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Abstract. Heat and water exchanges in the ocean occur al-
most exclusively at the surface. As water compressibility is
very low, stratification of the fluid is expected and horizontal
motion is predominant in the sea interior. Among the few
processes that may introduce a vertical component in the wa-
ter motion are those that increase surface water density by
freezing, cooling or evaporation. Those processes triggering
convective motion are enhanced by cold surface air, dry wind
and low solar radiation. Therefore, convective cells are more
likely to occur when the temperature of the air at the sea sur-
face is lower than sea surface temperature. Conversely, rain,
river runoff, solar heating, calm and condensation at surface
enhance stratification. Convective motion at sea has several
scales ranging from few meters at the upper ocean, causing
the surface mixed layer, to the entire water column, in what
is known as deep convection. Only few places in the world
ocean are suitable for deep convection, and only under partic-
ular weather conditions. In this paper, a brief review of the
response to these particular conditions in the NW Mediter-
ranean is presented in what is known as dense water forma-
tion. The violent sinking and spreading of water parcels that
reach the deep sea floor in few hours is described. These
are “hidden” mediterranean storms, occurring under the sea
surface, “on the other side of the mirror”.
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1 Introduction

The Mediterranean Sea is a semi-enclosed basin open to the
Atlantic Ocean through the Strait of Gibraltar. In terms of
water budget for the whole Mediterranean, evaporation ex-
ceeds precipitation and runoff. It is thus a concentration
basin. Water received from the surface is transformed within
the basin and returned back to the ocean in two ways: (i) di-
rectly through Gibraltar (∼95%), with higher density (more
than 2 kg/m3), spreading at more than 1000 m depth into
the Atlantic Ocean, and (ii) indirectly (∼5%) as fresh wa-
ter, transported by the atmosphere out of the Mediterranean
catchment basin. Salinity of water outflow through Gibraltar
is ∼1.7 higher than inflow (Lacombe et al., 1981; Hopkins,
1978). However, evaporation is neither the only process that
increases the water density nor it is a steady or uniform pro-
cess. The factors affecting water density are temperature and
salinity, which are driven by water and heat exchanges with
the atmosphere. Therefore, changes in water density depend
on water circulation and local weather conditions, both with
seasonal and geographical constraints.

In the Mediterranean, during late summer, convective mo-
tions due to night cooling, breezes, and occasional wind
storms start to form the surface mixed layer, whose thick-
ness grows as autumn progresses. Along this season, the
vertical scale of the mixing increases step by step, through
wind storms and direct cooling (cold air and low solar radi-
ation), breaking the thermocline, down to the bottom over
the continental shelves, typically not deeper than 120 m,
in winter. However, as the Gibraltar sill is relatively shal-
low (∼350 m) in relation to the average Mediterranean basin
(2000–3000 m), the stratification of the deeper layers is weak
(Furnestin, 1960). Therefore, where and when the upper
layer becomes well mixed, typically in mid winter and in the
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(canyon), 2 (slope) and 3 (basin), respectively with the same colour code as the 

corresponding time series. 

Fig. 1. Map of the NW Mediterranean basin showing its bathymetry and orography. Preferential paths of northerly winds (straight purple
arrows) and scheme of the upper layer circulation (red lines and black streamlines) are also shown. The locations of the moorings from
which time series are plotted in the next figures are indicated with 1 (canyon), 2 (slope) and 3 (basin), respectively with the same colour code
as the corresponding time series.

northern regions, any extra loss of buoyancy by evaporation
can cause, a priori, surface water to start sinking. During the
last 50 years an effort in both observational and theoretical
fields has been carried out to describe the specific mecha-
nisms of ocean-atmosphere coupling, leading to dense water
formation in the NW Mediterranean (MEDOC, 1970; Gas-
card, 1978; Leaman and Schott, 1991; etc). The complexity
of the interactions and the response of the sea are still not
completely uncovered because of the difficulties in obser-
vations that should be performed under very rough weather
conditions and the problems of the models to deal with non-
hydrostatic parameterization, a wide range of scales and
abrupt shifts (e.g., Herrmann and Somot, 2008). Recently,
an effort involving deployment of new instrumented moor-
ings (e.g. CIESM, 2002, among others) provided unprece-
dented valuable time-series of information evidencing the
time scales of abrupt changes and short term processes that
remained hidden in classical observations.

