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Abstract. Daily precipitation is recorded as the total amount
of water collected by a rain-gauge in 24 h. Events are mod-
elled as a Poisson process and the 24 h precipitation by a
Generalized Pareto Distribution (GPD) of excesses. Hazard
assessment is complete when estimates of the Poisson rate
and the distribution parameters, together with a measure of
their uncertainty, are obtained. The shape parameter of the
GPD determines the support of the variable: Weibull domain
of attraction (DA) corresponds to finite support variables, as
should be for natural phenomena. However, Fréchet DA has
been reported for daily precipitation, which implies an in-
finite support and a heavy-tailed distribution. We use the
fact that a log-scale is better suited to the type of variable
analyzed to overcome this inconsistency, thus showing that
using the appropriate natural scale can be extremely impor-
tant for proper hazard assessment. The approach is illustrated
with precipitation data from the Eastern coast of the Iberian
Peninsula affected by severe convective precipitation. The
estimation is carried out by using Bayesian techniques.

1 Introduction

The goal of hazard assessment is to estimate the probability
of occurrence of large events in a given lifetime. Hazardous
events due to natural or anthropogenic phenomena (precip-
itation, earthquakes, wind, eruptions, floods, fires, etc.) are
often modelled by marked Poisson processes: events are as-
sumed to occur as a point Poisson process in time, and inten-
sity of events is assumed to be random, independent from the
time-occurrence process and from event to event.

This simple model may be useful in situations when one is
interested in rare but dangerous events. However, the scarcity
of data leads to highly uncertain parameter estimates, a prob-
lem which can be overcome using Bayesian estimation to ac-
count for uncertainty. A standard model for large intensity
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events is the Generalized Pareto Distribution (GPD), leading
to a global model with four parameters: the rate of the Pois-
son process; the scale and shape for the GPD; and a reference
threshold. The reference threshold is assessed empirically
and afterwards validated. This assessment is a key point of
the analysis because a trade-off must be made between a high
threshold, guaranteeing a better model fit, and the number of
available data with intensity over it. The other three param-
eters are considered jointly distributed and estimated using
Bayesian techniques. Prior information is obtained from ex-
pert opinions or physical knowledge.

This approach was used byEgozcue and Ramis(2001)
to analyze precipitation in Eastern Spain using a database
covering 30 years (Romero et al., 1998). Heavy precipita-
tion is a serious weather hazard in the Valencia region, es-
pecially in autumn. Every year several rainfall events ex-
ceeding 100 mm daily precipitation occur. Strong convective
systems are responsible for it, and rainfall tends to discharge
over short periods. For example, in Gandı́a, on 3 November
1987, more than 800 mm were recorded in 24 h. Some of
these events produce floods and severe damage to properties,
infrastructure and agriculture, like the one that destroyed the
Tous dam (Valencia) on 20 October 1982. The main prob-
lem in the study performed byEgozcue and Ramis(2001)
appeared to be that excesses exhibit a heavy, unbounded up-
per tail, something contradictory with the naturally bounded
character of precipitation. Precipitation in 24 h must be lim-
ited due to several physical reasons: water content in the
atmosphere is limited, the movement of convective cells is
limited, and also the time of precipitation. These facts have
been neglected by most authors, e.g.Coles and Tawn(1996)
or Egozcue and Ramis(2001), for the sake of model simplic-
ity, because actual physical upper limit is not known.

While analyzing the underlying reasons for heavy tail be-
havior of precipitation, we realized that 3 mm and 6 mm pre-
cipitations are one double of the other, whereas 100 mm and
103 mm are approximately the same. In other words, the nat-
ural scale is relative and, thus, it claims for a logarithmic
transformation. To study the effect of scale transformation,
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Fig. 1. Observed rainfall at Vergel de Racons (Alicante, Spain),
1964–1993.

we selected a single rain-gauge from the data base by
Romero et al.(1998), located at Vergel de Racons (Alicante).
Only daily rainfall over 25 mm was extracted and, to ensure
independence between events, the maximum daily rainfall in
7 days was considered and consecutive maxima must be sep-
arated more than three days. The obtained set of events is
represented in Fig.1.

