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Abstract. Existence and repeatability of tornadoes could The quest for theoretical modelling of tornadoes has a
be straightforwardly explained if there existed instability, re- long history with remarkable number of publications (see,
sponsible for their formation. However, it is well known that for example, reviews biposwel and Burgesg 993 and by
convection is the only instability in initially stable air, and the Bengtsson and Lighthi{1982). A noteworthy work ofZa-
usual convective instability is not applicable for these phe-volzhenskii (2002 describes sinking process of a rotating
nomena. In the present paper we describe an instability irvertical column into underlying heavy fluid under action of
the atmosphere, which can be responsible for intense vortangent stress at the upper surface. The results show, that the
tices. This instability appears in a fluid with Coriolis force equilibrium state of rotating layer of viscose fluid losses its
and dissipation and has oscillatory behaviour, where the amstability under temperature inversion (i.e. stable) conditions.
plitude growth is accompanied by oscillations with frequency Formation of the tornado column is a result of complex in-
comparable to the growth rate of the instability. In the paper,teractions between different components of air velocity and
both analytical analysis of the linear phase of the instabil-thermodynamic parameters, and can be a response of stably
ity and nonlinear simulation of the developed stage of thestratified air to vertical or horizontal air motion, which may
air motion are addressed. This work was supported by thédnave other nature as well. For example, regular motion in
RFBR grant no. 09-05-00374-a. thunder cloud, detected by Doppler raddRagmussen et al.
1994 Wurman 2002, are commonly accepted to appear due
to the stream flow in the upper layers of the atmosphere.
Morgulis and YudovicH2001) described ideal liquid flow
through a two-dimensional area, assuming the normal veloc-

Atmospheric bhenomena like tornado and tropical ¢ Cloneity and curl of the velocity at the boundaries are not equal
P P P y 0 zero. They have shown that there is no stationary or os-

zg\gerl biige'?;?;:éve_lryh:’:zde'iids’tshgwf\e/gtr’at;itnt,)[a;'(;zclsrgggillatory solution in such flow. Instead, all solutions of the
y : 9 roblem infinitely grow. In other words, in such system the

data on these phenomena; however theory of these phenonﬁﬁflowing fluid flux generates unlimited rotation of the fluid.

ena is not yet developed. From observations one knows, . . .
. . : In 2002 authors also investigated a problem of a stationary
that tornado is a rotating funnel-shaped cloud which stretches

down from the storm-cloud base. Tornadoes can either reachOtating structure in a linear approximation. The develop-

. ’ : ment of the structure was assumed to be associated with air
the_ earth surfa(_:e Wh'ch stqps furthe_rpropa_gat_lon, orcan havﬁwotion in the cloud layer above the system and was intro-
a f|xepl shape in th_e air V.V'thOUt visible I|m|t_at|ons. Despite duced into the problem as an external parameter responsible
of their moderate d|me.n3|ons they are cqn3|dered as the mo%r boundary conditions between the cloud and the stable air
dangerous atmospheric phenomena. It is known from obser;

vations that tornado appears in initially motionless air Con-beIOW the cloud. Mathematically the problem was based on
vection is the onl kngv?/n instabilit il’)l/ initiall motioﬁless hydrodynamic equations for stably stratified air with inho-

o > Only X y y m -~ ._mogeneous boundary conditions at its upper edge. The rota-
air; however in the simplest case the convective instability it

. ) o tion velocity (i.e. the amplitude of the corresponding Bessel
is not applicable for description of tornadoes. ; .
mode) of the system appears to be inversely proportional to

the viscosity, and since the air viscosity is small the toroidal
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In this view, investigation of the full system of hydrody-  System 4) can be reduced to the following third order
namic equations is necessary. In the present paper we dequation:
scribe unstable solution of linearized hydrodynamics equa- »
tions, which can be responsible for tornado formation. WeY1,2,3 — @bc y1,23 =0, (%)
:?r:glsz;hse?;egg:]gﬁgfsla,;'gﬂ!tﬁ;?ig?ugﬁie;; ;iﬁ?ﬁg;r{;ﬂnd the golution describes an instability with the growth rate
drodynamic equations shows that the amplitudes of the pa_equal tovabe.

