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Abstract. Little quantitative knowledge is as yet available
about the role of hydrological model complexity for climate
change impact assessment. This study investigates and com-
pares the varieties of different model response of three hy-
drological models (PROMET, Hydrotel, HSAMI), each rep-
resenting a different model complexity in terms of process
description, parameter space and spatial and temporal scale.
The study is performed in the Ammer watershed, a 709 km2

catchment in the Bavarian alpine forelands, Germany. All
models are driven and validated by a 30-year time-series
(1971–2000) of observation data. It is expressed by objective
functions, that all models, HSAMI and Hydrotel due to cal-
ibration, perform almost equally well for runoff simulation
over the validation period. Some systematic deviances in the
hydrographs and the spatial patterns of hydrologic variables
are however quite distinct and thus further discussed.

Virtual future climate (2071–2100) is generated by the
Canadian Regional Climate Model (vers 3.7.1), driven by
the Coupled Global Climate Model (vers. 2) based on an
A2 emission scenario (IPCC 2007). The hydrological model
performance is evaluated by flow indicators, such as flood
frequency, annual 7-day and 30-day low flow and maxi-
mum seasonal flows. The modified climatic boundary con-
ditions cause dramatic deviances in hydrologic model re-
sponse. HSAMI shows tremendous overestimation of evapo-
transpiration, while Hydrotel and PROMET behave in com-
parable range. Still, their significant differences, like spa-
tially explicit patterns of summerly water shortage or spring
flood intensity, highlight the necessity to extend and quantify
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the uncertainty discussion in climate change impact analysis
towards the remarkable effect of hydrological model com-
plexity. It is obvious that for specific application purposes,
water resources managers need to be made aware of this ef-
fect and have to take its implications into account for decision
making. The paper concludes with an outlook and a proposal
for future research necessities.

1 Background and introduction

Global climate change will impose remarkable regional al-
terations on landscape systems, regional water cycles in gen-
eral and catchment hydrology in particular. It is understood
that even the most sophisticated regional climate models,
driven by GCMs (General Circulation Models), are not ca-
pable to fully project the exact future course of water re-
lated variables. While general trends are concurrently repre-
sented in most GCMs, large uncertainties still remain in the
projected magnitude, variability and especially regional pat-
terns. Still, these data are the best available source of infor-
mation to develop adaptation strategies for water resources
managers. They serve as driving inputs for subsequent hy-
drological models, transferring a future climate signal into
hydrological quantities at the landscape or watershed scale.

Nowadays, operational organisations that are seeking for
effective adaptation options have access to a large number of
outputs from climate models that cover a wide spectrum of
possible futures. The great uncertainties, that are inherent to
these climate projections as well as to subsequent modelling
tools (Minville et al., 2008; Khalili et al., 2006), are currently
the limiting factor to put meaningful adaptation options into
practice. New and concise concepts must be developed to
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reduce these uncertainties and comprehensive tools must be
provided to stakeholders to simplify and foster the process of
reasoned decision making in watershed management under
climate change conditions (Garrido and Dinar, 2009).

Water resources agencies and institutions usually employ
hydrological models for specific operational purposes, such
as flood forecasting or dam management (Turcotte et al.,
2004). These models often follow rather simple concepts
and are usually exposed to more or less sophisticated cali-
bration procedures (Refsgard, 2001; Beven and Freer, 2001;
Duan et al., 1993). While reliable and accurate results can
be obtained under current state conditions, these models are
seldom readily prepared for utilization in a climate change
context, where the predictive power of such models becomes
more and more important and raises the demand for process-
based and spatially explicit model types. However, difficul-
ties with these models include the high data demand, wide
parameter space, complex process descriptions and compli-
cated handling. In order for these institutions to develop
sound adaptation strategies, a compromise must be found be-
tween the principles of operational model applicability and
sufficient predictive power for climate change impact assess-
ment. It must be understood that the level of complexity of a
given hydrological model may limit its application to a cer-
tain set of problems, characterized by temporal and spatial
scales or by predominant hydrological decision variables (for
example stream flow at the watershed outlets or soil moisture
at field scale), while other tasks may need more complex pro-
cess descriptions.

