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Abstract. The restrictions of the analysis of natural pro- making. Monthly average precipitation data over a period
cesses which are observed at any point in space or time tof twenty-seven years (1974—-2000) were collected from the
a purely spatial or purely temporal domain may cause lossneteorological department of Pakistan, providing monthly
of information and larger prediction errors. Moreover, the average rainfall data for fifty-one gauged sites.
arbitrary combinations of purely spatial and purely temporal Space time data are frequently analyzed through models
models may not yield valid models for the space-time do-initially developed for only spatial or temporal distributions.
main. For such processes the variation can be characterizelyriakidis and Journel(1999 note that the joint space-time
by sophisticated spatio-temporal modeling. In the presentdependence is often not fully modeled nor exploited in the es-
study the composite spatio-temporal Bayesian maximum entimation or forecasting at unmonitored locatio@hristakos
tropy (BME) method and transformed hierarchical Bayesian(1992 developed the idea of spatio-temporal random fields
space-time interpolation are used in order to predict precip{STRF) which can take into account the composite space-
itation in Pakistan during the monsoon period. Monthly av- time dependence and also utilize the physical knowledge of
erage precipitation data whose time domain is the monsootthe natural processes which in turn leads to an improved
period for the years 1974-2000 and whose spatial domairestimation. This method is based on the Bayesian maxi-
are various regions in Pakistan are considered. The predianum entropy (BME) approach; BME utilizes the physical
tion of space-time precipitation is applicable in many sectorsknowledge about natural processes in the form of a highly
of industry and economy in Pakistan especially; the agri-informative prior distribution whereas in absence of physi-
cultural sector. Mean field maps and prediction error mapscal knowledge about natural process this method is similar
for both methods are estimated and compared. In this pato space-time ordinary krigind.e et al. (1997 proposed a
per it is shown that the transformed hierarchical BayesianBayesian hierarchical interpolation method for environmen-
model is providing more accuracy and lower prediction errortal applications which is very sensitive to non-stationarity.
compared to the spatio-temporal Bayesian maximum entropyl his approach assumes finite dimensional Gaussian distribu-
method; additionally, the transformed hierarchical Bayesiantions with the mean functions depending on an unknown pa-
model also provides predictive distributions. rameter matrix and a vague structure for covariance. The
hierarchical framework can take account of the uncertainty
of the mean and covariance models and generates space-time
predictions that are completely characterized by probability
density functions. In the present paper a comparison be-
Pakistan is located between°28nd 37 north latitude and tyveen BME and h|erarch|cql Baye3|an space-time interpola-
tion is made. For BME prediction spatial and temporal mean

61° and 76 east longitude. The economy of Pakistan is . .

highly supported from the agricultural sector; the occurrencetrends are estimated and then separable spatial and tempo-
ghly supp 9 . ! o ral co-variograms are determined. The fitted co-variograms

of monsoon (June—September) rainfall being of vital impor-

tance for the said sector. The accurate prediction of precipare used for BME kriging. For the transformed hierarchical

o . : . ) .~ "Bayesian model the generalized inverted Wishart distribu-
itation in Pakistan provides useful information for decision .~ . . . . .
tion is used as prior for the covariance matrix and its hyper-

parameters are empirically Bayesian estimated by means of
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2 Material and methods Box-Cox transformed response variables, respectively, i.e.
AR |

2.1 Study area vl = ()\—) A#£0

Monthly average precipitation data of fifty-one gauged sitesY['] = Iog(Z“) A=0 )

in Pakistan were collected from the meteorology department The transformed response variables follow a Gaussian
of Pakistan. Some gauged sites have been recording dataodel conditional on the hyper-trend parameteand the
since 1947, the year of the foundation of Pakistan, whilecovariance matrix. The hyper-parametgt itself follows a
many other gauged sites were installed later. Data from asaussian model conditional on the hyper-paramggeand
period of twenty-seven years (1974-2000) were used. Thehe covariance matrix. Finally, the covariance matrix
monsoon period in Pakistan lasts from June to Septembefollows a generalized inverted Wishart distribution. Thus,
The monthly average precipitation data during the monsoorthe suggested model bk et al. (1997 for the transformed
period of twenty-seven years are used in the present study. response variable can be expressed as;