rameters become saturated by Bessel modes of higher order. As !t has been mentioned above, convec_tlon |_nvolv_es n-
teraction of the temperature and of the poloidal fields in the

feedback loop. The only third field that can be introduced
into the system is the toroidal field (since the potential ve-
locity field and the pressure field describe sound waves and
Typically the term “instability” describes the fact, that a so- almost never are considered separately). Therefore, in order
lution of linear equation has an exponentially growing solu- {0 find a new instability we have to add the toroidal field into
tion. Usually instability appears through interaction of two the system. However, for real atmosphere the toroidal field
fields that appear in a feedback loop, increasing each othefnters the system together with Coriolis parameter and the
like convection instability. See, for exampleandau and Lif-  €quation of the type5 takes the form:

shitz(1987%. In the simplest case, there exists a figi¢t) in- "

creasing another fielgy(1), while the second field increases Y123 T abcy123=0, ©)

the first one. Mathematically this can be described by therpe three independent solutions of this equation are:
following system:

2 Oscillatory instability

1(1) = a ya(t) y1 = yo1exp(—vabct) Ko
{ g(” = Zﬁ(f)’ (1) y2 = yooexp(t - Vabecos(n/3) +1 - i/abesin(r/3)) (8)

y3 = y03€XP(7 - Vabe cos(r/3) — 1 - iNabe sin(w/3)), (9)
here we assume the coefficiertsand b are positive, and . _ _ s
primes in the left-hand side of the equations stand for thewherei stands for the imaginary unit=—1. One can see,

time derivatives. From Eq1f one straightforwardly gets the that two unstable solution$) and Q) have oscillating be-
second-order differential equation: haviour. A similar conclusion can be drawn for higher order

system of equations.

y/l/,z —aby;2=0. (2)
Solution of this equation 3 Analytical solution
y1.2(t) = Crexp(Vabt) + Caexp(—+vabi), (3)  One can expect that the complete system of atmosphere hy-

) . ) drodynamic equations of the fifth order (with respect to time)
has one increasing term with growth rag:b. In case of  gigq may contain an effect shown in the previous section.
convective instability in incompressible fluiddndau and e complete set of equations include Navier-Stokes equa-
Lifshitz, 1987) the two fields involved in the feedback 100p oy continuity and equation for entropy. In the initial state
are the tem.p(_er.ature and Fhe poloidal v_elocny fle_ld (more deype thermodynamic parametdfg(z), Po(z) andpo(z) are as-
tails on definition of poloidal and toroidal velocity compo- g med to follow adiabatic (neutral) stratification. Using rep-
nents will be presentled in Sect. 3). The .|nstab|I|.ty grow'Fh resentations for pressure= P+ Py and densityo—=po+p1,
rate depends_on vertmgl_temperature prpﬂle gradient, _Wh'chlvhereP1<<P0 and p1< po, andw for velocity, and eliminat-
can be negative or positive, corresponding to convection ofng the temperatur@, one can obtain a linearized hydrody-

internal wave, respectively. namic system fop, Py, andps:
Similarly, in case of three fields in a feedback loop there

also can appear a situation when the existence of one fieldv VP g
. . . . . — — VA — 4+ — 2Q = 1
increases the second field, existence of second field increasey v 00 + 00 pre; +20e; x v =0, (10)
the third, and the existence of the third field increases the first
one. Mathematically this model can be described by threedp1 .
. . X L — 4+ poV-v =0, (11)
first-order equations, with more intricate feedback loop: ot
(1) = JaP d c
y1(t) = a ya(t), 1_ 201 2 = v PAP 2y A 12
VE() = b ya(0), @) 5~ C g TCypov: X, AP =X A (12)

