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Abstract. In this paper we show the influence of gauge ad-
justment technique, applied to radar-based rainfalls, on the
results of QPF verification. The results were obtained for
four convective events which produced heavy local rainfalls
and caused local flash floods at the Czech territory. Nu-
merical weather prediction model COSMO was run to ob-
tain rainfall forecast and Fractions Skill Score was employed
in the QPF verification. Three different radar-based quanti-
tative precipitation estimates (QPE) were used for the ver-
ification and the verification results were compared. The
QPE data sets consisted of: (a) raw radar-based rainfall val-
ues, (b) gauge corrected radar-based rainfalls with a simple
domain-wide correction, and (c) radar-based rainfalls with a
pixel related gauge adjustment. The results indicate small
difference in area-related verification results and prove that
the simple domain wide correction technique is sufficient for
applying radar-based rainfalls as the verification data.

1 Introduction

The use of radar data appears to be important especially for
the estimation of local heavy convective rainfalls which can
cause local flash floods. Because of their small area ex-
tents, such rainfalls are difficult to be registered by standard
gauge networks. However, a gauge adjustment of radar rain-
fall values is needed because of the nature of radar measure-
ments. The density and positions of gauges and an adjust-
ment technique can influence the resulted Quantitative Pre-
cipitation Estimation (QPE). It is especially valid if we deter-
mine the convective rainfall values of shorter accumulation
periods. Apart from a direct QPE application in hydrologi-
cal predictions and nowcasting, we need the QPE to verify
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the Quantitative Precipitation Forecast (QPF). QPF verifica-
tion by radar-based data were used as verification data e.g. by
Ebert (2008), who compared various so called fuzzy verifi-
cation techniques. Case studies dealing with precipitation
forecast verification and using ground radar precipitation ad-
justed by other sensors mention differences in verification
results after using different verification data (Tartaglione et
al., 2006; Casaioli et al., 2006).

In this paper, we summarize the results obtained at study-
ing the influence of adjustment technique on the QPF veri-
fication by radar-based precipitation. The results were ob-
tained for four convective events which occurred at the ter-
ritory of the Czech Republic (CR). The events, which pro-
duced heavy local rainfalls and caused local flash floods, are
described in Rezacova et al. (2009). The radar data fields of
individual cases prove different area extents and structures.
In order to obtain the QPF we used nonhydrostatic numer-
ical weather prediction model COSMO with the resolution
of 2.8 km (Rezacova et al., 2009, Zacharov and Rezacova,
2009). The forecast skill for individual events is commented
in Rezacova et al. (2009). The verification results refer to
the QPE and QPF which correspond to the 1 h, 3 h and 6 h
rainfall values.

The paper is divided in four parts. Part 2 presents the
adjustment techniques starting with daily radar-based QPE
values. In order to obtain the QPE at shorter rainfall accu-
mulation we applied a simple area-related correction and a
pixel-oriented adjustment. Part 3 shows how the verification
of QPF reflects the adjustment technique used. The verifi-
cation applies Fractions Skill Score as a representative of so
called “fuzzy” verification. Part 4 summarizes the results and
concludes the paper.
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2 Radar-based precipitation

Radar data from the two radars of the CZRAD network were
used to determine the rough estimates of rainfalls. The two
radars are Doppler and C-band radars operated by the Czech
Hydro-meteorological Institute (CHMI). Radar reflectivity
datasets are provided in 10 min intervals and operational cor-
rection procedures are applied in the CHMI (Novák, 2007).

In order to determine the rainfall values, the resulting PPI
reflectivity values are transformed to radar pixels with a hor-
izontal resolution of 1 km at the level of 2000 m a.m.s.l.
Radar reflectivityz (mm6 m−3) is transformed into rain rate
R (mm/h) according to the common MP relationshipz =

200R1.6. Accumulated hourly radar-based rainfalls were de-
termined by integration of corresponding rain rates.