Y/BE~N(VB1,®%)

B/=po~N(po. F &)

Most of the statistical techniques for the estimation of char ~GIW

(©,8) 2
acteristics of space-time processes are based on hard data and
do not take into account any physical knowledge (soft datajiere N(.,.) denotes the multivariate normal distribution
for estimation purposesChristakos et al.(2002 proposed andV represents the matrix df covariates describing the
the Bayesian maximum entropy spatio-temporal estimatiorfime replications i.e.V, = (V;1,...Vy;) remaining constant
method which can take into account physical knowledge infor all sites at each time point Since four months(June—
terms of prior information which, in turn, results in improve- September) are taken into consideration for a twenty seven
ments for the estimation of space-time processes. The spacgears period, we havé=4 ands =27. Thefp is an
time random field is described &s,7) where(s,r) e D-T: [ x (g-+u)l matrix of regression hyper-parameters afid*
D C R? represents spatial coordinates ahd R, are posi- is anl -1 positive definite matrix specifying covariance be-
tive real numbers describing temporal coordinates. The BMEween the rows off. In Le et al. (1997 an empirically
method can be described briefly as consisting of five differentBayesian EM-algorithm is suggested to estimate these hyper-
phases: In the first phase the estimation of space-time meaparameters. With regard to the prior specification in the last
trend is performed, a smooth spatial trend is computed usindjne of Eq.2, we follow Brown et al. (1994, where a gener-
an exponential spatial filter which is then applied to the aver-alized inverted Wishart (GIW) distribution for the covariance
age measurements of each spatial location. A smooth tempdnatrix X is proposed and detail this prior as follows:
ral trend for each time replication is computed using an expo- , u
nential temporal filter applied to the averaged measurements[ ]/F[ - N(TOO’ Ho® T ]>
at each time instant. In the second phase the space-time meal“l ~ 1w (Ao ® Q, 80)
trendm (s,?) is interpolated on a grid. In the third phase the /T; ~N(ro,,H T ) j=12.ng—1
residuals are computed by subtracting the space-time mear‘(
trend from the original data i.eR (s,1) = Z (s,1) —m (s, 1). Lj~IW(A;j®Q.8)),j=1.n @)
The residual data matrix is then used to estimate the sepThe abbreviation IW stands for the Inverted Wishart dis-
arate spatial covariances, temporal covariances and spatitribution. Heret” is the slope of optimal linear predic-
temporal experimental co-variograms. In the fourth phasetors of Y[“! based ony[¢] and the residual covariance of
theoretical covariance models are fitted to the experimentathe optimal linear predictor*l; alsot; andT; for j =
co-variograms. In the last phase prediction is performed atl,2,....n, — 1 have similar interpretations. Suppcﬂes the
unobserved locations for any time instant using the fitted c05et of hyper-parameters in E3j.i.e. H = (0,4, F, B) , where
variogram model and space-time krigit@hristakos(1992), = {(z00. Ho, A0). ... (Ton,~1. Hpy—1, An,—1) . Ay, } with
Chiles and Delfiner(1999. Since the co-variograms are es- degree of freedom parametefs= (50,51,“3 ) The di-
timated based on residuals the resulting predicted data willyension of theH,'s and A;'s are (g,+1+.-.+gn )l~
correspond to residual values. The space-time mean trengg ¢

jr1t gl andg, gj respectlvely. The is a hyper
surface; and predicted reS|d_u§1I surfac_es are to be added ale matrix between responses and is assumed to be com-
get predicted values at the original scaling.

mon across all sites.

