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Abstract. Previous studies have found the South Ameri-
can subtropics to exhibit high climatological frontogenesis
in equivalent potential temperature during the austral sum-
mer. An important contribution to this pattern is given by
frontogenesis over the Argentinean Col (AC), which sepa-
rates the Northwestern Argentinean Low (NAL) from tran-
sient troughs to the south of it. The NAL and the Low
Pressure Tongue east of the Andes (LPT) promote efficient
transport of Amazonian humidity to the subtropics during the
incursion of transient disturbances over the continent. The
convergence of this strong warm and humid flow with mid-
latitude air brought into the subtropics by the disturbance oc-
curs preferentially in the neighborhood of the AC. The main
difficulty in quantifying the contribution of the NAL, AC and
LPT structure to frontogenesis in the South American sub-
tropics is the automatic detection of the AC and LPT. In this
paper an algorithm developed to this end is briefly presented
and applied to obtain statistics on the role of these structures
in frontogenesis. Six-hourly data from ECMWF ERA-40 Re-
analysis over 21 austral summer periods (December–March)
is used. Occurrences of the AC are highly concentrated be-
tween 34–39◦ S and 66–69◦ W, being present in this region
in 42% of the time instants analyzed. The spatial average of
the positive values of the frontogenesis over this region was
calculated for each time step as a measure of intensity and
histograms were built for the cases when the AC was and
was not found inside this region. Mean, median and mode
are larger for the distribution of cases with the presence of
the AC. In addition, we present the frequency of occurrence
of the AC as a function of the frontogenesis, showing that
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it grows with the intensity of the frontogenesis, rising above
the 0.955 quantile. We have not found any correlation be-
tween the AC frequency and the frontolysis intensity.

1 Introduction

South American subtropics exhibit high climatological fron-
togenesis in equivalent potential temperature during summer
and deformation of the wind field is the main contributing
mechanism. An analysis of the synoptic conditions present
in high frontogenesis situations revealed the presence of the
Northwestern Argentinean Low (NAL) and a transient trough
to its south, both surrounded by an elongated trough, which
has been named the Low Pressure Tongue east of the Andes
(LPT). The neighborhood of the col separating the NAL from
the transient trough to its south, named the Argentinean Col
(AC), is a preferred spot for frontogenesis. The NAL and
the LPT promote efficient transport of Amazonian humid-
ity to the subtropics and mid-latitudes. The convergence of
this strong warm and humid flow with mid-latitude air occurs
preferentially in the neighborhood of the AC, which sepa-
rates the NAL from the transient trough, making it very prone
to frontogenesis (Arraut, 2007; Arraut and Barbosa, 2009).

An interesting question is to quantify the contribution of
the NAL, AC and LPT structures to frontogenesis by defor-
mation in the South American subtropics. However the main
obstacle in doing so is the need for automatic detection of
the AC and LPT. The goal of this paper is to present such a
quantitative study, as well as the algorithm developed for au-
tomatic detection of these features of the geopotential field. It
will be shown from a statistical view point that: (a) the pres-
ence of the AC and LPT favors frontogenesis, (b) the higher
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the frontogenesis the higher the statistical presence of these
features, and (c) the AC and LPT are present in the majority
of cases of high frontogenesis.

2 Data and Methods

Temperature, humidity and geopotential fields are taken from
the European Centre for Medium Range Weather Forecasts
(ECMWF) 40 years Reanalysis (ERA-40). Twenty one De-
cember to March seasons, from December 1981 to March
2002, are studied as inArraut (2007). Equivalent potential
temperature,θe, is calculated according toBolton (1980).
Frontogenesis inθe is calculated as a sum of four terms, fol-
lowing Ninomiya(1984):

FG =
d|∇θe|

dt
= FG1 + FG2 + FG3 + FG4 (1)
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where u, v, w are the wind components and
A=∂u/∂x−∂v/∂y and B=∂v/∂x+∂u/∂y are defor-
mation terms. FG1 is the frontogenesis due to diabatic
changes ofθe. FG2 andFG3 are associated with the large
scale horizontal flow. The first represents the effect of
divergence and the latter that of deformation.FG4 accounts
for vertical advection ofθe. FG3 was found to be the most
important term in subtropical South America (Arraut and
Barbosa, 2009). This is in accordance withNinomiya(1984)
andKodama(1992) who found it to be the main contributor
to frontogenesis in the troposphere.

