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Abstract. A multi-spectral rainfall estimation algorithm has
been developed for the Sahel region of West Africa with
the purpose of producing accumulated rainfall estimates for
drought monitoring and food security. Radar data were used
to calibrate multi-channel SEVIRI data from MSG, and a
probability of rainfall at several different rain-rates was es-
tablished for each combination of SEVIRI radiances. Radar
calibrations from both Europe (the SatPrecip algorithm) and
Niger (TAMORA algorithm) were used. 10 day estimates
were accumulated from SatPrecip and TAMORA and com-
pared with kriged gauge data and TAMSAT satellite rainfall
estimates over West Africa. SatPrecip was found to produce
large overestimates for the region, probably because of its
non-local calibration. TAMORA was negatively biased for
areas of West Africa with relatively high rainfall, but its skill
was comparable to TAMSAT for the low-rainfall region cli-
matologically similar to its calibration area around Niamey.
These results confirm the high importance of local calibra-
tion for satellite-derived rainfall estimates. As TAMORA
shows no improvement in skill over TAMSAT for dekadal es-
timates, the extra cloud-microphysical information provided
by multi-spectral data may not be useful in determining rain-
fall accumulations at a ten day timescale. Work is ongoing
to determine whether it shows improved accuracy at shorter
timescales.

1 Introduction

Rainfall estimation over the African continent is subject to
multiple challenges, several of which are distinct to the re-
gion. Rain-gauge networks are often sparse and unreliable,
and precipitation radars are rare. Connected to this lack of
observational data, and compounding the problem, is the rel-
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ative inaccuracy of quantitative model rainfall outputs over
much of Africa (Diro et al., 2009).

However as the majority of Sub-Saharan Africa is depen-
dent on rain-fed agriculture, near-real-time rainfall estimates
are extremely important for agricultural and food security ap-
plications. Satellite-based rainfall estimates have been seen
for some time as a way to provide rainfall data at the required
temporal and spatial scales (Kidd, 2001).

Several such techniques have been designed for rainfall es-
timation over Africa, including the TAMSAT (Grimes et al.,
1999), MIRA (Todd et al., 2001) and RFE (Laws et al., 2004)
algorithms. With the exception of TAMSAT, which uses only
MSG (Meteosat Second Generation), most such algorithms
make use of multiple satellites or instruments. However, as
many African Met services are equipped to receive MSG
data, it can be argued that a rainfall algorithm using only
MSG is more suitable for use in Africa, as it can be more
easily adapted or calibrated locally by Met services in the
region.

The TAMSAT algorithm uses only a single IR channel
from the SEVIRI (Spinning Enhanced Visible and Infrared
Imager) instrument on board MSG, but recently much work
has been done on utilising multiple channel data from SE-
VIRI and other similar instruments for cloud classification
and rainfall identification.

During the daytime, the 0.8 µm, 1.6 µm and 3.9 µm chan-
nels provide information on cloud optical depth and the
cloud microphysical properties of particle effective radius
and phase, which in turn provide indirect information about
cloud rain-rate. (Thies et al., 2008a; Key and Intrieri, 2000).
At night, a combination of IR channels can provide simi-
lar information, though with less accuracy than the daytime
channels (Thies et al., 2008b; Lensky and Rosenfeld, 2003).

The aim of this project is to determine whether an im-
proved rainfall estimation algorithm for Africa can be de-
vised using the full range of MSG channels. The starting
point is the UK Met Office SatPrecip algorithm which uses a
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real-time radar calibration to produce rainfall estimates over
Europe. This algorithm, reconfigured and recalibrated to take
account of West-African conditions, is referred to from now
on as TAMORA (TAMSAT, Met Office Rainfall for Africa).

2 Data

2.1 Selection of SEVIRI channels

The SEVIRI instrument has 12 channels ranging between
0.635 µm and 13.4 µm (Morgan, 2005). Only those channels
considered most useful (for identification of raining clouds)
were selected for use in the TAMORA algorithm.