Several gauge adjustment techniques were tested with
the radar data from the Czech radar network CZRAD
(e.g. Zacharov et al., 2004). Present operational adjustment
technique, applied in the CHMI, uses data from automatic
gauges, which provide hourly rainfall measurements. How-
ever, the number of automatic gauges is limited and the gauge
spatial density over the Czech territory varies. That is the
reason why we apply the daily rainfall values from more than
800 gauges to the verification of the QPF for heavy local con-
vective rainfalls.

In this paper we study the influence of gauge adjustment
techniques on the results of QPF verification (see part 3).
Firstly we applied the raw radar-based values without gauge
adjustment. Secondly we applied gauge adjustment tech-
nique described in Sokol (2003) and Rezacova et al. (2007),
which used daily precipitation data from gauges, in or-
der to determine adjusted daily values. The adjusted daily
radar precipitation was determined separately for both radars.
Within the overlapping areas the maximum of two daily val-
ues was taken into account.

After obtaining the adjusted daily precipitation amounts in
the radar pixels, we derived corrected hourly precipitation to-
tals by multiplying the raw radar hourly values by the relative
daily precipitation amounts. The simple correction over the
verification domain followed the formula

R(i)cor 1h= R(i)raw 1h

N∑
j=1

R(j)adj day

N∑
j=1

R(j)raw day

, (1)

whereR(i)cor 1h is the gauge corrected 1 h radar rainfall over
the pixeli andRraw 1h is the corresponding rough 1h radar
rainfall. TheRadj day and Rraw day are the gauge adjusted
and raw daily pixel values, respectively, and the sums cover
the radar pixels inside the verification domain. The above
correction technique uses a strong simplification as it ap-
plies a constant correction factor over the entire verification

Table 1. Characteristics of radar-based and forecast rainfall
[mm] with accumulation of 6 h (16:00 UTC–22:00 UTC). The mean
(oX m) and maximum (oXx) observed values show grid rainfall
values over the entire verification domain. X = 1, 2, 3 refers to the
verification by using raw radar data, area corrected radar data and
pixel-adjusted radar data, respectively. Similarly, fm and fx give
the mean and maximum forecast rainfall.

rainfall type event datum (yymmdd)

020713 020715 040610 050523

o1 m 6.2 0.6 2.5 5.7
o1 x 101.5 69.0 32.7 95.6
o2 m 4.4 0.5 2.2 8.0
o2 x 73.6 76.8 30.6 135.5
o3 m 6.1 0.6 3.5 9.6
o3 x 121.8 169.0 66.0 140.2
f m 6.0 1.0 1.1 3.7
f x 106.8 36.3 42.8 50.9

domain. That is why an alternative pixel-related adjustment
in the form

R(i)adj 1h= R(i)raw 1h
R(i)adj day

R(i)raw day
(2)

was applied locally in each radar pixel. The gauge adjusted
hourly rainfalls were then interpolated into the model grid
points and the rainfalls of a given accumulation were ac-
quired by summing up the adjusted hourly rainfalls. Table 1
shows basic characteristics of raw, corrected and adjusted
radar rainfalls together with corresponding forecast values
(see part 3).

3 QPF verification using radar-based precipitation

The NWP model COSMO was used to forecast the precipita-
tion (Rezacova et al., 2009; Zacharov and Rezacova, 2009).
The COSMO model was run in two steps. In the first step
the driving COSMO was implemented over a large part of
Europe with a horizontal resolution of 11 km, with initial
and lateral boundary conditions derived from ECMWF data.
The model integration started at 00:00 UTC and finished af-
ter 24 h. In the second step the driven COSMO was run
over the CR with a horizontal resolution of 2.8 km starting
at 06:00 UTC. Initial and boundary conditions were derived
from the driving COSMO runs and were available at each
hour of the integration time. Verification was made over the
verification domain covering the CR.
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Fig.1. Mean FSS against the spatial scale for 3h rainfall. The scale (horizontal axis) is marked 

by the number of grid points in the side of the square elementary area (marked by Ng in the 

text). The mean FSS were calculated over all hourly model outputs given threshold (indicated 

in the legend). They were determined from raw radar data, area corrected radar data and pixel-

adjusted radar data (see the legend). The label 128 on the horizontal axis marks the 

elementary area corresponding to the entire domain. 
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Fig. 1. Mean FSS against the spatial scale for 3 h rainfall. The scale (horizontal axis) is marked by the number of grid points in the side of the
square elementary area (marked byNg in the text). The mean FSS were calculated over all hourly model outputs given threshold (indicated
in the legend). They were determined from raw radar data, area corrected radar data and pixel-adjusted radar data (see the legend). The label
128 on the horizontal axis marks the elementary area corresponding to the entire domain.