Based on these data an algorithm was developed to auto-
matically detect the NAL, AC and LPT and applied to 10 184
six hour intervals to obtain statistics on the role of these struc-
tures in frontogenesis inθe over the South Americas subtrop-
ics. This algorithm can be divided into three main blocks: (1)
locate NAL by searching for minima of the 850 hPa geopo-
tential field,φ850, (2) locate AC by searching for minima of
∇φ850 and (3) locate LPT by searching for a self connection
of φ850 that passes through AC and contains the NAL.

Fig. 1. Contours showφ850 (m) at 12 Z 24 December 1991. Poly-
gons delimit search regions for: minimums ofφ850 (dotted red);
NAL position (red); AC position (blue). Markers indicate: lows
(red), NAL (big red), cols (blue), AC (blue square)

2.1 Locate NAL

The first part of the algorithm detects the presence of the
NAL, defined to be southernmost minimum of the 850 hPa
geopotential field inside the region where the NAL is clima-
tologically expected to be found, (full red line in Fig.1).

Firstly a continuous geopotential functionφ850 is defined,
through the interpolation of the original 2.5◦

×2.5◦ gridded
dataset. Then a search for local minima ofφ850(lat, lon)

is performed using Powells minimization method in multi
dimensions (Acton, 1990) as implemented byPress et al.
(1992). Because numerical algorithms such as this will only
search and find local minima close to the first guess, we take
as candidate positions to the minimization algorithm the cen-
ters of all grid-points with values smaller than their neigh-
bors. Figure1 shows as a dotted red line the region used
to select the initial positions from. To avoid convergence
problems from the minimization algorithm, for all minima
found it is verified if the laplacian of the geopotential field
is greater than zero,∇2φ850=∂2φ850/∂x2

+∂2φ850/∂y
2>0, a

necessary condition for a point to be a minimum. For the
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Fig. 2. Contours show the magnitude of∇φ850 (colors) andφ850
(black). Markers indicate: position of NAL (red circle), AC as can-
didate positions (black), position of AC as detected by the gradient
(blue circle) and position of AC corrected usingφ850 (blue square).

example situation presented in Fig.1, the red markers show
the minima found. From all of these, the southern most in-
side the climatological NAL region is taken to be the NAL.

2.2 Locate AC

If the Northwestern Argentinean Low is found at a given
time, the algorithm searches for the col which separates the
NAL from transient troughs to the south of it. Because AC
is a mathematical saddle point of the geopotential field, it is
also a minimum of the geopotential gradient. The algorithm
takes advantage of this property for locating AC and basi-
cally repeats the procedure described above using the gradi-
ent instead of the field itself.

Firstly |∇φ850| is calculated by finite differencing the orig-
inal gridded dataset and then a continuous function is defined
through its interpolation. Secondly, the minimization algo-
rithm is used with initial positions taken to be the centers of
the grid-points with values smaller than at least seven of their
neighbors and the search is done only up to 25◦ to the south
of the NAL (blue line in Fig.1). This relaxed condition was
found to be necessary because the finite differencing process
can sometimes masks out true initial conditions. With this
relaxation there are substantially more first guesses but all
local minima of |∇φ850| are guaranteed to be found. Fig-
ure2 shows the gradient field in colored contours, the initial
trial positions (black) and the found minimum (blue circle)
for the same example situation as in Fig.1. In this case all
initial positions converged to the same minimum.

Finally, the positions found might correspond to maxi-
mums or minimums ofφ850 which are excluded by looking
at φ850 in the point’s neighborhood. The top panel Fig.3

Fig. 3. The two panels showφ850 as a function of the distance (de-
grees) away from AC and along the directions of maximum growth
(blue) and diminish (red) before (top) and after (bottom) the correc-
tion usingφ850 is applied.

shows the geopotential as a function of the angular distance
away from the tested point and along the perpendicular di-
rections of its maximum (blue) and minimum (red) growth.
In this particular case it is clear that the determinant of the
Hessian matrix (i.e. the product of the curvatures) is negative
and hence the point is indeed a saddle.