In preparation for potential rainfall identification appli-
cations of multi-spectral SEVIRI data,Capacci and Con-
way (2005) examined in detail the combinations of MODIS
(Moderate resolution Imaging Spectroradiometer) channels
which were most useful in identifying raining clouds.

Based on this work, the most useful combination of SE-
VIRI channels for rainfall identification was taken to be the
0.8, 1.6, 3.9 and 10.8 µm channels during daytime, and the
3.9, 10.8 and 12.0 µm channels at night. These are the combi-
nations used in the UK Met Office SatPrecip and TAMORA
algorithms.

2.2 Radar rain-rate data from Niamey, Niger

A mobile C-band Doppler radar was operated from Niamey
airport (Niger) from 5 July to 27 September 2006 as part of
the AMMA (African Monsoon Multidisciplinary Analysis)
project. The data for this work were obtained as values of re-
flectivity in gridded Cartesian format. The gridded data have
a 1 km horizontal and vertical resolution over a 300 km by
300 km horizontal area with 19 vertical levels and a 10 min
time resolution.

Data from two tipping-bucket rain-gauges within the area
of radar coverage were available, but this was not considered
to be a large enough dataset (particularly in terms of number
of gauges) to attempt to determine a newZ−R relation using
a linear regression of radar reflectivity against gauge data.

Several previous studies (Ochou et al., 2007; Nzeukou
et al., 2004) have compared radar reflectivity data with drop-
size distribution estimates from disdrometer data to produce
Z-R relations for West Africa. After discussion with AMMA
scientists working in this area, it was decided to use theZ−R

relation ofZ = 400R1.3 (Gosset, personal communication,
2008). These coefficients fall in the middle of the range of
values found in the literature.

After comparison of the radar rain-rate estimates with the
two previously mentioned tipping-bucket rain-gauges, the
radar was found to be systematically underestimating rain-
fall. A +3dBZ bias correction was applied to the radar reflec-
tivity data before re-converting them to rain-rate, and these
corrected estimates were found to agree much more closely
with the gauge values.

Table 1. Radar rain-rate (RR) bins used for SatPrecip and TA-
MORA calibration, and corresponding values of SatPrecip and TA-
MORA output rain-rate (all mm/hr). Only RR bins 1–4 are used
by SatPrecip over Europe, and only RR bins 1–6 are used by TA-
MORA.

Rain-rate bin Radar RR range SatPrecip TAMORA

1 >0–0.125 0 0.08
2 0.125–0.5 0.125 0.44
3 0.5–2 0.5 1.23
4 2.0–4.0 2.0 2.71
5 4.0–8.0 4.0 4.88
6 8.0–16.0 8.0 11.12
7 16.0–32.0 16.0 NA
8 32.0–64.0 32.0 NA
9 64.0–128.0 64.0 NA
10 >128.0 128.0 NA

2.3 Kriged rain-gauge data from the Sahel

Rain-gauge data from the Sahel region of West Africa for the
rainy season of July - September 2004 were used for valida-
tion of satellite rainfall estimates at 0.5 by 0.5◦ spatial ag-
gregation, and dekadal (10 day) time scale. The amount of
gauge data available varied between dekads, with a minimum
of 350 and a maximum of 515 gauges over this season.

The data were interpolated to 0.5◦ by 0.5◦ scale by re-
gression kriging, as described inAli et al. (2005). In order
to minimise the error in the reference data, only those grid
squares which contained at least one gauge were used for
comparison with the algorithms.

3 The SatPrecip algorithm

The SatPrecip algorithm uses multi-spectral data from SE-
VIRI to provide instantaneous near-real-time estimates of
precipitation over Europe and the North Atlantic. The SE-
VIRI estimates are calibrated against precipitation radar data
from the UK and European networks (Francis et al., 2006).

The radar rain-rate files are first reprojected to MSG res-
olution, and each MSG image is associated with the radar
file that coincides most closely with it temporally. The non-
zero radar rain-rates are separated into four classes, shown
as rain-rate bins 1–4 in Table1, and the calibration process
is carried out separately for each rain-rate in turn. Only four
classes are used operationally over Europe as the product’s
main purpose is as a qualitative tool for forecasters.

