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Abstract. Standard practice of wave-height hazard analysis
often pays little attention to the uncertainty of assessed re-
turn periods and occurrence probabilities. This fact favors
the opinion that, when large events happen, the hazard as-
sessment should change accordingly. However, uncertainty
of the hazard estimates is normally able to hide the effect
of those large events. This is illustrated using data from the
Mediterranean coast of Spain, where the last years have been
extremely disastrous. Thus, it is possible to compare the haz-
ard assessment based on data previous to those years with
the analysis including them. With our approach, no signif-
icant change is detected when the statistical uncertainty is
taken into account. The hazard analysis is carried out with a
standard model. Time-occurrence of events is assumed Pois-
son distributed. The wave-height of each event is modelled
as a random variable which upper tail follows a Generalized
Pareto Distribution (GPD). Moreover, wave-heights are as-
sumed independent from event to event and also independent
of their occurrence in time. A threshold for excesses is as-
sessed empirically. The other three parameters (Poisson rate,
shape and scale parameters of GPD) are jointly estimated us-
ing Bayes’ theorem. Prior distribution accounts for physical
features of ocean waves in the Mediterranean sea and expe-
rience with these phenomena. Posterior distribution of the
parameters allows to obtain posterior distributions of other
derived parameters like occurrence probabilities and return
periods. Predictives are also available. Computations are
carried out using the program BGPE v2.0.

1 Introduction

Hazard studies require estimation of model parameters, but
normally estimation has to be carried out using few data.
This causes an important statistical uncertainty on the param-
eter values. However, engineering practice often ignores this
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uncertainty and describes hazard by point estimators of pa-
rameters. A consequence of this kind of practice is that, when
the data base is naturally augmented in time, the hazard pa-
rameters seem to change, and sometimes the change might be
large. A case like this occurred at the Mediterranean coast of
Spain. Several large storms occurred in the last 3 years with
a considerable damage for coastal infrastructure, and there-
fore some practitioners – and even authorities – have claimed
for updated wave-height hazard assessment to detect possible
changes.

Our aim is to show that, when uncertainty of the estimates
is taken into account, the detected changes on the hazard are
not significant up to now. Hence, there is no justification – at
least from our point of view – to attribute these last events to
hypothetical climate changes.

To attain an estimate of statistical uncertainty in the es-
timation of parameters we need a model for occurrence of
events and a procedure of estimation. We have selected the
most simple model for event occurrence, the Poisson process,
and magnitudes of events have been modelled by a General-
ized Pareto Distribution (GPD). Thus, we have to estimate
3 parameters (Poisson rate, and scale and shape parameters
for GPD) and a reference threshold. The used technique is
essentially Bayesian.

Section2 briefly describes the Poisson-GPD model. Sec-
tion 3 presents the Bayesian estimation. Finally, in Sect.4 we
present results obtained from wave-height data of Palamós
buoy.

2 The Poisson-Generalized Pareto Distribution model

The following model for events occurring in time and their
magnitude is standard in hazard analysis. Details can be
found inEmbrechts et al.(1997), Davison and Smith(1990),
andGrandell (1997). In a Poisson process, events are de-
fined as time-points. In our case, we call such events storms,
and they are defined as follows. A storm starts when the
recorded wave-height in the reference device (a recording
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buoy) is greater thanh0=2 m and has been less thanh0 for at
least 4 consecutive days. It finishes when the recorded wave-
height is less thanh0 and remains at this level for at least 4
days. We define the magnitude of the storm as the maximum
wave-height recorded during the storm and the occurrence
time of the storm is taken as the time instant of such a record.
Wave-height can be recorded in several ways. Here we adopt
the spectral wave-height,Hm0. It is evaluated integrating the
wave spectral density on positive frequencies and then taking
the square root. It is similar to the so called significant wave-
height, the mean of wave-heights conditioned to be higher
than the 2/3-quantile of wave-height for individual waves.