This graph also shows that the saddle position determined
by minimizing |∇φ850| is not exactly at the right place be-
cause the curves are not tangent at their inflection points.
The algorithm then uses this information to move the point
around until it finds the correct position, as shown in the
lower panel of Fig.3. The uncorrected and corrected posi-
tions are shown in Fig.2 as a blue circle and a blue square
respectively. A comparison with the geopotential shown in
black contour shows the correction to be indeed necessary.

2.3 Locate the Tongue

If any cols where found, the algorithm follows on to ver-
ify which one is associated with the NAL. Because the Ar-
gentinean Col separates the NAL from transient troughs to
the south of it and the AC is a mathematical saddle point of
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Fig. 4. Testing if NAL is inside the contour level that goes through
AC. The contours showφ850 (m) with the tested contour in purple.
The grid-boxes crossed by this contour are highlighted and ACs
position is given by the blue box.

the geopotential field, there must be a equigeopotential line
which goes through the AC and around the NAL.

Firstly the algorithm follows the equigeopotential leaving
each of the saddle points. For each of these lines that formed
a closed loop, the algorithm then verifies if it embraces the
NAL. This is shown in Fig.4. If it does, i.e., if AC and LPT
were found, all information gathered for the NAL, AC and
LPT structures are recorded and the algorithm advances in
time and processes the next 6 h field.

3 Results

We applied our algorithm to data described in Sect.2 and
the AC was detected in 42% of the 10 184 time instants an-
alyzed. Its occurrence is highly spatially concentrated in the
region of maximum climatological frontogenesis by defor-
mation in equivalent potential temperature (Arraut, 2007), as
shown by a comparison of the top and lower panels in Fig.5.
For this reason, it was interesting to investigate the role of
the Argentinean Col for frontogenesis in a statistical point of
view. The region R, 30◦–42.5◦ S and 62.5◦–70◦ W, was de-
fined for this statistical study (black rectangle in Fig.5). It
contains the region of maximum occurrence of the AC and al-
lows some room so that frontogenesis occurring near the col
can be taken into account. The average of the positive values
of frontogenesis over R (DFG3+) was defined and calculated
as inArraut and Barbosa(2009) for all 10 184 time instants.
Similarly, DFG3− was defined as the average of the negative
values of frontogenesis.

Fig. 5. Top: 2-D-Histogram of the occurrences of the AC with the
LPT detected by our algorithm in the studied period. The number
of events in each grid box is shown in a color-log scale. Lower:
climatology of frontogenesis by deformation in equivalent potential
temperature at 850 hPa. Color scale is in K/100 km/day.

Figure 6 shows the distribution of DFG3+ for all time
instants analyzed (black), and also separately for the cases
when the AC was detected (red) and when the AC was
not detected (blue). The AC curve is shifted towards
higher values of frontogenesis when compared to the no-
AC curve. The first one is centered approximately around
DFG3+=1.5 K/100 km/day whereas the second one is cen-
tered around 0.8 K/100 km/day. Mean, median and mode
are larger for the situations when the AC and LPT are present,
showing statement (a): the AC and LPT favor frontogenesis.

Although the total number of no-AC cases is larger than
the total number of AC ones, the histograms intersect and
AC cases become more numerous above a threshold of
DFG3+=1.8 K/100 km/day. The AC histogram exhibits a
heavier tale. This can be more clearly seen in the lower panel
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Fig. 6. Top: Histograms showing the distribution of DFG3+ for:
all the time instants (black), only those when the AC was detected
(red), and only those when the AC was not detected (blue). Lower:
the relative contribution of the cases with (red) and without AC
(blue).

of Fig. 6 which shows the relative distributions of DFG3+
for AC and no-AC cases. In other words, for each value
of DFG3+ the curves show the fractions of AC and no-AC
events relative to the total number of events. The fraction of
AC cases grows steadily with increasing DFG3+ until about
2.7 K/100 km/day which, as Table3 shows is the 0.9 quan-
tile. Above this value growth goes on but with more noise
since the number of events is small. This shows statement
(b): the higher the frontogenesis the higher the statistical
presence of the AC and LPT.

Table3 shows values of DFG3+ corresponding to impor-
tant quantiles as well as the AC fraction for events above and
below these quantiles. Above the 0.5 quantile the AC frac-
tion is around 57%. This grows to almost 70% for events
above the 0.9 quantile and over 86% for events above the
0.995 quantile, which are slightly over 50 in number. The
AC fraction is well above 50% for all quantiles above 0.5,
which shows statement (c): the AC and LPT are present in
the majority of events of high frontogenesis.