The data from each SEVIRI channel are binned accord-
ing to brightness temperature (BT) or reflectance (refl.) into
a number of discrete classes (32 for each BT channel and
16 for each refl. channel). Combining these multi-channel
binned data into a contingency table, a number of satellite
pixel data classes are obtained. Taking the radar data as
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“truth”, coincident radar and satellite pixels are compared
and a probability of rainfall for each satellite data class is
computed. This process is performed for each rain-rate
threshold used by the algorithm, and in this case ’probability
of rainfall’ is the probability of a rain-rate greater than the
rain-rate threshold.

A threshold probability is then chosen for each rain-rate
class, with all satellite data classes above this probability as-
signed as “raining” (within the rain-rate bin in question), and
all others assigned as “not raining” (at this particular rain-
rate).

The probability threshold is chosen for each rain-rate by
the “minimum percent” method (Lovejoy and Austin, 1979),
whereby the difference between the number of observed and
diagnosed rainy pixels is minimised by an iterative proce-
dure. Cheng and Brown(1995) found that this method of
threshold determination produced the most skilful results for
bi-spectral instantaneous precipitation estimates.

Having established a rain-rate calibration for the MSG
data, the rain-rate estimates can now be extended beyond the
area of radar coverage to any region covered by MSG. Val-
idation against UK radar data has shown that the extra SE-
VIRI channels provide an increase in skill from the original
bi-spectral product (Francis et al., 2006).

SatPrecip estimates were initially extended to Africa with
only an adjustment to the rain-rate bins. As it was accumu-
lated rainfall that was of interest over Africa, and high rain-
rates are considerably more common over Africa than over
Europe, the number of rain-rate bins was increased to 10
(see Table1). The SatPrecip output corresponding to each
radar rain-rate bin was taken to be the lower threshold of
the bin. SatPrecip estimates were computed every hour for
July–Sept 2004, and accumulated to dekadal estimates for
comparison with rain-gauge data.

4 The TAMORA algorithm: Adaptation of SatPrecip to
Africa

As the nature of rainfall over Europe (a mixture of strati-
form and convective) is very different to that in West Africa
(dominated by deep convection), an algorithm (TAMORA)
calibrated with precipitation radar data from Africa was con-
sidered likely to produce more accurate results over the con-
tinent than the original SatPrecip algorithm.

The radar data from Niamey, Niger for JAS 2006 described
in Sect.2.2 were used for the calibration. The data were in-
terpolated to MSG pixel scale, then TAMORA was calibrated
by the same method as used for SatPrecip.

As well as using different calibration data, several other
changes were made in order to optimise TAMORA for use in
Africa. The relationship between SEVIRI brightness temper-
ature/reflectance and probability of rainfall (P(R)) was found
to vary greatly between the European and Niamey data. The
binning of radiances in the contingency tables was altered
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Fig. 1. Probability of rainfall (P(R)) for radar against nearest SE-
VIRI pixel for 10.8 µm BT (top) and 3.9 µm refl. (bottom) from Eu-
ropean and Niamey data are shown. Each data point corresponds to
one radiance bin in the SatPrecip and TAMORA algorithms respec-
tively. For the 3.9 µm channel, only data where the corresponding
10.8 µm BT is≤ −20◦C are used in order to eliminate clear sky ra-
diances. European data are for all months combined, Niamey data
are for JAS only.

to reflect this, with bin resolution increased for areas where
P(R) was relatively high for Niamey.

Figure1 shows examples of this change in binning for the
10.8 µm BT and 3.9 µm refl. channels. For the 10.8 µm chan-
nel it can be seen that higher bin resolution was required for
cold brightness temperatures. This is due to stratiform rain
in Europe often occurring from clouds with relatively warm
cloud-top temperatures, whereas convective rainfall in Ni-
amey is usually only initiated when the cloud top is very high
and cold.

