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Abstract. Post-processing the output of different rainfall-
runoff models allows one to pool strengths of each model
to produce more reliable predictions. As a new approach in
the frame of the “Prediction in Ungauged Basins” initiative,
this study investigates the geographical transferability of dif-
ferent parameter sets and data-fusion methods which were
applied to 5 different rainfall-runoff models for a low-land
catchment in Central Sweden. After usual calibration, we
adopted a proxy-basin validation approach between two sim-
ilar but non-nested sub-catchments in order to simulate un-
gauged conditions.

Many model combinations outperformed the best single
model predictions with improvements of efficiencies from
0.70 for the best single model predictions to 0.77 for the
best ensemble predictions. However no “best” data-fusion
method could be determined as similar performances were
obtained with different merging schemes. In general, poorer
model performance, i.e. lower efficiency, was less likely to
occur for ensembles which included more individual models.

1 Introduction and scope

Numerous rainfall-runoff models have been developed to de-
scribe the water balance and predict runoff at different spatial
and temporal scales. However, due to the complexity of nat-
ural systems, a lot of the predictive uncertainty is generally
linked to the incomplete representation of the different pro-
cesses involved in modelling flow generation, the so called
structural uncertainty (Breuer et al., 2009). Other sources of
uncertainty are the initial conditions of the system, measured
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input and parameter values, regrouped under the general term
of stochastic uncertainty.

Depending on the processes they simulate and at which
scale the assumptions are made, different models might
therefore have different strengths and weaknesses in predict-
ing certain parts of the hydrograph. This has been high-
lighted in several inter-comparison projects (e.g. Smith et
al., 2004; Breuer et al., 2009) The ensemble modelling ap-
proach has been proposed to take advantage of these hetero-
geneities in order to provide more reliable predictions (Viney
et al., 2009). Single-models ensembles (SMEs) are obtained
from several realisations of the same model structure while
exploring the parameter uncertainty. SMEs are for example
typical output of the widely used Monte-Carlo based GLUE
approach (Beven and Binley, 1992; Beven and Freer, 2001).
Multi-model ensembles (MMEs) pool different results ob-
tained from different model structures.

All ensembles can be evaluated in a probabilistic way
based on the frequency of prediction of some selected partic-
ular events (Renner et al., 2009; Georgakakos et al., 2004).
In some other studies the single predictions were combined
using different statistical post-processing methods in order
to produce “best” forecasts (Shamseldin et al., 1997; Geor-
gakakos et al., 2004; Viney et al., 2009).

In the frame of applying the concept of ensemble mod-
elling to improve the reliability of Predictions in Ungauged
Basins (PUB; Sivapalan, 2003) this study evaluates the ge-
ographical transferability of parameter sets and combination
schemes applied to 5 different rainfall-runoff models: LAS-
CAM (Sivapalan et al., 1996), LASCAM-S (Exbrayat et al.,
2010), a self written model based on the snow and soil mois-
ture routines of HBV (Lindstr̈om et al., 1997) coupled to the
published flow generation equations of INCA (Whitehead
et al., 1998) further referred as CHIMP (Combined HBV
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Fig. 1. The River Fyris Catchment.

and INCA Modified in Python, described in Exbrayat et al.,
2010), SWAT (Arnold et al., 1998) and HBV-N-D (Lindgren
et al., 2007). Different data-fusion methods based on some
of those used by Viney et al. (2009) were applied in order to
produce large sets of new deterministic MMEs.

This paper is organised as follows. Section 2 presents the
catchment and the available data for model application, the
models themselves and the different combination methods.
In Sect. 3 we present the results for the single models and the
newly compiled ensembles in the proxy-basin validation ap-
proach. Results are discussed in Sect. 4 and a short summary
with conclusions and possible further research directions are
presented in Sect. 5.

2 Material and methods

2.1 The river fyris catchment

The study area is located in central Sweden (Fig. 1). The
Fyris River catchment has an area of 2000 km2 and flows
into Lake Ekoln which drains into the Baltic Sea. It is a
lowland catchment with an elevation ranging between 15
and 115 m a.s.l. Land-use is dominated by mainly conifer-
ous forests (59%) and crop lands (33%). Minor other land

cover types are wetlands (4%), urban areas (2%) and lakes
(2%) (Lindgren et al., 2007).