y3(t) = cy1(0), _ : : - S
Herer is the time,g is the gravitational acceleratios, is

where we assume, b andc to be positive. a vertically directed unit vector along theaxis, X2 is the
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Coriolis parametery and x are the gas viscosity and ther- dispersion relation between horizontal wave numbend
mal diffusivity, respectivelycp andcy are the heat capac- growth ratex:

ities of the air at constant pressure and constant volume, 5 4 3 2 _

is the sound velocity. We can uge=pRT in the ideal gas Jox™ + Jax” "+ fox" frx + fo=0. (19
approximation, and consider linear initial temperature profile
dTp/dz=To(T'+y). Here'=—g/(cpTo) is the neutral gra-
dient in adiabatic atmosphere. As it was already mentionedfs(k) = K4,

above, positive values of>0 correspond to internal waves, ¢, (x) = £8,(3 + «),
and negative valueg<0 correspond to convection. |: 2

where the dispersion relation coefficients(k)- - - f5(k) as
functions on the wave numbeérare presented below:

Using axial symmetry of the problem we introduce cylin- f;(k) = g_2
drical coordinates with the axis directed along the gravita- ¢
tional force. It is convenient upyan et al. 1992 to use the 2
gas velocity representation as a sum of potential, toroidal andf (k) = |:g—2(2 + k) + 3c%k% + 2gy + (292)%(1 + /c)] kv
poloidal velocity fields: ¢

+(29)% + gy:| k*+c2kO+3kB V2 (1+x),

+ k031 + 3¢),
3
| . P e
here the potentials of the mentioned field¢t, r), v (z, r) =\"2
ando(z, r) are scalar functions of time and coordinates, and

r=re,+ze,. From Eq. (3) one can show, that in axially- |:gy+ 2(1+ 2K)JFK(29)2+3czkz:| 82

vV=VO®+Vx(e¥)+V x(Vx(e9)), (13)
+ gyk® + gy(2§2)2> K4+ k20t +

8
symmetrical vertically-homogeneous problem the potential c2
field ® corresponds to the radial velocity, the toroidal figld 3 .
stands forthe a2|_muthal velocity, and the poloidal figltbr 7 ) — [% + 2ayk® + 8°( > ) (c — 1)] i
the vertical velocity component. c c
Applying (V-), (e; - Vx), and e, - VxV x) operators to
Eqg. (L0) one can obtain equations for velocity potentials. In + (

2
% + 62k2> k003,
these variables the systefdf—(12) becomes: ¢

Here we have introduced the ratio of specific heats

ae _UAA¢+ﬂ+£[i&+@} k=cp/cy, and assumeo=y.
dt po ¢ Lpo 0z o Equation (9) has been solved numerically for typical
& 9p1 _ Earth’s atmosphere parameters. Figutesnd 2 show real
+ 00 07 +aALY =0, (14) parts of all five solutions of the dispersion relatioh9)
for different values of the temperature stratification gradi-
ALY —VAAY —2QA | D — ZQAJ_a_(p =0, (15) enty. One can see that for unstable negative stratification
ot 9z (¥ <0) in Fig. 1a there is only one positive root (convection),
other negative curves correspond to the second “convective”
IAA ¢ g APl g root, sound waves (two curves) and potential vorticity (fifth
5y VAAALYt+ 3 o %Aﬂ’l curve). For neutral=0) stratification Fig1b two convec-
9 tive solution transforms into two unstable (oscillating) solu-
+2QA; — =0, (16) tions. At small positive stratification in Fi@a the (oscilla-
0z tory) instability still exists though the growth rate and wave
dp1 g 3d number diminish with increasing, and after certain posi-

§ . . .

+ po;Auﬁ =0, 17) tive value of the temperature gradient all the solutions be-
come stable (internal wave), as one can see inZigSound
waves and potential vorticity are almost unchanged for dif-

oP1 00 | o 0P cp ferenty.