For the 3.9 µm channel higher resolution was required for
very low reflectances. This is due to the differing microphys-
ical properties of European and West African precipitating
clouds. European clouds often produce rainfall from water or
mixed phase clouds which have a relatively high reflectance
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Fig. 2. TAMORA - Kriged Gauge anomaly for accumulated JAS 2004 rainfall (shown by coloured pixels). Only pixels containing at least
one gauge are shown. Contours show accumulated JAS 2004 rainfall from kriged gauges (mm). West African coastline and Lake Chad are
depicted by black lines, and location of AMMA radar in 2006 is also shown.

Table 2. Summary statistics for evaluation of TAMORA, SatPre-
cip and TAMSAT against kriged gauge data over the Sahel at 0.5◦,
10 day scale. Reduced region estimates are only evaluated over the
Sahel sub-region where 2004 JAS gauge rainfall is≤ 500 mm.

Bias RMSE R2

TAMORA −10.8 27.1 0.68
SatPrecip 19.0 47.7 0.67
TAMSAT 4.3 21.7 0.80
TAMORA reduced region −3.6 16.9 0.78
SatPrecip reduced region 21.9 46.3 0.69
TAMSAT reduced region 4.4 16.0 0.79

in the 3.9 µm band. Precipitating clouds in Niamey normally
contain large ice particles at the top of the cloud, and these
correspond to extremely low 3.9 µm reflectances. A similar
difference between Europe and Niamey was also seen for the
1.6 µm channel (not shown here).

The other major change between SatPrecip and TAMORA
is the method by which instantaneous estimates are aggre-
gated to longer timescales. SatPrecip simply estimated in-
stantaneous rain-rate every hour and accumulated this di-
rectly to longer timescales. However the distribution of in-
stantaneous rain-rates from radar is completely different to
an hourly accumulated rainfall distribution, with many more
extreme high values at instantaneous scale.

TAMORA estimates were accumulated from half-hourly
instantaneous estimates to dekadal accumulations by a more
sophisticated method. Radar estimates from the Niamey
dataset were averaged over 4 scans (each separated by
10 min) in order to produce an estimate of the distribution of
half-hourly mean rainfall. Instantaneous rain-rates were then
mapped to the equivalent half-hourly mean by histogram
matching. The equivalent half-hourly rain-rate (see Table1)
was then used as the output for TAMORA, and accumulated
to dekadal timescale. Only rain-rates up to bin 6 were used,
as not enough Niamey radar data existed at higher rain-rates
for a stable calibration.

5 Evaluation over West Africa

An evaluation of SatPrecip, TAMORA and TAMSAT esti-
mates against kriged gauge estimates at dekadal, 0.5◦ scale
was performed for the period July–September 2004 for the
region 10 to 17◦ N, −17.5 to 21.5◦ E. TAMSAT has previ-
ously been shown to produce accurate estimates for this re-
gion when compared to other satellite rainfall estimates (Jo-
bard et al., 2007). Scatter plots of this validation are shown
in Fig. 3, and summary statistics in Table2.

SatPrecip performs poorly, with a large positive bias and
extremely large spread. TAMORA exhibits a large negative
bias and large RMSE, mainly due to a tendency to underes-
timate high rainfall values. Figure2 shows the TAMORA -
gauge anomaly for accumulated rainfall JAS 2004, together
with contours of rainfall as given by the kriged gauge esti-
mates. It can be seen that TAMORA is largely unbiased for
areas of relatively low rainfall (JAS total≤500 mm), but dis-
plays a negative bias in areas of higher rainfall. TAMSAT
performs the best of the three algorithms for the whole vali-
dation region.

In order to assess the performance of TAMORA over a re-
gion more homogeneously similar to its calibration dataset
(around Niamey), the evaluation was repeated for the sub-
set of the validation region where 2004 JAS gauge rainfall is
≤500 mm. Results of this are shown in Table2 and Fig.3.
SatPrecip continues to perform poorly for this sub-region,
but the results for TAMORA are much improved, and its ac-
curacy is comparable to TAMSAT in this case.