While scientific expertise has been collected about hydro-
logic model uncertainty for short to medium range forecasts,
e.g. in terms of hydrological model ensembles in the HEPEX
experiment (Schaake et al., 2006) or the RAPHAEL project
(Bacchi and Ranzi, 2003), little quantitative knowledge is as
yet available about the role of hydrological model complex-
ity for climate change impact assessment. The presented re-
search investigates the varieties of different model response
as a function of model complexity. It is performed in the Am-
mer watershed, a 709 km2 catchment in the Bavarian alpine
forelands, Germany. It is thus not so much focused on re-
vealing the projected climate change for this region (which is
clearly not possible when being based on one single GCM-
RCM (Regional Climate Model) driver only), but is much
more intended to demonstrate the level of uncertainty which
is introduced, when hydrological models of different struc-
ture and complexity are driven by the same climatological
boundary conditions. The aim is to define a suitable level
of model complexity in terms of parameter space, spatial
and temporal scale (Sivapalan, 2003), capable to provide the
required advice for water managers (Brugnach et al., 2007;
Olsson and Anderson, 2007).

The study was performed within the joint Bavarian-
Québec research project AQAGI (Adaptation et intercom-
paraison d’outils qúebecois et bavarois de gestion intégŕee
de bassins versants dans un contexte de changements cli-

Fig. 1a. Location of the Ammer catchment in Southern Bavaria,
Germany (taken from: Global Change Atlas Upper Danube (www.
glowa-danube.de/atlas/atlas.php)).

matiques = Adaptation and comparison of a Quebecois and
a Bavarian integrative water management tool in the context
of climate change questions) between the Consortium Oura-
nos in Montŕeal, Canada and the Department of Geography
at the University of Munich, Bavaria (Vescovi et al., 2009).

2 Analysis and results

As the study shall serve to better evaluate the required com-
plexity of hydrological models applied in the context of cli-
mate change, the three applied hydrological models are each
representing a different model complexity in terms of process
description, parameter space and spatial and temporal scale:
All models are driven and validated by a 30-year time series
(1971–2000) of observation data. Additional comparative
model runs were performed using different historic and fu-
ture climate data from the Canadian Regional Climate Model
(CRCM, vers. 3.7.1) (Plummer et al., 2006).

The study is performed in the Ammer watershed, a
709 km2 catchment in the Bavarian alpine forelands, Ger-
many. The catchment area of the Ammer, located 50 km
southwest of Munich, is dominated by agricultural use (see
Fig. 1a and b). It ranges 50 km south to north from its
spring in the steep Ammer Mountains to the gently rolling
morainic topography at its mouth at Lake Ammer (Ludwig
et al., 2003). The east - west extension of 30 km is limited by
the catchments of the Loisach in the south- east and the Lech
in the west.
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Fig. 1b. Ammer basin: Left: Land Use Cover based on a Landsat-TM-scene dating from June 19th 2000. Right: Digital Elevation Model,
based on the DGM25 of the Bavarian Geodetic Survey.

2.1 Hydrological models

For the modelling process the following hydrological models
are applied:

A) PROMET: The spatial distributed hydrological model
PROMET (Processes of Radiation, Mass and Energy Trans-
fer) simulates water balance components as well as river
discharge based on a physical description on the land sur-
face. It was specifically developed to study the impact of
climate change on the water cycle of medium sized, com-
plex watersheds influenced by different hydrologic regimes.
PROMET is developed and tested at the LMU Munich within
the integrative research project GLOWA-Danube (Ludwig
and Mauser, 2000; Mauser and Ludwig, 2002; Ludwig et
al., 2003) in collaboration with VISTA (Mauser and Bach,
2009). PROMET is spatially explicit in all process descrip-
tions. In order to be most compatible with models from other
disciplines (e.g. regional climate models, groundwater mod-
els) the spatial representation in PROMET is based on an
isotropic grid. It follows the concept of avoiding calibration
of model parameters against measured discharges. It thereby
allows prognostic simulations for investigating the impact of
climate change on the water cycle. The spatial parameteriza-
tion of the land surface is provided using remote sensing data
and GIS-methods.