The number of storms in a given timet is assumed to be
Poisson distributed,N∼Poisson(λ), and, therefore,

P[N = n|λ, t] =
(λt)n exp[−λt]

n!
, n = 0, 1, 2, . . . , (1)

which defines a homogeneous Poisson process. For climatic
events, we relax the validity of Eq. (1) to values oft be-
ing an integer number of years to avoid seasonality effects.
The Poisson rate,λ, is the expected number of events in one
year; its inverse,τ=1/λ, is the return period of events in
years. In the process of estimation we use a new parame-
ter, z=− log10λ= log10 τ . The reason for it is a matter of
scale: we are mainly interested in very low values ofλ, or
very large values ofτ , and we normally discriminate values
of τ by its order of magnitude. This facilitates visualization,
computation and point estimation.

Each storm is evaluated by the maximumHm0 recorded
during the storm. Again, the scale ofHm0 seems to be
relative: a wave-height of 15.0 m is similar to another one
of 15.5 m; but 1.0 m is clearly double of 0.5 m; further-
more, a sea of 0m wave-height is an idealized, impossible
sea. These facts are accounted for by taking logarithms (in
base 10 for easy reading of labels). Accordingly, we define
X= log10Hm0 as a measure of storm-magnitude. Each event
has a random value ofX, which is assumed independent from
event to event and from the Poisson process. Also, we as-
sume that theX’s for different events have the same distribu-
tion functionFX. There are difficulties in identifying a model
for FX, but the Generalized Pareto Distribution (GPD) pro-
vides a flexible enough model, particularly when excesses of
X over a high threshold are considered, due to asymptotic
properties of such a distribution (Pickands, 1975).

The excess ofX over a reference thresholdu, defined as
Y=X−u given thatX>u, is modelled by a GPD, whose ex-
pression is

FY (y|ξ, β) =

(
1 +

ξy

β

)−
1
ξ

, 0 < y < ysup , (2)

whereξ is a shape parameter andβ is a scale parameter (Em-
brechts et al., 1997). The value ofξ defines the so-called
domain of attraction (DA). The Weibull DA corresponds to
GPD’s such thatξ<0 andysup=−β/ξ , i.e. the support ofY ,
and hence ofX, is limited with a finite upper tail. The Fréchet
DA is characterized byξ>0 andysup=+∞, and the support

of Y becomes infinite. GPD’s in the Fréchet DA have heavy
upper tails, i.e. very large excesses are likely, although cen-
tral values (mean or median) may be low. Finally, ifξ=0 and
ysup=+∞, the GPD belongs to the Gumbel DA and Eq. (2)
takes the limit form

FY (y|ξ = 0, β) = 1 − exp

[
−

y

β

]
, 0 < y < +∞ , (3)

which is an exponential distribution.
Once the parameters of the GPD have been estimated,

properties of the marked Poisson processes allow us to com-
pute all hazard parameters, like return periods or exceedance
probabilities in a defined lifetime. For instance,

τ(x) =
τ (u)

1 − FY (x − u|ξ, β)
, u0 ≤ u ≤ x , (4)

whereτ (x)=1/λ(x), is the return period of events for which
X is larger thenx. Also, non-exceedance probabilities of the
thresholdx≥u in a lifetimeL are

P[N(x) = 0|λ(u), ξ, β] = exp[−λ(x)L] , (5)

where λ(x)=λ(u)[1−FY (x−u|ξ, β)]. We should remark
that Eqs. (4) and (5) provide values of hazard parameters
assuming that the distributional parametersλ(u), ξ and β

are known. However, as they are estimates, statistical un-
certainty affects their values and, accordingly, hazard param-
eters, like those involved in Eqs. (4) and (5), become also
random. Bayesian estimation provides a way of dealing with
this issue.

