Fig.9, according to the logarithmic score, the post-
processed ensembles outperform the raw ensembles for all
sub-catchment and forecasting horizons. This improvement
is inversely proportional to the horizon and is greater for fore-
casting horizons shorter than four to six days. However, note
that the CRPS and logarithmic score are not evaluated on the
same scale and that the logarithmic scale emphasizes the dif-
ference of performance between raw and processed forecasts
in Fig. 9 compared to Fig.10.

5 Conclusions

In this case study, we show the benefit of choosing ensemble
forecasts over deterministic forecasts, even when the spatial
resolution of the ensemble forecasts is much lower than the
deterministic forecasts for the Gatineau watershed in Canada.

A fairly simple post-processing method (Roulston and
Smith, 2003) allows correcting the resolution and bias in
the ensemble forecasts so that for at least some cases they
outperform the high resolution determinist forecasts in terms
of comparison with the observations for this basin. Accord-
ing to the CRPS, the use of a basic post-processing method
for ensemble forecasts improves the results only for the first
forecasting horizons. This is observed in most cases, except
for two sub-catchments which are known to include large
reservoirs. The influence of those reservoirs still has to be
further investigated. According to the logarithmic score, the
post-processed ensembles are systematically better than the
raw ensembles, especially for the first four to six days. This
difference of behavior between the two scores may be related
to the fact that one is global while the other one is local, but
this also requires further investigation.
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In addition, future work on this basin should include
the comparison of the old ensemble forecasting system
with the new one. If no re-forecasts are made available,
this could be done by comparing the fall 2003 flood event
with a similar event that took place after July 2007. Also,
it could be interesting to test and compare more sophisti-
cated post-processing methods in order to compare their
strengths and investigate the extent to which a particular
post-processing method is suitable for different watersheds
or for certain types of events. However, in this case study
we have shown that, at least for the particular watershed at
hand and the event considered, ensemble forecasts, even of
poor quality and spatial resolution, can compete with more
modern higher resolution deterministic products by means
of minimal post-processing.
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