2.2 Bayesian maximum entropy method

2.3 Transformed hierarchical Bayesian model 2.3.1 Heterogeneous covariance

Let z[¢! and z[“] be the response variables of gauged andSampson and Guttorf{1992 introduced a non-parametric
ungauged locations and correspondingl§! andy[“] bethe  estimation method for spatially nonstationary covariance
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structures of random functiong;, = Z(x;,1); here x;

(1,2,...N) are locations and = 1,2...T are time replica-
tions. The estimation method is based on the assumptior
of temporal stationarity but spatial non-stationari§amp-
son and Guttorp (1992 use the spatial dispersiom% =

var (Z,»t —th) =s;; +sj; —2-s;; as natural metric for the

®

spatial covariance structure model. Their method constructsg gal.

a smooth mapping of the geographic space of gauged lo-
cations onto the dispersion space (D-space) and does nc
need any assumption of stationarity. An isotropic variogram
model is fitted on the basis of observed correlations and dis-
tances in D-space. The spatial correlations of ungauged lo-
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cations can be estimated in conjunction with an estimated
isotropic variogram model by using a thin plate smoothing
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spline as a nonlinear 1-1 mapping function. The estimated-ig. 1. The map of smoothed mean trend aggregated over time.

nog\stationg\ry covariance model is of the foﬁﬁ(xa,xb) =
g|f(xa)— f(xp)| = g(|yi—y;|), here for covariance esti-
mation y; are referred as D-plane coordinates and for the
details about functiory and g, seeSampson and Guttorp
(1992.

1801

2.3.2 Predictive distributions

(rmrm;

T qgop M (OIS O DO U 4
o . . . oge . . . @ Wy PR ) [ ir Ty #: o
The predictive distribution can be specified as matrix t- distri- N S T S B T O SR Y B *‘
bution. The transformed random varialilg,, is said to have - T | o ) i
. . . . | 1" “‘” AR i g Bt ‘\\ el \H‘ :’u et
a matrix t-distribution,,.,, ~ ty.n Yn.m, A® B,8), where A I N G S S A T TR N VLN
vy Wit Y e L { Y ) - N

isn-n andB ism-m, if its density function has the form

f(Y)a’A?

:1,1 +o At (v—r@) H(r-r) B—lﬂ

'I:he normalizing constant of this density is given ky=
(s72) 2 T { bemin=1
() ()

Gamma function and @ is the mean ot . The predictive
distribution of the unobserved transformed responses con-

ditional on the observed transformed dati! and hyper-
parametet is given by

—n
B2

S+m4n—1

T

}, whereT', (¢) is the multivariate
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Fig. 2. The temporal mean trend aggregated over the regions.

3.1 Estimation by the Bayesian maximum entropy

The spatial mean trend and temporal mean trend for precip-
itation are estimated as described in Sect. 2.2. The smooth

spatial mean trend for the whole period of study is displayed
in Fig. 1. The regions between 7375 longitude and 32-

(Y[u] /vl H) ~ bl

(u[“/gl,(ao—nul +1) 1ol/8l @ (Ag® Q). 80— nul + 1) (5)

34° latitude show very heavy precipitation compared to other
regions. The regions falling between°684 longitude and
24°-29 latitude are getting very little rainfall. The tem-

poral mean trend during the whole period of study is pre-

where ulv/s] = vl 4 clelgy, | @lu/el = 1, 4 vVF-1V 4

elel goelé] andels] = ylsl — V,B([Jg]. The software provided
by Le and Zidek (2006 offers the possibility to simulate
reaIizationsYi[”],i =1,2,...5000 from the predictive distri-
bution Eq.5. These simulated values have just to be bac
transformed to the original scale by means of the inverse

Box-Cox transformation. Multivariate histograms based oni-e. C(r,7=0) = 50006)({(

%) +5000ex{ 77 ).

sented in Fig2. The temporal trend of precipitation is cycli-
cal and the amount of precipitation is decreasing while time
increases. In the next phase of the BME method the spa-
tial and temporal dependence of precipitation is estimated.
k.A nested spatial covariance model is fitted as a combina-
tion of a Gaussian and an exponential covariance function

The

these back-transformed simulated values are then used to apested temporal covariance model is fitted as a combina-

proximate the predictive distributions at the original scale.
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tion of hole-sine and an exponential covariance function
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BME Mean Estimates on 2000.7 months (mm)
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Fig. 3. The spatial experimental covariance and nested spatial co-
variance model.
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Fig. 4. The experimental temporal covariance and the nested co-
variance model.
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ie.C(r =0,7) =5000exg{ 7 ) + 5000927, The nested

spatial covariance model and the experimental covariancé&ig. 5. The maps of average predicted rainfall BME spatio temporal
are shown in Fig3, the dots show the experimental covari- method for the month of July and September of year 2000.

ances and the line represents the fitted covariance model.