Daily records of precipitation (8 gauges) and tempera-
ture (3 stations) available from the Swedish Meteorological
and Hydrological Institute (SMHI) were used for the cho-
sen 5 years study period (2000 to 2004). Two time series
of daily runoff were available over the same period for two
non-nested sub-catchments of the Fyris River: Vattholma
(281 km2; light brown in Fig. 1) and S̈avja (699 km2; light
green in Fig. 1). These catchments were already studied
in another PUB oriented study (Seibert and Beven, 2009).
Mean annual runoffs were 219 and 189 mm at Vattholma and
Sävja, respectively. As a response to snow melt, high flows
usually occur from late autumn to early spring with some
thaw-refreezing events leading to high temporal variability
during the flood.

2.2 Multi-model members

The five selected models all provide daily runoff predictions.
Table 1 gives an overview of different model characteristics
and requirements such as the smallest spatial units and input
data. There is a good structural variability among the cohort
and they may be sorted into an approximate increasing de-
gree of complexity: LASCAM, LASCAM-S, CHIMP, SWAT
and HBV-N-D. All these models feature conceptual descrip-
tions of the natural mechanisms involved in flow generation.

LASCAM, LASCAM-S, CHIMP and SWAT were setup
in a semi-distributed way. The same sub-catchment delin-
eation, derived from an SRTM digital elevation model, was
adopted for each of these 4 models. This spatial disaggrega-
tion was obtained with the ArcSWAT extension for ArcGIS
(Olivera et al., 2006) which was used for the whole setup of
the SWAT model. The sub-catchment delineation divided the
Vattholma and S̈avja basins into 9 and 28 sub-entities respec-
tively, corresponding to mean sub-catchment areas of 31 and
25 km2, respectively. While the same parameter sets were
applied to each sub-catchment in LASCAM and LASCAM-
S, they were independent for each land-use class in CHIMP.
SWAT required a disaggregation of each basin into different
Hydrological Response Units (HRUs), based on unique com-
binations of land-use class and soil type. Land-use classes
and HRUs in the two latter models were not spatially identi-
fied within their sub-catchments and their respective contri-
butions to the flow generation were weighted as a function of
their relative areas.

The HBV-N-D model is a fully distributed adaptation of
the concepts of the semi-distributed HBV model (Lindström
et al., 1997) based on the D8 single flow-direction algorithm
(O’Callaghan and Mark, 1984). The HBV-N-D model ap-
plication used in this study is based on the same setup used
by Lindgren et al. (2007) and features 250 m× 250 m grid
cells which are associated with a specific land-use type. The
running-time of this model was the limiting factor of this
study and explains the choice of a relatively short 5 years
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Table 1. Main model characteristics.

Model Smallest spatial unit Climate forcings

LASCAM Sub-catchment Daily rainfall and annual PET
LASCAM-S Sub-catchment Daily rainfall, mean temperature and annual PET
CHIMP Land-Use class Daily rainfall, temperature and PET
SWAT HRU Daily rainfall, minimal and maximal temperature*
HBV-N-D Grid cell Daily rainfall and mean temperature, monthly PET

HRU: Hydrological Response Unit; PET: Potential Evapotranspiration *Climate forcing for PET calculation is dependent on the PET method selected,
in this case we used the Hargreaves method

Fig. 2. Ensemble construction methodology.

evaluation period as well as discrepancies in the calibration
procedure (Sect. 2.3).

Daily potential evapotranspiration was computed with
the temperature-based Hargreaves method (Hargreaves and
Samani, 1985) and aggregated to the required time period
for each model (Table 1). Snowmelt and snowpack pro-
cesses were simulated for each calculation unit based on the
empirical degree-day approach in all models except LAS-
CAM which does not include any snow routine. We therefore
developed the LASCAM-S model by implementing a simi-
lar method based on the equations published by Lindström
et al. (1997) applied at the sub-catchment scale adopted in
LASCAM.

2.3 Ensemble construction and assessment

A summary of the methodological approach used in this
study is presented in Fig. 2. This flow chart gives an overview
of the different steps we followed in order to create our new
model-fusion based forecasts. Each model was calibrated
once against each daily discharge record. The calibration was
realised in a single-objective way using the Shuffled Com-
plex Evolution optimisation algorithm (Duan et al., 1992)
for all the models except for the time-consuming HBV-N-

D for which the Parameter Estimator PEST (PEST; Doherty,
2004) was chosen. The optimisation criterion OF was de-
fined as the average of the Nash-Sutcliffe efficiency (Nash
and Sutcliffe, 1970) calculated for predicted discharge values
directly (Eq. 1) and the efficiency obtained with logarithmic
values (Eq. 2).