In this study, we demonstrate the effect of gauge adjust-
ment on the QPF verification by applying Fractions Skill
Score (FSS). The FSS was defined by the formula (see
e.g. Roberts and Lean, 2008; Ebert, 2008)

FSS= 1−

1
N

∑
N

(PF−PO)2

1
N

∑
N

PF
2
+

1
N

∑
N

PO
2

(3)

where Px (for x = F, O; F – forecast, O – observation) is
the fractional coverage of an elementary area by rainfall that
exceeds a given threshold value, and N gives the number of
grid points in the verification domain. The denominator is
a version of the Fraction Brier Score (FBS) in which frac-
tions are compared and it gives the worst possible FBS in
which there is no overlap of non-zero fractions. In order to
study the effect of upscaling on the FSS values, the Px values
were determined over a square elementary areas centered in
each grid point. The elementary area size was given by the
number of model grid points in the square side (Ng). The
calculations were done forNg = 1, 5, 11, 15, 21, 25, 31,
35, 41, 51, 61, 81, 91 grid points and for the whole verifi-
cation domain (165×95 grid points). The use of FSS corre-
sponds to the application of the so-called “fuzzy” verification

techniques and causes some relaxation of the requirement of
exact matches between grid point (or area) forecasts and ob-
servations (Ebert, 2008).

In the FSS calculation we used threshold values of 1, 2, 5,
and 10 mm and we performed the evaluation separately for 1,
3, and 6 h rainfalls. The rainfalls were determined with a time
step of 1 h starting after 7 h (13:00 UTC–14:00 UTC), 5 h
(11:00 UTC–14:00 UTC), and 4 h (10:00 UTC–16:00 UTC)
of integration time for 1 h, 3 h, and 6 h rainfalls, respec-
tively. The last considered rainfalls corresponded to the time
periods 21:00 UTC–22:00 UTC (1 h rainfalls), 19:00 UTC–
22:00 UTC (3 h rainfalls), and 16:00 UTC–22:00 UTC (6 h
rainfalls). This means that the FSS values were computed for
9 (1 h rainfalls), 9 (3 h rainfalls), and 7 (6 h rainfalls) rainfall
fields at every event. The whole set of FSS values comprised
504 values (1 h and 3 h rainfalls) and 392 values (6 h rain-
falls) for each of four convective events.

In Fig. 1 we present the mean FSS values against the spa-
tial scale for 3 h rainfall. There is a general increase in FSS
with increasing elementary area and with decreasing rainfall
threshold at all events and verification data sets. Events from
2002 show negligible effect of the type of verification data.
The same is valid for 2004 event and higher thresholds. The
2005 event shows higher FSS values for gauge adjusted radar
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Fig.2. The mean FSS difference (ΔFSS) against the spatial scale for 3 h rainfall. The scale 

(horizontal axis) is marked by the number of grid points at the side of the square elementary 

area. Like in the Fig. 1, the label 128 marks the entire domain.  The mean ΔFSS values were 

calculated over all events and integration times. They refer to various radar-based data types 

as indicated in the legend. The color curves correspond to the thresholds 1 mm and 10 mm. 