The nested temporal covariance model and the experimerEM algorithm, too. The method for estimating a nonstation-
tal temporal covariance are displayed in FigAccordingto  ary spatial covariance matrix for ungauged locations is ap-
Sect. 2.2, in the last phase, the Bayesian maximum entropplied in three phases. In the first phase, the method utilizes
predictions are calculated for the year 2000 using the fittecthe empirical correlations and fits an empirical Gaussian vari-
co-variograms. The prediction maps for the months of Julyogram modely (1) = ag+(2—ag) (1 —exp(—tg-h)) , where
and September in 2000 are displayed in the left two panels ofig = 0.0260 andig = 1.032. For the fitted variogram based
Fig. 5. These prediction maps suggest that heavy rainfall ocon empirical correlations see Fi§. In the second phase,
curs in the regions between ’/¥5° longitude and 32-34° a thin plate smoothing spline parameter= 20 is used to
latitude while the remaining regions of Pakistan have veryestimate the coefficients of the thin plate spline smoothing

little rainfall. splines. In the third phase, the correlations between the
gauged sites and 196 ungauged sites are estimated. The cor-
3.2 Estimation of hyper-parameters relations for ungauged locations are obtained by first convert-

ing ungauged geographic coordinates to D-plane coordinates
A time series trend analysis is made and temporal correlaand then calculating correlations based on fitted variogram
tions are removed by fitting an autoregressive model of or-parameters and the inter-distances in D-space. A comparison
der 2. To meet the assumption of normality for hierarchical of the empirical correlations of gauged sites and ungauged
Bayesian space time interpolation the Box-Cox transformassites is shown in Fig?.
tion is used and it is observed that the data fulfill the as-
sumption of normality for Box-Cox transformation param- 3.2.1 Predictive distributions
eter A = 0.1575. The posterior distributions ¢f and
are estimated on the basis of the EM algorithm_emand  To predict unobserved transformed responses, 5000 realiza-
Zidek (2006 using their software. The hyper-parameters tions are simulated at a 14 by 14 grid ungauged locations by
H={0,6,F,Bo} for gauged locations are estimated by the using the predictive distributions. The predicted transformed

Adv. Geosci., 25, 97102 2010 www.adv-geosci.net/25/97/2010/
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Gaussian Variogram Mean: July 2000
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Fig. 7. Comparison of empirical correlations of gauged sites and4 Conclusions

estimated correlations by using tBampson and Guttor1992

method The BME and the Hierarchical Bayesian space-time model

indicate heavy rain for the same regions, however, the

Bayesian hierarchical model is also showing variations in
responses are back transformed to the original scale by ughe amount of rainfall for regions which received lower
ing the inverse Box-Cox transformation. The predicted mapgainfall. The BME maps are showing spatial consistency
of mean values for July and September of the year 2000 aré the amount of rainfall for the remaining regions except
shown in Fig.8. The South-eastern part of Pakistan had verythe heavy rainfall regions i.e. 7375 longitude and 32-
little rainfall for the selected months of this year. During the 34° latitude. Fig.1 shows spatial variation in the amount of
investigated period the native regions of Islamabad (capitatainfall, excluding heavy rainfall regions i.e. (£&¥5 lon-
of Pakistan) received much rainfall. The maximum rainfalls gitude and 32-34 latitude), the BME spatio-temporal pre-
occurred in July. diction method does not take this variation into account. The

www.adv-geosci.net/25/97/2010/ Adv. Geosci., 25,H372-2010
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