3 Bayesian estimation

Once a suitable thresholdu has been selected, the estimation
of z=z(u)=− log10λ(u), ξ , andβ, is required. According
to the Bayesian paradigm, they are assumed to be random
variables. Their joint probability densities,fzξβ(z, ξ, β) and
fzξβ(z, ξ, β|D), account for their uncertainty before (prior)
and after (posterior) the data sample, symbolized byD.

Prior density represents our knowledge about parameters
previous toD. A further assumption is thatz(u) is indepen-
dent from(ξ, β), i.e.fzξβ(z, ξ, β)=fz(z)·fξβ(ξ, β). Bayes’
theorem is then

fzξβ(z, ξ, β|D) = L(z, ξ, β|D) · fz(z) · fξβ(ξ, β) , (6)

where the likelihood of the data can also be factorized as

L(z, ξ, β|D) = P[N(u) = n|z, t0] ·

n∏
j=1

fY (yj |ξ, β) , (7)

whereD has been made explicit as the numberN(u)=n of
excessesyj=xj−u overu.

The posterior density in Eq. (6) is itself the result of the
Bayesian estimation, but it is also the basis to obtain the dis-
tribution of hazard parameters, like return periods (Eq.4),
occurrence probabilities (Eq.5), or others. As an interesting
example, assume that the estimated GPD is in the Weibull
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Fig. 1. Storms at Palaḿos buoy. Vertical bars representHm0 in me-
ters. Last years, assumed more hazardous, are marked with circles.
First period, no markers.

DA with probability 1, i.e. the storm-magnitudeX is surely
limited byysup=−β/ξ . Sinceξ andβ are considered random
and jointly distributed as

fξβ(ξ, β|D) = fξβ(ξ, β) ·

m∏
j=1

fY (yj |ξ, β) , (8)

ysup is also random and can be described by its probability
density. A simulated sample ofξ andβ generates a sample
of ysup. From this derived sample, central tendency parame-
ters, like the median, provide point estimates, and the sample
quantiles determine credible intervals forysup. These type of
estimates of hazard parameters (return periods, exceedance
probabilities,ysup) will be used in Sect.4.

Prior density forz(u) has been assumed uniform for a very
wide range of values, andfξ,β has been assessed following
the methods developed inEgozcue and Ramis(2001), which
will be commented in the next section.

4 Case study: wave-height at Palaḿos buoy

Spanish port authority (Puertos del Estado, Spain) maintains
buoy networks to record sea-waves and has provided the
data used in this study. We have selected the buoy (Wav-
eraider) placed at (41◦49.8′ N, 3◦11.2′ E) near Palaḿos (Cat-
alonia, Spain). It records strong storms in the Eastern coast
of the Iberian peninsula, preferably caused by strong North
and East winds. Strong East winds are normally associated
with heavy convective precipitation. After isolating storms
as explained in Sect.2, available data span 16 years, from
May, 1988, to April, 2004. The maximumHm0 recorded was
6.26 m and it was recorded on 17 October 2003. Figure1
shows these data. From September 2001 onwards, events are
marked with circles. This period of 2 years and 7 months has
been perceived as more hazardous than previous years, and
we will compare the results for the first period of 13 years
and 4 months (called short data set, S-data) with estimations
obtained using the whole data set of 16 years (whole data set,
W-data).
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Fig. 2. Estimates of the mean excess over threshold. Circle marker,
sample estimate; thick line, median of the posterior estimate; thin
lines, 0.05, 0.25, 0.75, 0.95 quantiles of the posterior. Cross marker,
number of excesses over threshold, scale on the secondary axis.

A first step in the estimation process is to determine a ref-
erence threshold for excesses. Storms have been defined with
Hm0 greater than 2 m, i.e.X= log10Hm0>u0=0.3010. We
look for a reference thresholdu≥u0 such that excesses over
it fit reasonably well to the GPD. A way to check this fit is to
estimate the mean excess over a threshold. This mean excess,
as a function of the threshold, is linear whenever the distri-
bution of excesses is GPD with shape parameterξ<1. The
expression of the mean excess ofX overu1 GPD distributed
is

E[X − u|X > u] =
β + ξu

1 − ξ
, u ≥ u1.