— = — —A — x—AP . . . .

ot ¢ ot +cveo 0z L¢ Xcv 1 It is noteworthy, that the behaviours of the dispersion
+ xcPApy =0, (18)  curvesat small wave numbers for the case of neutral and neg-
ative stratifications are different. One can see in Eggand

2a that these dispersion curves have different derivatives at

k—0. Below we performed analysis of these solutions in the

—— + poAD — 'OOC_Z

Jt 9z

whereA=V? is Laplace operator in cylindrical coordinates,

andA | is the radial part of this operat(n'.zch/cv-RTo is v

the sound velocity in the air. vicinity of k=0. _
After axially-symmetrical Hankel transforms with respect _FOF wave number equal to zero the EG9) essentially

to horizontal coordinaté (r, 1)=F'(t) [ F, (r)Jo(kr)rdr and simplifies and becomes:

Fourier transform for time[ F (1) exp(xt)dt, one obtains  ¢?x®+(g2+4Q%c?+gc?y)x3+(g3y +4Q2%c%gy)x = 0, (20)

www.adv-geosci.net/15/57/2009/ Adv. Geosci., 15,&3-2009
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Fig. 1. Five roots (only real parts are shown) of dispersion relation
(19), corresponding to the full system of axially symmetric verti-
cally homogeneous hydrodynamic Eqs0)-(12) for negative and
zero values of temperature gradient (a) y=—1x10">m~1 has
one positive (red) root(b) y=0 has two positive (red and blue)

roots. Other (negative) roots correspond to the second convective

root, sound wave and potential vorticity.

and its roots are:

X12 = %i/gv,
g2
X3,4 = +i ) + 492,
c
x5 =0.

Detailed analysis of Eq.10) with neutral stratifica-
tion y=0, shows, that in vicinity ofk=0 this equa-
tion can be rewritten asi(x, k)x3+B(x, k)k?=0, where
A(0, 0)=g%+(29)%c?#0 and B(0, 0)=g2(1—k)v(22)%50.
One can conclude, that the expansion of the growthxate
function of the wave number should be performed in pow-
ers ofk%/3 (seeArnold et al, 1988 for more details). The

following approximate values for the growth rate can be ob-

tained:

o]
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Fig. 2. Same as in Fig. 1 for positive values of temperature gradient
y: (@) y=1x10"°>m1 still has positive solutionis (red and blue
curves), andb) y=3x 10-5m~1 all solutions are decreasing.

vG

e A BT 21

3(g2 + 46292)2 + ( )
where we have introduced parameteeG (c, g, k, 2):

G = (2+1)g* + (4+x)c2g%(2Q)% + (1+k)c*2Q)*.  (22)

Note thatG does not depend on viscosity.

The wave numbeknax corresponding to the maximum
growth rate of the instability accurate within two terms of
expansion21) is

- 1/4
o [@+2eetc - vee?]” 3
max — 8])2G )
and the growth ratemax within the same accuracy becomes:
- 1/2
e = De2eo2e? + 2eo? | ”
Xmax = 18G .

It should be noted that the Coriolis parameter for tornado
vortex does not mean the Earth rotation, but the rotation of
the mother cloud, which can significantly exceed the natural
Earth’s rotation. The effect of the rotation (i.e. the Corio-
lis parameter 2) of the mother cloud on the growth rate is
shown in Fig.3. One can see, that the instability appears only

www.adv-geosci.net/15/57/2009/
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Fig. 3. Maximum wave numbekmax(2) as function of the Cori- :‘ 0 \\
olis parameter 2 for different values of viscosity (assuming 4 \

o . -1x10 1 \
v=y). Other parameter values for atmosphere conditions with neu- . \
tral (y=0) temperature profile are=335m/sg=9.8 M/&, k=1.4. 2%10™- Exact solution \

- - - Approximation (2 terms) !
-3x1 o"‘0 — —
2x10 K [m] 4x10

in the presence of rotation, and fex>0.02s™* the growth
rate is almost constant. The chosen range bktween 10
and 100 /s is the typical value of turbulent viscosity in the _ ) _ _
atmosphere. Fig. 4. Comparison of the exact solution obtained numerically