6 Conclusions

SatPrecip was found to perform poorly over the Sahel re-
gion. This can be attributed most obviously to its calibration
over Europe. As can be seen from Fig.1, the relationship be-
tween SEVIRI radiances and P(R) varies greatly between Eu-
rope and Africa due to differences in typical rain-producing
clouds between the continents. Because of this, SatPrecip
will often assign rainfall to relatively low clouds over Africa
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Fig. 3. Density of TAMORA, SatPrecip and TAMSAT estimates plotted against corresponding kriged gauge estimates at 0.5◦, 10 day scale,
for JAS 2004. Least squares fit lines are also shown. (L) All grid squares within the validation area of 10 to 17◦ N, −17.5 to 21.5◦ E were
used. (R) Only grid squares where the JAS 2004 kriged gauge total was≤500 mm were used.
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that are in fact unlikely to be raining, and this would explain
the large overestimates produced by SatPrecip in the region.

For the Sahel validation region as a whole, TAMORA
shows a large negative bias. One possible explanation is that
TAMORA is unable to correctly estimate heavy rainfall, as
the highest half-hourly rainfall accumulation it can produce
is 11.12 mm (see Table1). However, if this were the case,
then TAMORA would be expected to underestimate rainfall
everywhere in the region, because the majority of Sahelian
rainfall occurs in short, intense storms. As can be seen in
Fig. 2, this is not the case, and for the region where total
JAS rainfall is≤500 mm TAMORA has only a small nega-
tive bias.

It appears that TAMORA is only biased for areas of rel-
atively high seasonal precipitation, and in particular those
areas which receive more rainfall than its region of calibra-
tion in Niamey. This is likely to be the case for a number of
reasons. The Guinea region of coastal West Africa has a cli-
mate distinct from that of the Sahel, with significant amounts
of rain coming from “warm”, relatively low-topped clouds.
This would cause the opposite problem from that experi-
enced by SatPrecip over the Sahel, with TAMORA unable to
correctly identify this rainfall due to its Niamey calibration.

For other regions of TAMORA underestimation, the cli-
mate is broadly the same as in Niamey with the majority
of rainfall coming from large organised convective systems.
However the availability of moisture is greater further south
due to the greater proximity of the ocean, and this is likely to
be the cause of the underestimation.

Although TAMORA receives information about cloud-top
properties from multi-spectral data, this is still very much
indirect information about rainfall quantity. Two convective
systems with very similar SEVIRI radiance signatures, but in
regions of differing moisture availability, may produce quite
different accumulated rainfall at the surface. This would sug-
gest that different calibrations of TAMORA may be needed,
even between regions of apparently similar climate.

In general, it appears that local calibration for this type
of multi-spectral rainfall estimation algorithm is crucial, cer-
tainly between continents and regions (as shown by the poor
performance of SatPrecip in the Sahel), and even within re-
gions (as seen by the varying performance of TAMORA
across the Sahel).

For the reduced, more arid validation region TAMORA’s
performance for dekadal totals is similar to that of TAMSAT.
As TAMSAT uses only a single channel of IR data from SE-
VIRI it might be expected that TAMORA would perform bet-
ter than TAMSAT, and there are several possible explanations
of why this is not the case.

TAMSAT uses historical rain-gauge data from a long time-
series for calibration, and is calibrated regionally over rela-
tively small, climatologically homogeneous areas, whereas
TAMORA only uses one season of radar data from a single
radar for calibration. The fact that TAMSAT is calibrated
with gauges, not radar means that it is not subject to radar

errors (gauge errors over ten days can be considered to be
comparatively small). As TAMSAT is calibrated over the
same dekadal timescale used here for validation its estimates
are better constrained than TAMORA’s, with no possibility
of unrealistically high values.

Although the extra information about cloud properties
available to TAMORA might be expected to compensate
for this, it is unclear how useful cloud microphysical data
are when estimating convective rainfall at relatively long
timescales. While cloud microphysics are important in de-
termining instantaneous convective rain-rates, over larger
timescales the accumulated rainfall may simply be propor-
tional to the amount of moisture advected into the upper
troposphere. In this case, the multi-channel TAMORA ap-
proach would not be expected to produce more skilful es-
timates than the simple TAMSAT approach over relatively
long time periods.

Future work will involve a validation of TAMORA at
shorter 1 day and instantaneous timescales to determine if
multi-spectral data can improve rainfall estimates at these
shorter timescales.
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