NSE= 1−

∑N
i=1(Oi −Si)

2∑N
i=i

(
Oi −O

)2
(1)

lnNSE= 1−

∑N
i=1(lnOi − lnSi)

2∑N
i=1

(
lnOi − lnO

)2
(2)

In Equations (1) and (2), Oi andSi are observed and simu-
lated discharges at time stepi while Ō is the mean observed
runoff over theN considered time steps. NSE is more sen-
sitive to higher values while lnNSE is also sensitive to lower
ones (Krause et al., 2005). The criterion OF therefore gives
a better account of the global quality of the prediction. It
ranges between−∞ and 1, corresponding to the poorest fit
and a perfect match between observations and predictions,
respectively.

Then, by comparing predictions obtained with the cal-
ibrated parameter sets with the observed data of the cor-
responding calibration station, we determined the different
weights to be applied to our predictions according to the
following methods (Table 2). Most of these methods were
already tested in a previous split-sample application case
(Viney et al., 2009). The weighted-mean approach (WM)
used the value of the OF criterion as a weighting coefficient,
giving more weight to the better performing members of the
fusion procedure. Weight values were in that case indepen-
dent of the number of members to be merged together. On
the other hand, un-constrained and constrained multiple lin-
ear regression coefficients (UR and CR schemes) were ob-
tained by using the observations as dependent variables and
each possible combinations of 2 to 5 model realisations as
independent variables. We therefore obtained different sets
of coefficients depending on the combination itself.

The final step of the ensemble generation was to use the
calibrated parameter sets to create new single predictions at
the alternate subcatchment in the frame of the proxy-basin
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Table 2. Overview of the applied merging schemes for ensemble generation.

Merging scheme Description Abbr.

Mean Daily mean of the predictions ME
Weighted mean Daily weighted mean of the predictions with weights set as WM

the value of the criterion OF
Median Daily median value of the prediction MD
Un-constrained Observations are used as dependent variables while UR
multiple linear predictions are used as independent ones and are assigned
regression different weighting coefficients
Constrained multiple Same as above with an interception constrained through CR
linear regression the origin

Table 3. Single run results for the different parameter sets. OF = objective function according to Eqs. (1) and (2); PB% = percent bias
according to Eq. (3).

Model Vattholma S̈avja
Calib Proxy Calib Proxy

OF PB% OF PB% OF PB% OF PB%

LASCAM 0.64 −7.9 −0.08 56.6 0.67 −13.2 −9.53 −74.0
LASCAM−S 0.84 −0.6 0.01 49.8 0.79 −7.9 −2.76 −81.2
CHIMP 0.79 −6.2 0.46 −17.2 0.75 −9.4 0.56 8.3
SWAT 0.81 −1.8 0.70 −20.2 0.78 8.1 0.49 30.7
HBV−N−D 0.83 −0.2 0.58 −19.3 0.84 −1.5 0.62 18.8

approach. Simple daily mean (ME) or daily median (MD)
were used as data-fusion methods to combine the new model
realisations along the aforementioned weights and regres-
sion coefficients fitted at the other station. All the methods
were applied to every possible combination of 2 to 5 models
leading to the creation of 130 new deterministic predictions
for each station. Eventually negative regression coefficients
could lead to the occurrence of unrealistic negative predic-
tions leading the corresponding MMEs to be disqualified.
The quality of the ensemble predictions was finally evaluated
by computing the aforementioned OF criterion and the per-
cent bias (PB%, which should be close to zero), calculated by

PB%=

∑N
i=1(Si −Oi)∑N

i=1Oi

. (3)

Notations correspond to those used in Eqs. (1) and (2). We
finally compared the multi-model ensembles with their mem-
bers and the directly calibrated single runs based on these
goodness-of-fit descriptors.

3 Results

Calibration and validation results of the single models at the
two discharge stations have been summarised in Table 3. The
label Calib was used when the corresponding station was
the calibration one, while the label Proxy was used when

the station was used as validation one (i.e. with geographi-
cally transferred parameter sets inherited from the other sub-
catchment calibration). Calib runs always significantly out-
performed the Proxy ones. The LASCAM model gave the
worst results in both calibration and proxy-basin application.
The upgraded LASCAM-S yielded the best calibration re-
sults at Vattholma and second best at Sävja but its predictive
quality was really lowered in both proxy-basin approaches.
The three other models (i.e. CHIMP, SWAT and HBV-N-D)
also showed good calibration results for each sub-catchment.
In the proxy-basin context they always showed significantly
better performance than LASCAM and LASCAM-S.

