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Abstract. The problem of localizing perfectly electrical con-
ducting cylinders of arbitrary radius is dealt with in a two
dimensional geometry. A reflection mode multi-frequency
multi-bistatic configuration is considered, and a linear inver-
sion algorithm based on the truncated singular values decom-
position is proposed. The algorithm is validated against sim-
ulated data, and the effect of errors in the knowledge of the
cylinders’ radius is discussed.

1 Introduction

The reflection mode configuration is used, in non destructive
testing and subsurface prospecting, in every circumstance
where the investigation domain is accessible from only one
side. For instance, this happens in the detection and local-
ization of buried pipes or in NDT of rebars in concrete, and
in general in ground penetrating radar applications. In this
paper the problem of localizing objects by measurements of
the electromagnetic field scattered when observed in reflec-
tion mode is considered for Perfectly Electrical Conducting
(PEC) cylinders.

The localization problem has been already addressed in the
hypothesis of “small” (with respect to the wavelength) scat-
terers (Pierri et al., 2005, and references therein). Otherwise,
a “shape” reconstruction inverse problem can be formulated
(Soldovieri et al., 2005, and references therein).

Here, we propose an algorithm for the localization of PEC
circular cylinders whose radius can be comparable or larger
than the wavelength. The algorithm is based on the inversion
of a linear operator, strictly related to the one used in (Pierri
et al., 2005). The fact that the scatterers are not “thin” results
in the presence of a frequency dependent factor outside the
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integral operator linking data and unknown. Such a factor de-
pends on the shape of the scatterer section, that is a circle in
the present case. If the cylinder’s radius is not known an er-
ror in localization arises and how it affects the reconstructed
image is also discussed.

The paper is organized as follows. In Sect. 2 the problem
is formulated and the inversion algorithm is introduced. In
Sect. 3 the dependence of the inversion result on the correct
knowledge of the cylinders’ radius is discussed. In Sect. 4
a numerical analysis is performed and results obtained by
simulated data are shown. Conclusions follow.

2 Formulation of the problem

Let us considerN infinitely long circular PEC cylinders il-
luminated by TM polarized plane waves. We want to find
the positions of the centers of the cylinders, that are assumed
to be embedded within a homogeneous medium of known
permittivity εr and residing within the investigation domain
D. Furthermore, we assume that all the cylinders have the
same radiusa. The problem at hand is a two dimensional
one. From now onwards we indicate the centers of the cylin-
ders’ circular cross sections as cylinder’s positions. The field
scattered by the n-th cylinder can be written as (Harrington,
2001)

En
s = −E0

+∞∑
p=−∞

(−j)p
Jp(ka)

H
(2)
p (ka)

ejp(θn−θi )H (2)
p (krn) (1)

whereE0 is the incident field amplitude at the cylinder posi-
tion, k is the wavenumber,θi is the incidence angle,Jp(·) is

the Bessel function of orderp, H (2)
p (·) is the Hankel function

of orderp and second kind, (rn, θn) denote the polar coordi-
nates of the observation point in the local reference system
of the n-th cylinder (see Fig.1).
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Fig. 1. Geometry of the problem.

The scattered far field, in a gobal reference system (r, θ)
whose origin is located somewhere inside the investigation
domainD, can be easily derived from Eq. (1) by translating
the origin of the system and approximating for large argu-
ment the Hankel function. It results:

En
s = −E0

√
2j

πkr
e−jkr

+∞∑
p=−∞

Jp(ka)

H
(2)
p (ka)

ejp(θ−θi )·

· e−jkr0n[cos(θ0n−θi )−cos(θ0n−θ)] (2)

wherer0n andθ0n denote the position of the n-th cylinder and
the factore−jkr0n[cos(θ0n−θi )] accounts for the incident field
phase at that position. Then, if the mutual scattering between
the cylinders is neglected, the field scattered by all the cylin-
ders is given by the superposition

∑N
n=1 En

s :

Es = −E0

√
2j

πkr
e−jkr

+∞∑
p=−∞

Jp(ka)

H
(2)
p (ka)

ejp(θ−θi )·

·

N∑
n=1

e−jkr0n[cos(θ0n−θi )−cos(θ0n−θ)] (3)

Our aim is to determine the position of the scatterers starting
from the observed scattered field.

However, it is not convenient to deal with the problem us-
ing directly as unknowns the coordinatesr0n and θ0n, be-
cause the relationship between data and unknowns would be
strongly non linear. In order to linearize the problem we
introduce the auxiliary distributional function (Pierri et al.,
2005):

γ (r) =

N∑
n=1

δ(r − r0n) (4)

wherer is the position vector andr0n is the vector indicating
the position of then-th cylinder in the reference plane.