2 Ocean-atmosphere coupling

The first step for dense water formation episodes appears
when conditions of upper water homogenity are set (pre-
conditioning phase; Swallow and Caston, 1973). Then,
strong cold and dry winds induce intense evaporation forc-
ing an increase of surface water density. In the NW Mediter-

Table 1. Some typical average mid-winter meteorological con-
ditions and fluxes for the NW Mediterranean (from Marshall and
Schott, 1999).

Air temperature (◦C) 8
Water temperature at surface (◦C) 12.5
Wind speed (m/s) 15
Precipitation (mm/d) 5
Evaporation (mm/d) 13
Heat fluxes (w/m2):

Sensible −150
Latent −400
Shortwave radiation 120
Longwave radiation −80

Net heat flux −510
Total buoyancy flux (10−8 m2/s3) 30

ranean (Fig. 1), strong northerlies are relatively common in
mid winter, blowing form the Rĥone valley and through the
Carcassonne gap in correspondence of typical low pressure
systems in the Gulf of Genova (Gascard, 1978). Such forc-
ing (see Table 1 for a summary of mean fluxes and condi-
tions) may act either over the continental shelves, like that of
the Gulf of Lions, or over deep open seas, typically the basin
east of Catalonia and south of Provence. Over the shelf, sur-
face water is expected to be fresher and lighter than offshore
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Fig. 2. Time series of currents recorded in winter 2005 by two moorings deployed along 

the Cap de Creus canyon axis at 500 and 750 m water depth (point 1 in Fig. 1), the 

HydroChanges mooring on the Catalan slope at 1850 m (point 2 in Fig. 1) and the 

mooring in the central part of the basin at 2130 m (point 3 in Fig.1).  

Fig. 2. Time series of currents recorded in winter 2005 by two moorings deployed along the Cap de Creus canyon axis at 500 and 750 m
water depth (point 1 in Fig. 1), the HydroChanges mooring on the Catalan slope at 1850 m (point 2 in Fig. 1) and the mooring in the central
part of the basin at 2130 m (point 3 in Fig. 1).

because of the river runoff (mainly from the Rhône). Wa-
ter circulation along the continental margin, geostrophically
adapted to the horizontal density gradient, is cyclonic, thus
weakening the stratification in the centre of the NW Mediter-
ranean basin (Allain, 1960; Millot, 1999). Cooling is more
effective over the shelf, because the heat content of a much
shallower water column is lower. Once water density over
the shelf is high enough, the bottom water overflows and vi-
olently sinks along the slope to reach a layer of equal density,
eventually the bottom. This occurs in relatively narrow areas
and through submarine canyons, generating what has been
called a dense water cascading event (Fieux, 1974). Over the
deep open seas, in the central part of the NW Mediterranean
basin, dense water sinks almost vertically in “chimneys” or
“plumes” (MEDOC, 1970). The horizontal scale of these
plumes is only about 1 km and sinking can reach vertical
velocities of more than 10 cm/s for very short time periods
of several hours (Schott and Leaman, 1991). In such open
sea winter convection events, the dense water can sink some
800 m within a matter of hours and may reach the bottom
level, >2500 m deep, within a couple of days (Voorhis and
Webb, 1970; Schott and Leaman, 1991). This process is ac-
companied by a compensating rise of water from great depth
on all sides (Marshall and Schott, 1999). Latent heat loss by
intense evaporation also has a counterpart in the atmosphere
enhancing cyclogenesis (Colacino, 1992).

A key role on the instability of the upper layer during the
process is played by the Levantine Intermediate Water (LIW)
as a water mass of slightly higher salinity, typically found be-
tween 250 and 600 m, brought to the upper layers by the first
step of the convection, and mixing with the “resident” water
(Tchernia, 1958). The presence of an intermediate water of
slightly higher salinity seems to be an important ingredient
in open sea deep convection processes also in other parts of
the world ocean such as polar regions (Gascard, 1991).