B) HYDROTEL is a hydrological model developed by
INRS-ETE (InstitutNational de laRechercheScientifique) in

Quebec City, Canada, to simulate stream flow either within
an operational forecasting framework or a study framework.
It is a semi-distributed model operating at RHHUs (Turcotte
et al., 2003), relative homogeneous hydrological units, on
which the vertical water budgets are computed separately, so
as to take into account the spatial variability of topography,
land use, soil types and meteorological variables within a wa-
tershed. Its main objectives are to compute the stream flow
for the concerned river and its major tributaries and to sim-
ulate the spatial distribution of hydrological variables (snow
cover, soil moisture, etc.). It also uses the SCE-UA approach
for calibration means.

C) HSAMI (Fortin, 2000) is a lumped bucket-type con-
ceptual model, which has been developed at Hydro Quebec.
It uses as input the basin average values of daily precipita-
tion and minimum and maximum temperature to form snow
cover and snow melt following a degree-day approach and
to calculate evapotranspiration from empirical relationships
(Frigon et al., 2002). Calibration of the model is performed
and based on the Shuffled Complex Evolution-University of
Arizona (SCE-UA).

A comparative description of all model types is given in
Table 1.

In this study, PROMET and Hydrotel were operated in an
hourly mode, whereas HSAMI calculated on a 24 h time in-
crement. For the intercomparison, PROMET and Hydrotel
results were averaged to daily means or sums respectively.
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Table 1. Major characteristics of the applied models.

PROMET HYDROTEL HSAMI

Model type Mutliscale, raster-based dis-
tributed model

Distributed model on small
sub-watershed

Lumped model

Input variables P, T, W, R, Rh (more if avail-
able)

P, T (or more if available W, R,
Rh)

P, T

Time steps 1 h, 2 h, 3 h, 4 h, 6 h, 8 h, 12 h
and 24 h

1 h, 2 h, 3 h, 4 h, 6 h, 8 h, 12 h
and 24 h

24 h only

Output variables Streamflow at the watershed
outlet Spatially distributed
runoff, soil moisture, evapora-
tion, SWE, . . .

Streamflow at all the mod-
eled river reaches Spatially
distributed runoff, soil mois-
ture, SWE, . . .

Streamflow at the watershed
outled

Vertical budget 3 layer soil water module
based on the Philip equa-
tion Layer properties parame-
terized by Brooks and Corey,
Brakensiek and Rawls Infiltra-
tion is based on soil hydraulic
conductivity and saturation of
the subsurface layer

3 layers that mimic subsurface,
vadose and saturated parts of
the soil Layer properties and
exchanges are linked to phys-
ically based features Infiltra-
tion is based on soil hydraulic
conductivity and saturation of
the subsurface layer

2 reservoirs (vadose and satu-
rated) Infiltration account for
frozen soil and for a saturation
threshold in the vadose reser-
voir

Flow calculation Extended Muskingum-Cunge 1 geomorphologic unit hydro-
graph 1 d hydraulic approach
in the river and lake network

3 synthetic unit hydrographs
(surface, vadose, saturated)

ET calculation Penman-Monteith equation PET Empirical based on air
temperature (HQ approach) or
more complex approach if data
are available AET based on ac-
tual water content and vegeta-
tion roots depth

PET Empirical based on air
temperature (HQ approach)
AET proportional to the level
of vadose reservoir