Now, the problem at hand can be recast as the inversion of
the following linear operator equation:

Es = F(ka)

∫
D

γ (x, y)e−j (ux+vy)dxdy (5)

where

F(ka) = −E0

√
2j

πkr
e−jkr

P∑
p=−P

Jp(ka)

H
(2)
p (ka)

ejp(θ−θi ) (6)

and u=k(cosθi− cosθ), v=k(sinθi− sinθ), the cartesian
coordinatesx, y have been used inside the integral and the
sum has been truncated according to the ruleP≈ka (pro-
videdka�1) (Brancaccio et al., 1998). The functionγ (r) is
the unknown to be recovered. Its maxima give the searched
for positions. Before going on it is worth to make two com-
ments about Eq. (5):

1. the integral operator appearing at the second member is
the same studied in (Pierri et al., 2005) for the localiza-
tion of thin scatterers;

2. the information about the ’size’ of the scatterers stands
as a frequency dependent factorF(ka).

According to Eqs. (5) and (4), we solve the problem of de-
termining the location of the cylinders from the knowledge
of Es in three steps. First,Es is normalized to the factor
F(ka). This step requires that the radiusa is the same for all
the involved scatterers and that it is known. We discuss in the
following about such point. Second, the distributionγ is ap-
proximately reconstructed, which amounts to invert a linear
integral operator. This task is accomplished by means of the
Singular Value Decomposition (SVD) approach, that allows
to regularize the problem by truncating the expansion accord-
ing to the uncertainties level (TSVD inverse scheme). Third,
the total number of scatterers and their unknown positions
are determined as the locus of points where the retrieved dis-
tribution achieves its maxima. In order to find such points
a threshold is introduced below which the reconstruction is
discarded. In particular, the threshold is chosen using the
results reported in (Liseno et al., 2004).

As far as the first step is concerned, let us point out that the
normalization of an operator to a frequency dependent factor
could change the singular values behavior, thus affecting the
performances of the inversion algorithm in dependence on
the threshold level chosen for the SVD truncation (chosen in
connection with the signal to noise ratio, ultimately) (Persico
and Soldovieri, 2004).
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Fig. 2. Reconstructed positions of four cylinders of radius
a=0.1λmax (the actual positions are indicted by a black star).

3 Discussion

Let us analyze the importance of a correct knowledge of the
radiusa in order to localize the scatterers.

Actually, the assumed value ofa influences the normaliza-
tion factorF(ka), whose expression is given in Eq. (6). In
the present multibistatic configuration(θ−θi) has a constant
known value and the normalization factor depends only on
ka, i.e. on the scatterers dimension with respect to the wave-
length.

The function F(ka) is nothing else that the scattered
field by a single circular cylinder along theθ direction
for plane wave incidence from directionθi . As well
known (Tyras, 1969) the Watson transform and asymp-
totic arguments allow to approximate such a factor as
the Geometric Optics reflected field so that it is propor-
tional to −E0

√
a/2 ∗ cos(1θ/2) exp[+j2ka cos(1θ/2) −

jkr] where1θ = θ − θi −π is the offset between the obser-
vation and the incidence direction. Therefore, the amplitude
of F(ka) is constant and the phase shows a linear frequency
behavior. While the influence of the phase function is dis-
cussed in detail hereafter, the independence of the modulus
of F(ka) from the frequency makes the SVD decomposition
of the full operator (5) equal to the one considered in (Pierri
et al., 2005) with the same singular values behavior.

Once the normalization has been performed, if the radius
value is not exactly known, a residue phase factor exp(jk1r)

is present in the operator linking data and unknown (note
that1r can be both positive and negative). In this case (see
Appendix A) the integral kernel in Eq. (5) can be written as:

ejk1re−j (ux+vy)
= e−j [u(x+1x)+v(y+1y)] (7)

Fig. 3. Reconstructed positions of two cylinders of radius
a=0.5λmax (the actual positions are indicted by a black star).

where

1x=−
1r

2(1+ cos1θ)
[(1+ cos1θ) cosθi− sin1θ sinθi ] (8)

and

1y=−
1r

2(1+ cos1θ)
[(1+ cos1θ) sinθi+ sin1θ cosθi ] (9)

Therefore such an error affects the localization of the
cylinder by an amount connected to1x and 1y. In Ap-
pendix A we show that, for each scatterer, instead of a peaked
function in the reconstructed image, an arc of circle of radius
|1r|/

√
2(1+ cos1θ), centered on the actual scatterer posi-

tion, should be expected. In particular, if the radiusa is un-
derestimated1r>0 and the reconstructed image appears as
an arc convex with respect to the measurement domain; in-
stead, in case of overestimation1r<0 and the reconstructed
image appears as an arc concave with respect to the measure-
ment domain.

4 Numerical results

We consider a realistic geometry in which data are collected
in a reflection mode under a multi-bistatic configuration.

A stepped frequency illumination is considered, so that

k ∈

[
2πfmin

√
εr

c0
,

2πfmax
√

εr

c0

]
where fmax and fmin are the

maximum and minimum frequency respectively, andc0 is
the speed of light in a vacuum space. In the following ex-
amples we usefmax=2 GHz, fmin=400 MHz, with a fre-
quency step of 50 Mhz,εr=4. The investigation domain is
D = [−1.5λmax, 1.5λmax] × [−1.5λmax, 1.5λmax] in thex, y

plane, whereλmax is the maximum wavelength calculated in-
side the background medium (λmax=37.5 cm in the exam-
ples at hand). The measurements are taken over an arc of
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Fig. 4. Reconstructed positions of two cylinders of radius
a=1.5λmax (the actual positions are indicted by a black star).