There are then two mechanisms of dense water forma-
tion competing in the NW Mediterranean. One is open sea
deep convection in the central region off the Gulf of Lions
(MEDOC, 1970) and the other is slope cascading of dense
shelf waters along the continental slope of the western half
of the NW Mediterranean (Bougis and Ruivo, 1954; Fieux,
1974; Durrieu de Madron, 2005). The dense waters pro-
duced by this latter mechanism typically are less saline and
cooler than those originated by open sea deep convection,
and sometimes they do not lose enough buoyancy to reach
the bottom of the basin and remain above the LIW layer. In
this case, slope cascading contributes to the Western Inter-
mediate Water (WIW), a local intermediate water mass lying
over the LIW (Salat and Font, 1987).

3 Recent observations

During the last years, several moorings deployed in the areas
of dense water formation (Fig. 1) have shown the effects of
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Fig. 3. Time series of currents recorded in winter 2009 by a mooring in the central part 

of the basin (point 3 in Fig. 1) at several depths: between 240 and 700 m before the 

implosion of the surface buoys, at 1100 m before and 1900 m after the line sunk , and at 

2540 m (see text for details), and by the HydroChanges mooring on the Catalan slope at 

1890 m (point 2 in Fig. 1).  

Fig. 3. Time series of currents recorded in winter 2009 by a mooring in the central part of the basin (point 3 in Fig. 1) at several depths:
between 240 and 700 m before the implosion of the surface buoys, at 1100 m before and 1900 m after the line sunk , and at 2540 m (see text
for details), and by the HydroChanges mooring on the Catalan slope at 1890 m (point 2 in Fig. 1).

violent sinking of waters either in open sea locations and over
the continental slopes (Figs. 2 and 3). The recorded time-
series have been crucial to obtain a more detailed picture
of the dense water formation event succession both from
the Gulf of Lions shelf and from open sea regions. They
have shown the time scales involved in the processes, be-
ing this information complementary to that gathered during
cruises. Typically, the deep layers are characterised by slow
motion and almost no variability in temperature and salin-
ity. However, when dense water formation takes place, they
start to become much more unstable. This behaviour coin-
cides with the phase of violent sinking and lasts during the
whole spreading phase, sometimes until the end of the spring
season.

A good example of such a situation can be found in winter
2005, when intense dense water formation and deep cascad-
ing were observed along the Catalan slope with velocities of
nearly 80 cm/s over the bottom (Font et al., 2007; Fig. 2).
The effects on the sea bed were evident with clear erosion
and sediment resuspension (Canals et al., 2006; Puig et al.
2008). The increased downward particle fluxes in the basin
(Palanques et al., 2009) generated a bottom nepheloid layer
covering the entire NW Mediterranean in few months that
has lasted at least until 2009 (Puig et al., 2009).

More recently, in winter 2009, deep open sea convection
also occurred but not deep cascading. A long instrumented
mooring located in the basin (Fig. 1) was severely bent due
to strong currents, moving progressively the upper buoys
initially located at less than 200 m depth down to at least

800 m and causing their implosion. The upper part of the
mooring line sunk several hundreds of meters (Figs. 3 and
4). These observations show a dramatic episode of a strong
SW current reaching>30 cm/s over the entire water column
(>2000 m) from 21 March to 4 April but also show relatively
high velocities before this event and later. This episode was
also recorded in the mooring deployed on the lower Catalan
slope (Fig. 1) 5–6 days later. Taking into account the dis-
tance between the two sites (∼125 km) the perturbation prop-
agated southwestwards at nearly 30 cm/s, a speed and direc-
tion comparable to that measured in the mooring. CTD data
obtained during an oceanographic cruise carried out in the
region from 8 to 22 March (not shown) also evidenced active
and recent events of dense water formation with very homo-
geneous density profiles (some with differences in potential
density lower than 0.01 kg/m3 between surface and 2500 m).
The strong currents and large volumes of transported water
involving the entire water column including the deepest lay-
ers would be consistent with strong flows that compensate
the deep sinking, as proposed by Salat et al. (2007), in a
not completely described mechanism. A preliminary anal-
ysis of the currents recorded by the ADCP mounted on the
hull of the ship during the above mentioned cruise has also
shown patches of strong currents (>30 cm/s) over sections
(∼10 km) of the ship track. Contemporary satellite images
also confirm the complex submesoscale structure with small
eddies covering the area.
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Fig. 4. Stick plot diagrams of the currents recorded by the mooring in the central part of 