Snow model Muli-layer energy balance ap-
proach

Temperature driven approach
that includes main energy bud-
get concepts

Temperature driven approach
that includes some energy bud-
get concepts

Set-up and calibration No calibration 15 parameters with SCE-UA
Model installation and calibra-
tion take roughly 2 months

23 parameters with SCE-UA
Model installation and calibra-
tion can be done in 1 day

Utilization Numerous applications in re-
search and development

Operationally used at CEHQ
and in the way to be used at
HQ

Operationally used at Hydro-
Quebec

Main References Mauser (2009) Fortin et al. (2001) Fortin (2000)

2.2 Validation of hydrological models

The validation of the hydrological models in use is based
on a 30-year time series of hydrological and meteorological
station observations (1971–2000) from 12 climate stations
of the German Weather Service (see Fig. 2). It was found
that by means of Nash-Sutcliffe efficiency (NSC) andR2, all
models perform comparably well when driven by observa-
tion data. This can be underlined by Table 2, showing the
objective function values for consecutive 5-year time slots of
simulated versus measured daily runoff. Calibration of the
models Hydrotel and HSAMI was performed for the 1995–
2000 time slice, with 1971–1994 being the validation period.
Figure 3 compares measured mean annual runoff [m3/s] over

the 30 year period with the model results of PROMET, HY-
DROTEL and HSAMI. Both, gain and the coefficient of de-
termination of the resulting regression function indicate an
acceptable model performance.

However, a number of deviances, especially in terms of
summerly runoff can be attributed to different interpolation
schemes of gauged precipitation and the different process
equations for evapotranspiration and snowmelt (see Fig. 2).
Largest deviations are visible for the lumped HSAMI model,
which does not account for spatial heterogeneities – a clear
disadvantage, especially in areas with strong topographic and
climatic gradients.
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Table 2. Nash-Sutcliffe efficiency for six consecutive 5-year time
slots of simulated daily runoff (the period 1995–2000 was used for
the calibration of Hydrotel and HSAMI (in italic)).

Time Period Model NSC

01.01.1971–01.01.1975 PROMET 0,58
HYDROTEL 0.67
HSAMI 0.55

01.01.1975–01.01.1980 PROMET 0.76
HYDROTEL 0.66
HSAMI 0.72

01.01.1980–01.01.1985 PROMET 0.60
HYDROTEL 0.64
HSAMI 0.49

01.01.1985–01.01.1990 PROMET 0,55
HYDROTEL 0.73
HSAMI 0.52

01.01.1990–01.01.1995 PROMET 0.60
HYDROTEL 0,65
HSAMI 0.46

01.01.1995–01.01.2000 PROMET 0.74
HYDROTEL 0.83
HSAMI 0.73

Fig. 2. Mean monthly runoff (1971–2000) in the Ammer catch-
ment as simulated by PROMET, Hydrotel and HSAMI (driven by
observed climate data).

2.3 Water balance simulation using regional climate
model data

Comparative model runs were performed using different cli-
mate forcing for various time frames: observation data from
the German Weather Service already mentioned in the chap-
ter 2.2 “validation of hydrological models”, historic climate
data from the Canadian Regional Climate Model (CRCM,
vers. 3.7.1) based on i) reanalysis data (ERA-40) and ii)
driven by the Coupled Global Circulation Model (CGCM2
Past) and finally iii) a climate scenario based on an IPCC-A2
emission scenario (CGCM2 Future). It is taken into account

that these driving inputs, also the ERA40 reanalysis often
used for rainfall verification in spite of known deficiencies
(Hagemann et al., 2005), are largely inadequate (Lucarini
et al., 2007) for hydrological applications at the catchment
scale. As expected, Table 3 and Fig. 4 highlight extreme de-
viations in the driving meteorological parameters and their
consequences for all model results (Table 4). Please note the
deviances between PROMET and Hydrotel in Table 3, while
data in each model pair run stems from the same source. This
phenomenon is attributable to the different schemes of inter-
polation applied to point data in these models. The influence
of strong topographic gradients is pronounced in PROMET’s
elevation dependent IDW-approach, such that the temper-
ature values are generally notably below the Hydrotel ap-
proach. Deviations in precipitation values are unambiguous,
yet within a narrow range. Still, all these differences impose
varying model behavior, especially during winter months,
when snowfall and snowmelt will take varying courses, and
thus adds to the uncertainty in such model chains.