2 Peak-over-threshold hazard model

The Poisson point-process model used for natural event oc-
currences is assumed stationary, something contradictory
with the seasonal character of precipitation. However, if
attention is restricted to high intensity events, the periodic
component can be neglected. Rain events exceeding a cer-
tain thresholdu are modelled as points in time. The event
sizeX (daily precipitation in our case) is usually taken as a
random variable, independent from the point process itself
and from event to event. Thus, the number of eventsNu oc-
curring in a given arbitrary timet is governed by the Poisson
probability(n=0, 1, 2, . . .)

P [Nu = n|λu, t] =
1

n!
(λut)

ne−λut , (1)

whereλu stands for the rate of the Poisson process given
the thresholdu. The event sizeX is modelled only in the
upper tail of the distribution using the peak-over-threshold
method (Embrechts et al., 1997). It defines the excess as
Y={X−u|X>u} and uses the relationship(y=x−u>0)

1 − FY (y) = P [Y > y|X > u] =
1 − FX(x)

1 − FX(u)
, (2)

linking the distributions ofX andY . GPD is a simple and
parsimonious model for excesses, as it is the limiting distri-
bution for excesses wheneveru is high enough (Pickands,
1975). GPD is(β>0, y>0)

FY (y|ξ, β) = 1 −

(
1 +

ξy

β

)−1/ξ

, (3)

with ξ andβ the shape and scale parameters. The support of
Y is the positive real lineR+ for ξ=0, while it is bounded in
the interval[0, −β/ξ ] for ξ<0. Forξ=0, Eq. (3) takes an ex-
ponential form. Asymptotically, it approaches upper tails of
distributions with exponentially decaying upper tails, a case
known as the Gumbel domain of attraction (DA). The DA de-
fined byξ<0 corresponds to bounded variables and is known
as the Weibull DA. The Fŕechet DA is defined byξ>0 and
contains distributions with heavy upper tails. Natural phe-
nomena are physically bounded; thus, their intensity should
be in the Weibull DA. However, heavy tail distributions have
been reported, in particular for intense rainfall in different
climates (Coles and Tawn, 1996; Egozcue and Ramis, 2001).
This fact is usually considered to be due to lack of data, but
the reason might be simply an inappropriate scale. In our
case study, a logarithmic scale reveals a clear Weibull DA
for precipitation events.

The first step in the estimation is the selection of an ap-
propriate reference thresholdu. A graphical technique (Em-
brechts et al., 1997) can be applied attending to the fact that,
for any u′>u, the mean excess is linear with respect tou′

(ξ<1)

E[X − u′
|X > u′

≥ u] =
β + ξu′

1 − ξ
. (4)

Inspection of the mean excess function was performed for
the raw data (original scale in mm rainfall) and thelog10-
scale. Figures2 and3 show two estimates of the mean ex-
cess function. The lines with circle markers correspond to
the sample average excess over each threshold. Also a pre-
liminar bayesian estimate of the mean excess has been car-
ried out (Egozcue and Tolosana-Delgado, 2002). The me-
dian of the posterior mean excess is the thick line, whereas
thin lines give some quantiles of the posterior, figuring out
the uncertainty of the estimate. From Eq. (4), positive slopes
of the mean excess function indicate that the data set cor-
responds to a Fréchet DA distribution (heavy and unlimited
tails), whereas negative slopes suggest data from GPD’s of
the Weibull DA (limited support). In order to guess a refer-
ence threshold, we look for a value such that the mean excess
function can be assumed linear from this point on, according
to (4). We have selected the threshold in both cases trying
to fit a linear segment to the estimated mean excess func-
tion taking into account the uncertainty of the estimates. For
raw data, the absolute threshold selected wasu=45 mm, and
for log-transformed data it wasu=1.8, that corresponds to
63 mm.

3 Bayesian estimation of parameters

Given the absolute threshold, the remaining parameters are
estimated using a Bayesian approach (Egozcue and Ramis,
2001; Egozcue and Tolosana-Delgado, 2002). Bayesian es-
timation techniques allow combining two sources of infor-
mation: prior knowledge about the parametersξ , β andλu

(coded in a joint prior probability density) and the observed
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Fig. 2. Estimated expected excess over several thresholds for raw
data. Sample average excess, line with circle markers. Median of
posterior estimate, thick continuous line; quantiles 0.05, 0.25, 0.75,
0.95, thin lines. Number of excesses used in the estimation, line
with plus markers, labelled in the secondary axis.