This fact is used to graphically check the fit to the GPD.
The fit to a Weibull DA GPD is reflected in a negative linear
trend of the mean excess (ξ<0). Positive linear trends cor-
respond to Fŕechet DA. We have estimated the mean excess
over several thresholds. Figure2 shows the result of two pre-
liminary estimations of the mean excess for W-data: sample
average of excesses (Embrechts et al., 1997) and a prelimi-
nar Bayesian approach; the posterior distribution of the mean
excess is represented by the median (thick line, no markers)
and some quantiles to give an idea of the uncertainty of the
estimate (Egozcue and Tolosana-Delgado, 2002). As shown
in Fig. 2, both estimators, the sample mean and the median
of the posterior estimators, seem to be quite linear with in-
creasing thresholds, thus suggesting a good fit for a reference
threshold to beu=u0=0.3010. A similar result is obtained
for S-data.

Bayesian estimation allows us to define a prior density for
the three parametersz, ξ , β. This is the Bayesian way of tak-
ing into account available information about the process that
is previous to the data sample. As commented before,fz(z)

is assumed uniform in a wide range of values and, therefore,
its influence will be negligible. In turn, we put important
information intofξβ , most of it delimiting the admissible
domain of the parameters (Egozcue and Ramis, 2001). Fig-
ure3 shows contours of the selected prior. The domain of the
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Fig. 3. Contours of the flat prior density in the(ξ, β) plane used in
the estimation process. The boundary of the admissible domain is
based on prior information.

Fig. 4. Contours of(ξ, β)-posterior density for W-data. Probability
is well centered in the assumed admissible domain.

ξ parameter is completely placed in the Weibull DA, as we
assume the log-wave-height to be bounded. This assump-
tion is physically based: wave-height is bounded by wave
breaking, and wave breaking is connected to water-depth,
which is clearly limited. Also, and more drastically, the fetch
and the limited velocity of the wind cause boundedness of
wave-height. We also assume events withHm0 as high as
8.0 m should be possible at this buoy. Consequently, GPD’s
(Weibull DA) for which this value is not attainable have been
rejected. This determines the line in Fig.3 which defines
the lower boundary of the admissible domain. Furthermore,
Hm0>15 m has been supposed almost impossible, and we as-
sign a probability less than 10−5 to these events. This deter-
mines the curved boundary at the right of the figure. Simi-
larly, we assume that the probability of a storm havingHm0
greater than 5m is less than 0.1; this bounds the domain in
the upper values ofβ. Finally, we assume that the density of
excesses should decay more rapidly than a triangular proba-
bility density,ξ>−0.5.

Fig. 5. Contours of significance of the Kolmogorov-Smirnov good-
ness of fit test for W-data.

The prior model forξ , β is completed by fitting a flat den-
sity that is null in the above mentioned boundaries, as shown
in Fig. 3. It is approximately centered at the GPD assigning
probability 0.7 to storms withHm0 less than 3.0 m, a rough
prior estimate of the most credible event.

The(ξ, β)-part of the contours of the posterior density are
shown in Fig.4 for W-data. When using S-data, a similar fig-
ure is obtained, although it is a little bit wider (less data) and
the mode is placed at a slightly lower value of beta. The area
containing representative probability of the posterior density
is mainly determined by the amount of information, wider for
less data. The fact that the mode is not very close to the bor-
der of the domain points out that the (log)-data correspond
clearly to GPD’s in the Weibull DA (finite tail), in agreement
with our assumption.

In order to validate the fitting of GPD to the data, we have
tested the goodness of fit using the Kolmogorov-Smirnov
test. Figure5 shows contours for the significance of that test
for each(ξ, β) pair. The region with significance greater than
0.05 (good fit) covers the location of the posterior probability
shown in Fig.4, thus confirming a good fit for likely values
of GPD-parameter values.