Figure 4 illustrates that the Regional Climate Model is
not capable to sufficiently reproduce the current climate, but
underestimates the observed precipitation by 400–500 mm.
Much of this deviation can certainly be attributed to the
coarse spatial resolution of the CRCM (45 km) and the con-
sequent lack of consideration for the influence of alpine to-
pography and congestion. In addition, heavy convective pre-
cipitation, the dominant type of rainfall during the summer
months, can not be properly resolved at this spatial scale.
The lesser amount of rainfall and the lower temperatures pre-
dicted by the CRCM2 Past account for the significant de-
crease in evapotranspiration rates in both models. CGCM2
Future shows only little change in the course and sum of
precipitation, but much higher temperatures cause increased
evapotranspiration and dramatically low runoff levels.

The hydrological model performance is evaluated by sev-
eral flow indicators, such as the mean annual maximum flow
(MAMF), mean maximum seasonal flows (MF-DJF and MF-
JJA) or the annual 7-day and 30-day low flow (aNM7Q and
aNM30Q). Table 4 demonstrates the good accordance of flow
values for all models when exposed to meteorological ob-
servation data and CGCM2 Past. Only the low flow indica-
tors show noteworthy deviation, with PROMET and HSAMI
simulating less runoff then Hydrotel, due to its implemented
ground water storage concept.

The CGCM Future run reveals a much different picture:
The HSAMI model computes runoff far below plausible val-
ues. This can be attributed to the sensitive response of the ap-
plied evapotranspiration equation to higher temperatures. It
is clear, that a model of low physical complexity, which has
been calibrated to current climate conditions, is inadequate
for application in a climate change context. While PROMET
and Hydrotel show at least similar behavior, the amplitude of
deviation increases. Comparing floods of different annual-
ity, Fig. 5 depicts a gradual accession of difference between
model results using the historic and future climate data set.
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Table 3. Meteorological drivers for winter (DJF) and summer (JJA) periods from different meteorological sources (observation data, ERA-
40, CRCM2 Past (all 1971–2000) vs. CRCM2 Future (2071–2100)) as interpreted by Hydrotel and PROMET.

Observation ERA CGCM2 Past CGCM2 Future

DJF JJA DJF JJA DJF JJA DJF JJA
Temp [C◦]-PROMET −0.94 14.73 −5.71 13.2 −4.21 13.52 1.04 18.71
Temp [C◦]-Hydrotel 0.07 15.46 −3.10 14.11 −4.60 13.80 1.92 19.48
Precipitation [mm]-PROMET 214.2 510.24 244.21 284.19 162.20 249.11 177.09 222.90
Precipitation [mm]-Hydrotel 187.4 496.17 184.57 301.178 163.74 266.41 180.86 234.81

Table 4. Flow indicators [m3/s] for the evaluation of hydrologi-
cal (MAMF= mean annual maximum flow, MF = mean maximum
seasonal flow, a NM∗Q = lowest annual flow for a *-day period).