Vergel de Recons. Log10-Expected excesses over threshold
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Fig. 3. Estimated expected excess over several thresholds for
log10-data. Sample average excess, line with circle markers. Me-
dian of posterior estimate, thick continuous line; quantiles 0.05,
0.25, 0.75, 0.95, thin lines. Number of excesses used in the esti-
mation, line with plus markers, labelled in the secondary axis.

values of the excess variableY (coded as the likelihood of
the data). Bayesian estimation consists in multiplying both
prior and likelihood to obtain the posterior probability den-
sity: the joint density of the three parameters after taking into
account the data. In this approachλu was assumed a priori
independent fromξ , β. As a consequence, the posterior den-
sity, conditioned to data, can be factorized into two factors

fξβλu(ξ, β, ξ) = fξβ(ξ, β)fλu(ξ) . (5)

Details of prior assessment were developed inEgozcue and
Ramis (2001) and Egozcue and Tolosana-Delgado(2002).
Prior information is mainly used to give bounds of the ad-
missible domain for the GPD-parametersξ andβ. We now
restrict our attention to the marginal joint posterior density
fξβ(ξ, β). Figures4 and 5 show contours of this density
when analyzing raw data andlog10 data respectively. Each
point in the plane(ξ, β) represents a GPD, and the value of

Fig. 4. Joint posterior density forξ andβ for raw data.

Fig. 5. Joint posterior density forξ andβ for log10-data.

fξβ(ξ, β) the relative likelihood of the parameters. Fig.4,
for raw data, shows the most likely points inside the Fréchet
DA (ξ>0), thus suggesting this DA for the data. A dif-
ferent conclusion is obtained forlog10-scale data (Fig.5)
where the most likely DA is clearly the Weibull DA(ξ<0).
There is a strong contrast with the theoretical situation: a
log-transformation of a random variable does not change
its DA. In fact, an infinite support remains infinite despite
of the transformation, and the Fréchet-Gumbel DA is trans-
formed into itself. Our data have been shifted from Fréchet
to Weibull DA.

To validate the goodness-of-fit of the different possible pa-
rameter combinations for GPD, a Kolmogorov-Smirnov test
was performed. Results are shown in Figs.6 and7.

These goodness of fit tests reveal that both raw-data and
log10-data fit quite well the GPD for GPD-parameters that
are likely after the data sample. From the point of view of
fitting to the GPD, there is no reason to prefer one of the two
data scales.
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Fig. 6. Kolmogorov-Smirnov goodness-of-fit testp-value for raw
data.

Fig. 7. Kolmogorov-Smirnov goodness-of-fit testp-value for
log10-data.

4 Rain hazard estimation

Simulated samples of(λu, ξ, β) can be obtained according
to their joint posterior distribution. These samples can be
used to approximate the distribution of any desired hazard
parameter. Here, attention is focused on the determination
of the return period for each precipitation level. Figure8
showslog10-return periods obtained for different daily pre-
cipitations, together with a 90%-predictive interval for both
raw-data andlog10-data. Note the high uncertainty: the
90%-predictive interval for the return period of a rainfall
of 250 mm is[101

; 101.8
]≈[10; 65] years, and the median is

101.25
≈18 years. These results are similar independently of

the scale used. However, when attention is paid to higher pre-
cipitation levels, there are some important differences. The
most important one is the fact that over 400 mm daily rainfall
the return period may be infinite within the 90%-predictive
interval, which would mean that such an event is practically
impossible. This is only seen when working in a log scale.
Also, for high thresholds, say 300 mm, results obtained from
raw data are rather conservative with respect to those ob-
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Fig. 8. Estimated quantiles of the posterior for the return period of
rainfall

tained with log-data. Return periods, and their predictive
curves, are assigned to higher thresholds of precipitation for
raw scale results than forlog10-transformed data. This is
a typical behavior of GPD when its parameters are in the
Fréchet DA.

5 Conclusions

Estimation of hazard parameters is highly uncertain mainly
due to lack of data. Using a Bayesian approach, this uncer-
tainty can be monitored as is shown in the study of a 30-year
rainfall series obtained from a rain-gauge at Vergel de Racons
(Alicante). Events were modelled as a Poisson process and
daily precipitation as Generalized Pareto distributed. Data
suggests using a relative scale for rain intensity, calling for
a log-transformation. Heavy tails for precipitation have been
repeatedly reported, but it stands in contradiction with the
plausible existence of a physical upper limit of the precipita-
tion. Precipitation in log-scale shows a clear Weibull domain
of attraction behavior as corresponds to an upper limited phe-
nomenon.
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