Once the posterior density of the three parameters in
Eq. (6) has been obtained, we proceed to generate 1000 sam-
ples of(z, ξ, β). From these simulated samples several haz-
ard parameters can be estimated. We present a comparison of
exceedance probabilities in 50 years (Eq.5), return periods
(Eq.4) and upper limit of the support ofHm0 for both S and
W-samples.

Figure6 shows, for each threshold, the probabilities of ex-
ceedance in 50 years. A difference between the result for the
W-sample and the S-sample can be observed: medians of the
posterior exceedance probabilities apparently differ (curves
with triangles, W-sample; curves with squares, S-sample).
Exceedance probabilities seem to be higher for W-sample as
suggested by Fig.1. However, the median estimator for the
S-sample follows approximately the 0.25 quantile of the W-
sample. This means that, when taking into account the uncer-
tainty of both estimates, we are unable to clearly distinguish
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between the results from the two samples. Figure6 also
shows estimated probabilities of each threshold being attain-
able for the two samples. They also differ from sample to
sample, but differences are not substantial.

Figure 7 presents the estimated (log10) return periods
for the W-sample (median with triangles, quantiles without
markers). The increase of the statistical uncertainty withHm0
is clear from the separation of quantiles. These curves show
a tendency to verticality. The reason for this is that the esti-
mated GPD’s are in the Weibull DA, i.e. they have an upper
limit and values ofHm0 behind them are not attainable. The
estimates of the (log10) return periods (median; curve with
squares) for the S-sample is also plotted in Fig.7. As com-
mented for exceedance probabilities, these differences, being
appreciable, do not allow a rejection of stationarity of the ex-
tremal process.

Estimation of upper limit of a distribution is always dif-
ficult because estimators normally behave poorly. However,
Bayesian estimation allows to describe the statistical uncer-
tainty, showing the reasons for this bad performance. Fig-
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Table 1. Estimated return period in years (median and 0.05, 0.95
quantiles) for 7 mHm0 and for both S and W-samples.

threshold sample 0.05-quantile median 0.95-quantile

7.0 S 14.7 77.0 9720.0
7.0 W 9.8 34.4 498.0

ure8 shows the posterior densities ofysup obtained for both
samples. Again some differences can be observed; for in-
stance, the mode for the S-sample is slightly smaller than
that for the W-sample. However, both remain around 8.20–
9.05 m, which is a small difference when compared with the
dispersion of the estimated densities. A remarkable fact in
this estimation is that the mode ofysuphas probability∼0.85
of being attainable, as shown in Fig.6, i.e. the probability that
the true upper limit is less than 8.20–9.05 m is about 0.15.

All these estimates of hazard parameters describe the gen-
eral characteristics of the wave-height hazard in Palamós, but
one should take into account that the main characteristic is
the statistical uncertainty of the estimated parameters due to
the very limited span of the observation-time. In order to re-
mark this fact, Table1 gives the estimated return period in
years (median and 0.05, 0.95 quantiles) forHm0=7 m and
for both samples.

5 Conclusions

The Bayesian analysis of the extremal series of storms at the
Palaḿos buoy (16 years record) allowed to estimate both haz-
ard parameters and their uncertainty. The series was mod-
elled as a Poisson process, which events are storms, marked
by the maximum attained wave-height (spectral height). The
log10 wave-height was modelled by a Generalized Pareto
Distribution. Both information from the sample and a prior
were used. Estimated hazard parameters are affected by a
large uncertainty.
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The series from May, 1988 to April, 2004 (W-sample)
was compared to a shorter one (S-sample) with endpoint at
September, 2001. Observations in the last 2.6 years of W-
sample were perceived as more hazardous than those of the
S-sample. Differences confirming this impression have been
observed. However, these differences are not enough to sta-
tistically state differences between the two series. This is
mainly due to the above mentioned uncertainty affecting all
estimates.
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