At large values of the Coriolis parameter the expression(sond line) with the approximate theoretical curve (dashed line),
L for the casega) y=0 and(b) y=10"°"m1.
(22) can be further simplified

(25) and @5) is that the viscosity appears in the numerator of

1
(K—l)gzv ® k23 (/<+l)vk2
2 3 ' the fractions in the RHS of these equations, we will discussed

x1(k) ~ [ 2

: . this later.
leading to maximum wave number The used approximation of neutral air stratification makes
—1 2 the overall dispersion relation rather simple, though one has
kmax ~ —3\/j . (26) to use inconvenient power expansitit® series. Analytical
8(k + 7Y cv analysis of stable air stratificatign>0 is more relevant and

Using numerical values=+/x RT =3354 m/s for the sound makes possible the expansion in terms of more natdral

veIociFy at'T'=280 K,v=x=100nt/s for'\./iscosity anq ther- X1 = Agk? + Aok? 4 -+ | (28)
mal diffusivity, k=cp/cy=1.4 for specific heats ratio, and
¢=9.8 m/< for the gravitation acceleration, which are almost however, the expressions for coefficierts and A, are far
invariable in low atmospheric layers, one can estimate themore complicated and are not presented here. The compari-
maximum wave numbeimax(v)=1/(23,/v) m~%, that cor-  son of the approximatior2g) and the exact numerical solu-
responds to the radiugmnax = 90,/v m. tion for the stable temperature profile is shown in Hig.

Under these assumptions the maximum growth rate of the

instability takes the form: .
4 Effect of nonlinear terms

k—1 g
Xmax = ,/ BetDc (27) Linear analysis presented in the previous section properly de-
scribed the beginning stage of the instability, while in its de-

Substituting the values for the sound velocity and the gravi-veloped stage the nonlinear terms of Navier-Stokes equations
tation acceleration yieldgna®2.916x103s 1, must be taken into account. The obtained growth rates and
Though according ta24) and @7) the growth rate does not  typical wavelengths provide an estimation for the typical size
depend on the air viscosity, this fact appears as a result of thef the structure, since the main impact into the entire system
used two-terms approximatior2) and @5), respectively.  should come from the mode with maximum growth rate. At
Figure 4a compares the approximate theoretical cu® (  the developed stage, account of nonlinear terms is especially
and the exact solution obtained numerically frob®)( An- important, since the interaction between the Bessel modes
other noteworthy result of the growth rate expressid@i§ ( will describe the fine structure of the motion. Keeping in

www.adv-geosci.net/15/57/2009/ Adv. Geosci., 15,&3-2009
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mind a big amount of nonlinear terms, one should consider 10000
numerical simulation as the best opportunity for further anal-
ysis. 5000

The nonlinear terms appear due @@V)v in (10), and q) 0
V(pv) in (11). Nonlinear term in equationl@) have been
neglected, due to small deviation of temperature profile from -5000-
adiabatic profiley<«TI. In the system4)—(17) additional
terms: -10000-

1 ad\2\ 19 [[av\? -15000+
AL (( 3r> ) rar (( ar ) ) - (149 200004 —— : :

5 10 15 20 25
Time [h]

2 (0d)\ {02y 2y \ [ 02
"—;(ﬁ oz ) \az )\
(22 (2) -2 () (2
“Nor J\ar3 ) r\ar )\ or2

ady 9 Indeed, four Bessel modes can successfully describe the
AL ((a_r) E(A“}))) - (183 entire system near the threshold radius. One can notice satu-
ration of the amplitude growth caused by non-linear interac-
r1 g ) N <3<1>> 9 <ﬂ) (17a  tionwith four modes taken into account in F@. In the pic-

L+ (A o+ A )2 . ! ! !
00 + c? o or ) ar \ po ture, black line corresponding to the first mode in a system of