Table 1. DFG3+ quantiles and the fraction of events in which the
AC is present in R for the events withDFG3+ above or lower than
the quantile value.

Quantile Value of Fraction with Argentinean Col
q DFG3+ DFG3+> q DFG3+< q

0.25 0.85 50.1% 20.0%
0.50 1.34 57.1% 28.0%
0.75 1.95 64.0% 35.3%
0.90 2.70 68.2% 39.7%
0.95 3.18 73.4% 41.0%
0.99 4.35 78.4% 42.2%
0.995 4.85 86.3% 42.4%

Fig. 7. Right: horizontal axis represents limiting values of DFG3+.
The dashed line curve shows the number of events with DFG3+
greater than limit, while the continuous line curve shows the frac-
tion of these events in which AC was found in R. Left: same as the
right panel but for DFG3− lower than limit.

In the lower panel of Fig.7 the dotted curve takes values
in the right vertical axis and shows the total number of events
above the DFG3+ thresholds shown on the x-axis. The full
line curve take values in the left vertical axis and shows the
AC fraction for events above the threshold. It is an expanded
version of the information in the three columns on the left
of Table3. It shows how the AC fraction steadily grows as
DFG3+ thresholds increases.
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The plots shown in the upper panel of Fig.7 are analogous
to those in the lower panel, but they refer to negative fron-
togenesis, or frontolysis. The dotted curve shows the total
number of events below the DFG3− threshold. Frontolysis
is weaker when compared to frontogenesis. The first reaches
values of−1.5 K/100 km/day while the latter reaches values
up to+5 K/100 km/day. It can also be seen that the inten-
sity of frontolysis shows no appreciable correlation with the
presence of the AC and LPT.

4 Conclusions

A quantitative evaluation of the importance of the Argen-
tinean Col and the Low Pressure Tongue east of the Andes
for frontogenesis by deformation in the South American sub-
tropics was presented in this paper. It was shown that:

(a) the presence of the AC and LPT favors frontogenesis,

(b) the higher the frontogenesis the higher the statistical
presence of these features,

(c) the AC and LPT are present in the majority of cases of
high frontogenesis.

Based on these results it can be concluded that the AC
and LPT represent the single most important synoptic situ-
ation associated with high frontogenesis in the South Amer-
ican subtropics. Even though these are local features of the
pressure field, this statement does not diminish the role of
transient disturbances, which are an important cause of the
strengthening of the NAL (Lichtenstein, 1980; Seluchi et al.,
2003; Ferreira, 2008). In fact, inArraut and Barbosa(2009)
it is shown thatstrongfrontogenesis is linked tostrongNAL
and LPT events with a baroclinic trough south of the AC and
a maximum of wind speed in high levels. It is also shown
that these events tend to be associated with strong convec-
tive rainfall. It is therefore theinteractionbetween transient
disturbances and local pressure field features of the South
American subtropics that make it so prone to frontogenesis
in equivalent potential temperature and strong convection.

Since we cannot distinguish cause and effect with the sta-
tistical approach used to quantify the importance of AC and
LPT for frontogenesis, one could ask whether the inverse
relation holds, i.e., could frontogenesis promote the forma-
tion of AC and LPT? To clarify this issue it is important
to note that the AC is a geometrical necessity whenever the
NAL is formed. This can be easily seen by considering the
geostrophic wind. A col is necessary to separate the easter-
lies south of the NAL from the extra-tropical westerlies.

While the idea of frontogenesis by deformation being fa-
vored in the neighborhood of a col, first put forward byPet-
terssen(1956), is quite simple, adirect manner in which
frontogenesis may locally promote col formation is hard to
imagine. However, anindirect mechanism for this, in South

America, has been proposed (Arraut, 2007): frontogenesis
intensifies and/or maintains a high level jet, perpetuating the
Zonda wind adiabatic forcing and hence the NAL and AC.

An interesting issue for future studies is whether the NAL
and LPT formation are more predictable than frontogenesis
itself, in which case topic forecasting or nowcasting the LPT
could be useful for weather prediction.
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