The black curves show means over all the threshold values considered (1, 2, 5, and 10 mm) 

and the black vertical lines indicate corresponding standard deviation values. 
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Fig. 2. The mean FSS difference (1FSS) against the spatial scale
for 3 h rainfall. The scale (horizontal axis) is marked by the num-
ber of grid points at the side of the square elementary area. Like in
the Fig. 1, the label 128 marks the entire domain. The mean1FSS
values were calculated over all events and integration times. They
refer to various radar-based data types as indicated in the legend.
The color curves correspond to the thresholds 1 mm and 10 mm.
The black curves show means over all the threshold values con-
sidered (1, 2, 5, and 10 mm) and the black vertical lines indicate
corresponding standard deviation values.

rainfalls. Rezacova et al. (2009) showed the poor quality of
the forecast for 2005 event. The predicted convective sys-
tem was situated to the west part of the CR while the real
precipitation system developed largely over the south part of
the CR. As some gauges reported light local rainfall in the
area of forecast precipitation, the adjusted data provide the
best results. Generally the highest FSS values are provided
by local radar adjustment followed by the domain-wide radar
correction.

Figure 2 transforms the results from Fig. 1 emphasizing
the difference between FSS for various radar data types. All
the mean difference values are positive, which means better
FSS values after correcting or adjusting the radar-based rain-
falls. However, the mean FSS differences are of the order
of 0.01. Apart from mean differences it indicates the stan-
dard deviation of the whole difference distribution. We can
see that the standard deviation of differences increases with
elementary area size because of the inclusion of all differ-
ent events. However the standard deviation values stay in the
limits of 0.15 in absolute value.

The high correlation between FSS values obtained from
different data is indicated in Fig. 3. The figure shows that the
higher FSS for adjusted radar data appears especially at the
events from 2005. The same is valid for corrected data but
the difference is significantly smaller.

The results shown in Figs. 1, 2, and 3 refer to 3 h rainfalls.
Similar conclusions can be drawn for the other accumula-
tion periods. Increasing accumulation gives larger standard
deviation of difference between data types. As the rainfalls
increase with accumulation, selection of thresholds on the
quantile basis will be suitable.

 

Fig.3. Scatterplots of the FSS values for 3 h rainfalls and various radar-based data types. Each 

graph includes FSS values from all events, integration times, scales, and threshold values (1, 

2, 5, 10 mm). The set of FSS values correspond to the mean FSS from Fig. 2 (black curves). 

Single color refer to the events as follow: red - 13.7.2002, green – 15.7.2002, blue – 

10.6.2004, and cyan – 23.5.2005. Correlations are given in each panel. 
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Fig. 3. Scatterplots of the FSS values for 3 h rainfalls and vari-
ous radar-based data types. Each graph includes FSS values from
all events, integration times, scales, and threshold values (1, 2, 5,
10 mm). The set of FSS values correspond to the mean FSS from
Fig. 2 (black curves). Single color refer to the events as follow: red
– 13 July 2002, green – 15 July 2002, blue – 10 June 2004, and cyan
– 23 May 2005. Correlations are given in each panel.

4 Conclusions

Three different radar-based QPE data sets were used for the
QPF verification and the verification results were compared.
The QPE data sets comprised of: (a) raw radar-based rain-
fall values, (b) gauge corrected radar-based rainfalls with a
simple domain-wide correction, and (c) radar-based rainfalls
with a pixel related gauge adjustment. As expected, the FSS
values increased with decreasing rainfall thresholds and with
increasing size of elementary area. This was valid for all ver-
ification data sets.
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The FSS resulting from area corrected radar and adjusted
radar are larger than the FSS following from raw data set, in
general. They confirm the well-known need to correct the
raw rainfall values. There is only a small difference between
the FSS values obtained by using radar-corrected and radar-
adjusted verification data. The radar adjustment gives mostly
the largest FSS values and the difference between raw radar
and corrected radar is smaller than the difference between
raw radar and adjusted radar. However, the differences are
only of the order of 0.01 and the FSS values based on var-
ious verification data are strongly correlated. We can con-
clude that the simple radar data correction can be applied at
the QPF verification without pronounced deviation of FSS
values from the detailed adjustment.

Nevertheless, the differences between FSS values are
event dependent and increasing number of events with wide
spectrum of FSS values would be useful for the generaliza-
tion of the results. More extensive data set will be used in the
next work.
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