The prediction quality of the different model-combination
schemes which were applied was illustrated with scatter plots
of the criteria values for each station in Figs. 3a and b for
Vattholma and S̈avja, respectively. A number of differ-
ent model combinations outperformed the best single model
(Proxy runs in Figs. 3a and b) and while regression and me-
dian MMEs were the best at Vattholma, mean and weighted-
mean methods also performed well at Sävja. However, no
MMEs outperformed the four best Calib models in either
subcatchment.

In Figs. 4a and b the distribution of the criteria values
obtained was represented with boxplots as a function of
the number of ensemble members and merging scheme for
Vattholma and S̈avja, respectively. As already shown in
Figs. 3a and b, the highest OF values obtained with MMEs
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Fig. 3a. Criteria value for the different multi-model ensemble
(MME) predictions at Vattholma. Two poor Proxy runs with low
OF values are not shown and colours correspond to the different
data-fusion methods (red: ME; black: WM; green: MD; blue: UR;
magenta: CR; see Table 2 for abbreviations).

Fig. 3b. Criteria value for the different multi-model ensemble
(MME) predictions at S̈avja. Two poor Proxy runs with low OF
values are not shown and colours correspond to the different data-
fusion methods (red: ME; black: WM; green: MD; blue: UR; ma-
genta: CR; see Table 2 for abbreviations).

were 0.77 for Vattholma and 0.68 for Sävja. These corre-
sponded to two different model fusion methods: constrained
regression with two members at Vattholma and weighted-
mean of three models at Sävja. The best MMEs achieved
improvements of +0.07 and 0.06 in comparison to the corre-
sponding best Proxy run (Table 3). However, as illustrated
in Figs. 3a and b, different model fusion methods provided
predictions almost as good, especially at Sävja, with either
more or less members (Figs. 4a and b). Comparatively, PB%

Fig. 4a. Criteria values distribution depending on applied scheme
(red: ME; black: WM; green: MD; blue: UR; magenta: CR; see
Table 2 for abbreviations) and number of ensemble members at
Vattholma. Missing crosses indicate unrealistic negative prediction
obtained with UR or CR schemes. OF = objective function accord-
ing to Eqs. (1) and (2); PB% = percent bias according to Eq. (3).

values close to 0 were achieved several times in both cases
(Figs. 3a and b) and more frequently with simple mean and
weighted-average methods. The five-member MMEs were
never the best predictors but the corresponding median al-
ways had low biases and even outperformed the other five-
member MMEs for OF at Vattholma. However, in this latter
case, the two regression-based new predictions were disqual-
ified since negative flow values were predicted.

4 Discussion

As expected the implementation of the snow module into
LASCAM significantly improved the prediction quality of
the calibrated models at each station for both OF and
PB%. In the two calibration/proxy-basin cases, no single
model could be pointed out as the global best performer
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Fig. 4b. Criteria values distribution depending on applied scheme
(red: ME; black: WM; green: MD; blue: UR; magenta: CR; see
Table 2 for abbreviations) and number of ensemble members at
Sävja. Missing crosses indicate unrealistic negative prediction ob-
tained with UR or CR schemes. OF = objective function according
to Eqs. (1) and (2); PB% = percent bias according to Eq. (3).

for each considered station and criterion. Very different
predictions (according to the metrics) have been obtained
even though the two studied catchments were very simi-
lar. The more distributed CHIMP, SWAT and HBV still ob-
tained better results with transferred parameter values than
LASCAM and LASCAM-S. The overall heterogeneity of
model predictions was considered as a good starting point
for the ensemble generation following data-fusion methods
(Shamseldin et al., 1997).

Different models combinations gave a large range of pre-
dictions and good improvements were realised by some of
them. As plotted in Figs. 4a and b the best MMEs consider-
ing the criterion OF were different between the two stations:
constrained regression schemes were usually more efficient
at Vattholma (magenta dots in Fig. 4a) while highest im-
provements were realised with median and weighted-mean

schemes at S̈avja (green and black dots in Fig. 4b). This was
achieved in both cases regardless of the number of merged
members. This statement is consistent with Abrahart and
See (2002) who showed that the most efficient data-fusion
methods depended on the particular application case. How-
ever, as Georgakakos et al. (2004) demonstrated, the simple
mean of five model predictions consistently outperformed the
best single model prediction in several catchments, it was
only true at S̈avja in our study.