Fig. 5. Reconstruction result for a cylinder of radiusa=10 cm when
a wrong valuea=1 cm is assumed in the inversion algorithm (the
actual position is indicted by a white star).

π/2 rad and the offset between the source and the receiver is
π/20 rad, i.e.θ−θi=π−π/20 rad.

In all the following examples, the SVD is truncated to the
singular value index 10 dB lower than the maximum one.
Moreover, the reconstructed functions are normalized to their
maximum value and the final images are not depicted under
a threshold level 0.21 times the maximum one.

First, in order to show the effectiveness of the proposed
algorithm, we assume that the radiusa of the cylinders
is known exactly. In Figs. (2), (3), (4) the reconstructed
positions of cylinders of radiusa=0.1λmax, a=0.5λmax,
a=1.5λmax are shown respectively. As can be seen, the ac-

Fig. 6. Reconstruction result for a cylinder of radiusa=10 cm when
a wrong valuea=20 cm is assumed in the inversion algorithm (the
actual position is indicted by a white star).

Fig. 7. Reconstruction result for two cylinders of radiusa=0.7λmax
and a=1.2λmax, located at(x, y)=(−0.75λmax, 0.75λmax) and
(x, y)=(0, −1.2λmax) respectively;a=0.7λmax is assumed in the
inversion algorithm.

tual positions (indicated by a black star) are well recovered.
As an example of the influence of the correct knowledge

of the cyilinders’ radius, discussed in the section above, the
reconstruction relative to a cylinder of radiusa=10 cm ob-
tained by assuming a lowera=1 cm and a highera=20 cm
values are shown in Figs. (5) and (6) respectively. As it has
been anticipated, the reconstruction is an arc convex with re-
spect to the measurement domain when the radius is under-
estimated, concave in the opposite case.
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We consider now the case in which the scatterers have dif-
ferent radii. In this case, the algorithm can provide the cor-
rect localization of the cylinders whose radius is equal to that
used in the normalization factorF(ka), while, following the
arguments discussed above, we expect that the position of
any other cylinder should be reconstructed as a circular arc.
Such a result is confirmed by the example shown in Fig.7.

5 Conclusions

In this paper we have performed the extension of an algo-
rithm for localization of thin PEC cylinders to a collection
of identical cylinders of arbitrary radius. The algorithm has
been validated against simulated data and the effect of errors
in the knowledge of the cylinders’ radius on the reconstructed
images has been examined.

We considered the case of far zone scattered field in reflec-
tion mode configuration and limited extension of the obser-
vation domain, that is preliminary to subsurface prospection.
The extension to dielectric objects, near zone observation and
half space geometry is under development.

Appendix A

Let us define the unitary vectors:îθi
=(cosθi, sinθi),

indicating the incident field propagation direction,
î⊥=(sinθi, − cosθi), orthogonal tôiθi

in thex, y plane, and
the vectoriD=(1+ cos1θ, − sin1θ) (where thex and y

cartesian components are indicated in brackets). We can
express the variablesu and v (introduced in Eq.5) as a
function of1θ :

u = k(1 + cos1θ) cosθi − k sin1θ sinθi, (A1)

v = k(1 + cos1θ) sinθi + k sin1θ cosθi, (A2)

that can be rewritten, by exploiting the above defined vectors,
as:

u = kiD · îθi
; v = kiD · î⊥, (A3)

Let us now write the productk1r as a function of the vec-
tor iD :

k1r =
kiD · 1riD

|iD|2
(A4)

Then, we can project each vector at the second member of
Eq.A4 onto îθi

andî⊥. So, we have:

(kiD · îθi
îθi

+ kiD · î⊥ î⊥) · (1riD · îθi
îθi

+ 1riD · î⊥ î⊥) =

= u1riD · îθi
+ v1riD · î⊥ (A5)

Fig. A1. Expected displacement in the reconstruction in presence
of a phase error.

where the expressions Eq.A3 for u andv have been used.
Finally:

k1r − ux − vy = −u(x −
1riD · îθi

2(1 + cos1θ)
)−

− v(y −
1riD · î⊥

2(1 + cos1θ)
). (A6)

We can conclude that, in presence of a phase factork1r,
a displacement with respect to the coordinatesx, y is experi-
enced. Such displacement is given by

1x = −
1r

2(1 + cos1θ)
iD · îθi

= −
1r

2(1 + cos1θ)
[(1 + cos1θ) cosθi − sin1θ sinθi] (A7)

and

1y = −
1r

2(1 + cos1θ)
iD · î⊥

= −
1r

2(1 + cos1θ)
[(1 + cos1θ) sinθi + sin1θ cosθi] (A8)

That are the expressions reported in Eqs.8 and9. Such
displacements represent the parametric equation of a circle
of radius|1r|/

√
2(1+ cos1θ) in thex, y plane, at variance

of the incidence angleθi . In Fig. A1 an example of such a
curve is plotted for1θ=π/6 andθi ∈ [−π/4, π/4], in the
case1r>0.
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