PROMET HYDROTEL HSAMI

MAMF [observation data] 98.2 93.0 93.1
MAMF [CGCM past] 31.1 32.0 28.8
MAMF [CGCM future] 28.3 17.7 5.6
MF–DJF [observation data] 59.2 84.3 91.5
MF–DJF [CGCM past] 20.3 19.6 20.0
MF–DJF [CGCM future] 48.9 19.0 11.4
MF–JJA [observation data] 241.8 303.0 259.8
MF–JJA [CGCM past] 65.6 57.7 49.9
MF–JJA [CGCM future] 36.1 24.5 6.4
aNM30Q [observation data] 6.3 7.2 8.2
aNM30Q [CGCM past] 1.8 5.0 2.2
aNM30Q [CGCM future] 1.1 3.9 0.5
aNM7Q [observation data] 5.0 6.5 7.2
aNM7Q [CGCM past] 1.4 4.8 2.0
aNM7Q [CGCM future] 0.6 3.7 0.4

The models of less complexity react more sensitive to the
changing climate conditions. This may be rated as an indi-
cation of the disadvantageous effects of model calibration,
resulting in a loss of predictive power for climate change im-
pact assessment.

3 Summary and conclusions

It is demonstrated, that the modified climatic boundary con-
ditions cause dramatic changes in hydrologic model re-
sponse. The lumped model HSAMI shows a tremendous
overestimation of evapotranspiration, while PROMET and
Hydrotel behave in a comparable range. Still, their signifi-
cant differences, like spatially explicit patterns of summerly
water shortage or spring flood intensity, highlight the neces-
sity to extend and quantify the uncertainty discussion in cli-
mate change impact analysis towards the remarkable effect
of hydrological model complexity.

The following observations are most noteworthy in this
study:
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Fig. 3. Measured vs. simulated mean annual runoff (1971–2000),
driven by observed climate data.

– The CRCM shows large deficits in predicting the cur-
rent climate, which is at least partly due to the coarse
spatial scale and the consequent lack of consideration
for topography and congestion effects. Further research
for downscaling climate model output and model inte-
gration is required for water resources management on
the catchment scale.

– The application of extensive model calibration to cur-
rent state climate and simple model schemes are inade-
quate to assess climate change impacts.

– The intercomparison demonstrates that uncertainties in-
duced by hydrological models can be in the same range
as the climate scenario inputs.

– The different degree of complexity plays a consider-
able role when evaluating respective model results – the
findings of this study confirm the assumption, that the
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Fig. 4. Comparison of spatially distributed water balance terms (the number beneath the figures indicate the mean annual spatial average and
relative deviations) resulting from the PROMET vs. Hydrotel model runs based on meteorological observation data, the CGCM2 Past and
the CGCM2 Future (in columns from left to right).
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Fig. 5. Comparison of simulated runoff for various flood annual-
ities, as calculated by the different models using climate forcing
from CGCM2 Past (solid) and CGCM2 Future (striped).

physical basis of process descriptions is indispensable
to maintain the predictive power of hydrological mod-
els.

The suitable level of complexity and the implications for
water managers remain to be discussed in detail for specific
application purposes. The consideration of the following
recommendations or future research will be useful to make
progress towards an effective adaptation of water resources
management to climate change:

– Improvement of processes understanding on the impacts
of climate change on hydrologic variables.

– Improvement of scaling procedures for the utilisation of
regional climate model (RCM) results in regional wa-
tersheds management and evaluation and improvement
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of transferability of existing bias correction methods be-
tween station measurements and regional climate model
outputs for future climate conditions.

– Utilisation and comparison of the existing databases
from global and regional climate models (GCM and
RCM) for the estimation of their respective intrinsic
variability and their contribution to the overall uncer-
tainty related to climate change projections.

– Development and application of ensembles of hydro-
logic models for an improved understanding of the im-
pact of the complexity of process descriptions on simu-
lated hydrological variables and predictive power; eval-
uation of intrinsic variability and uncertainties in hydro-
logic modelling.

– Determination of required hydrological model com-
plexity needed for climate change impact studies with
specific consideration of the available data for parame-
terization and of the required accuracy to develop spe-
cific adaptation options.

– Development, comparison and evaluation of watershed
adaptation options to climate change impacts (to ad-
dress water quantity and quality challenges, changing
land use patterns, dam management, irrigation needs,
etc.).
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