A general trend was that using more members in the se-
lected compilation methods constrained the distribution of
the OF and PB% values (Figs. 4a and b). This was similar to
the results obtained by Viney et al. (2009) for simple mean
and weighted combinations in both calibration and validation
periods of a split-sample approach. More precisely, lower
values of OF were less likely to occur with more members
except with the “median” scheme. On the other hand this
latter method applied to the five model predictions gave the
closest value to 0 for PB% among the five-member MMEs
while keeping OF values close to the best achieved by any
other combination method. This could be explained because
CHIMP was the most frequent model to participate in this
MME while also providing the least biased of the Proxy pre-
dictions.

The simplest averaging schemes (i.e. mean and weighted-
mean) showed similar results in terms of criteria values dis-
tribution (MD and WM in Figs. 4a and b). There was a slight
shift of boxplots, and therefore the distribution, towards zero
bias and higher efficiencies for “weighted-mean” schemes,
thus illustrating the effect of the weighting process. This oc-
curred even if the poorly fitted LASCAM-S Proxy runs were
given heavy weights in response to good calibration results
(Table 3).

Viney et al. (2009) also showed that applying multiple-
linear regression coefficients gave the best results in terms of
NSE for calibration periods. But these ensembles were out-
performed by some other combinations in a split-sample cal-
ibration context. The proxy-basin validation scheme adopted
in our study showed that the MMEs based on constrained re-
gressions were the best performers at Vattholma but not at
Sävja. Still, they obtained OF values close to the best ones
(Figs. 3b and 4b) in this latter case. There was no real ad-
vantage in using these more complicated regression merging
schemes as it resulted in unrealistic negative runoff predic-
tions 14 and 2 times for Vattholma and Sävja, respectively.

Some multi-model predictions gave PB% values close to
zero (Figs. 3a and b) while the best Proxy run for this cri-
terion had a bias of 8.3% (CHIMP at Sävja, Table 3). This
could be attributed to an inter-model balance as LASCAM
and LASCAM-S usually had opposed biases in comparison
to the other Proxy model realisations (Table 3). It therefore
moved the merged predictions towards bias values closer to
0. Moreover, even with the poor efficiencies illustrated by
low OF values for LASCAM and LASCAM-S (Table 3),
these MMEs could also achieve good results for this latter
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criterion at Vattholma. At S̈avja they even obtained the best
OF (Fig. 4b) while Table 3 showed that in that case, the LAS-
CAM and LASCAM-S Proxy runs were very biased with
negative OF.

These results represented another illustration of the advan-
tage of combining strengths of different predictions which
is the surrounding philosophy in model combination (Sham-
seldin et al., 1997). Such MMEs were able to provide at least
good estimates of the global water balance over the study
period even though some of them were partly based on the
worst single models (which indeed provided the final predic-
tion with interesting information).

5 Conclusions

Several interesting results could be either deduced or con-
firmed in regards of previously published studies but this
time in the frame of a PUB application. First, no optimal
combination schemes could be identified, even though the
two catchments investigated were similar, which did not in-
crease the transferability of the different methods. Still, the
study showed that the more members that were merged to-
gether, the lower the risk of getting bad predictions. In the
case of a PUB, this offers a minimum guarantee that the
newly compiled predictions would be closer to reality even
while including very bad single predictors. For example, us-
ing the simple daily median value of the five single model
predictions provided good results with a low bias and could
be identified as a good all-round compromise.

However, even if good results were obtained with some of
the data fusion methods, none of them could outperform the
calibration process as a result of a poor transferability of sin-
gle parameter values. A probable limitation of this study was
therefore to consider only one realisation per model in a de-
terministic way. According to the equifinality theory (Beven
and Freer, 2001), different parameter combinations are able
to give evenly good predictions. Due to small and unquantifi-
able heterogeneities between catchments, a common optimal
parameter set is not likely to exist even while considering
two basins in the same hydro-climatic context. Therefore, an
idea for next PUB predictions would be to study the trans-
ferability of optimised (i.e. constrained) parameter ranges of
the predictions after analyses of numerous realisations of the
same model (i.e. SMEs) and to introduce probabilistic rather
than deterministic predictions.
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