the basin (point 3 in Fig. 1) as in Fig. 3, from 13 March to 12 April 2009, showing the 

episode of  strong SW currents that bent the mooring line and caused the implosion of 

the upper buoys on 27 March (see the text for details).

Fig. 4. Stick plot diagrams of the currents recorded by the mooring in the central part of the basin (point 3 in Fig. 1) as in Fig. 3, from 13
March to 12 April 2009, showing the episode of strong SW currents that bent the mooring line and caused the implosion of the upper buoys
on 27 March (see the text for details).

4 Deep sinking and consequences

The short and violent episodes of cascading and open sea
convection of only a few days’ duration supply enough water
to feed the lower layer and compensate the outflow through
the Strait of Gibraltar for several weeks. The rearrangement
of the waters after repeated events in few points across the
Mediterranean, like those above mentioned, are contributing
to maintain the water exchanges with the Atlantic Ocean, the
Mediterranean thermohaline circulation and the deep layer
ventilation. The overall amount of dense water formed, how-
ever, is highly variable from one year to another according to
the forcings involved and perturbations of the water circula-
tion (Killworth, 1976; Bryden and Stommel, 1982).

Deep sinking occurs during short periods ranging from 2–
3 days to several weeks. Water flowing downwards is con-
centrated in small funnels of few km in diameter during open
sea convection (Marshall and Schott, 1999) or small areas of
the slope in cascading events. The vertical downward flow
can reach more than 10 cm/s for very short time periods of
several hours and the overall averaged downward flow can
easily reach 1000 m/day (Schott and Leaman, 1991). More
recent observations (van Haren et al., 2006) have shown that
horizontal spreading of these anomalous dense waters is a
rapid process, irrespective of its source, either from open
convection or from cascading off the shelf. Large variations
in water mass properties and stability induced by small-scale
eddies are observed near dense-water formation area. Near-
bottom observations show episodic periods of a few days du-

ration of high velocities that are associated with eddies or
meanders in boundary currents. If extrapolated to the sur-
face, they may transport material rapidly from surface to the
bottom of the basin.

According to Testor and Gascard (2006) newly formed
deep waters are carried far away from the source region by
eddies characterized by an inner core of about 5 km in radius.
These eddies appear as key elements of the open ocean con-
vection processes playing an important role in the spreading
phase following deep convection and in the large scale ther-
mohaline circulation.

Tracking the characteristics of the deep waters newly
formed in winter 2005 has shown their ability to spread at
nearly 800 km per year, reaching the Gibraltar sill in less
than 3 years (Schroeder et al., 2008). Therefore, we can
conclude that all these violent phenomena are able to mo-
bilise huge water volumes. Their short time scale contrasts
with the large-scale general thermohaline circulation of the
Mediterranean basin that is driven by such violent episodes.

5 Perspectives

Violent sinking and spreading of newly formed dense water
in the Northwestern Mediterranean Sea has been documented
in the last years. However, the complete cycle is not yet well
understood. There are strong evidences of short pulses of
dramatic compensating currents that are not easily observed.
An effort should be devoted to submesoscale studies of the
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interactions among the two sources of deep water (the Gulf of
Lions shelf and the open-sea basin south of it) and to the di-
rect observations of flows at intermediate layers by means of
moored instruments, gliders and surveys from vessels. Some
of the recent records from 2009, still not completely anal-
ized, can shed new light on these mechanisms. It may be also
important to compare these records with concurrent time se-
ries of input/output at Gibraltar to detect the effects of dense
water formation pulses in the Atlantic Ocean/Mediterranean
water exchanges (CIESM, 2009).
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