Fig. 5. Numerical simulation of nonlinear Navier-Stokes equations,
) one Bessel mode. One can see, that the solution tends to increase

(159 infinitely.

four Bessel modes is compared to the solution of linear equa-

eelri:t)iobr?sag(i?nd '2 Itirr]fjrliiZI Zarrl?msé(:reso?tfhtgerg%:;?%:gﬁ%on for the first Bessel mode (red line). At the initial stage
a ) gcy Y y P both solutions are almost identical, however, interaction of

sume the solution as a series of orthogonal Bessel function ' . . ]
. : : L e first (growing) mode with other (decreasing) modes re-
Each mode can be described in a linear approximation, an . oo :
Sults in a balance and thus forms an equilibrium amplitude.

depe_ndlng on the Wav_elength wil elthe_r decay or grow, 8C~4 0 can see the oscillatory behaviour of the solution even in
cording to {9), and this has been confirmed by numerical its developed stage. Figuéb shows time dependence of the
imulation described below. ‘ )
Sm_?_tr:e system of Egs. 14)-(18 has been solved second Bessel mode. It is expectable, that the energy transfer
. . — . : between the modes should be directed from increasing modes
nFumttarlcallyﬁm Ja kcyllnde;]r OfF ra;hqu,f assurr;]lngf (i.e. modes with small wave numbg) to decreasing modes
th(r’f')ElZCIi) (1) Jo ;)r)’ \g ereJ S gn S |?cr e?c Of (with biggerk). In equilibrium the energy transfer rate from
e fields®, ¥, ¢, Pr and ps, Jo Is Bessel function o increasing to decreasing modes is compensated by the decay
zerot.h_ order; is the wavelength found from the boundary rate of the latters. Mathematically, an unlimited number of
condition Jy(k; k)=0, and subscript corresponds to the available higher-order (decreasing) modes suggests that they

i-th mode. The amplitudeﬁ(r) have been calculated using - .
Runge-Kutta 4-th order method with time step #8. The fs;r?#gStizbellglgotr?ﬁzlljﬁgtr;is any driving mechanism and thus

results have shown that the growth rate of each single Besse
mode is in agreement with the analytical analy4@) (
It is noteworthy that there is a threshold value of the cylin- 5  Conclusions
der radiusk;;, corresponding to negligibly-small growth rate
value. A solution in cylinder with radius exceeding the The presented model of growing oscillations in atmosphere
threshold valuer > R, will exponentially grow, while any  shows a general possibility of existence of unstable motion
smaller radiusk <R;, will lead to a vanishing solution. The in stable air stratification. Equatiod9) gives the relation
value of Ry, corresponds to the threshatgd,, which is the  between the growth rate and the wave number. The fastest
solution of equatioryp(k)=0 from (24). growing mode corresponds to the maximum of the function
However, one can see in Fif.that accounting only one x(k), thus one can estimate the typical size of the formed
single Bessel modes with nonlinear terms does not providestructure. The main parameter responsible for the instability
stabilization of the solution. After certain time (approx. is the initial temperature profilg.
T=27 h) the amplitude growth is faster than exponential The analyzed analytical solutions in two different approx-
(Fig. 5 shows only the poloidal field). Therefore one can imations =0 andy >0) show the following two main fea-
conclude, that further expansion of the modes is required. tures of the motion. First, the maximum growth rate is almost

Adv. Geosci., 15, 5763, 2009 www.adv-geosci.net/15/57/2009/
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dence is omitted. A real tornado in its upper part is usually
) funnel-shaped, and at its lower part the vortex touches the
| ground, therefore the vertical dependence cannot be omitted.
H Since all hydrodynamic equations together with all the pa-

200{ — Linear \ 'H’ | (a
—— Non-linear |' ‘ U

100+
rameters proved to be relevant, the problem appeared to be
rather complicated even in the linear stage. Numerical simu-
lation of the nonlinear approximation of a single Bessel mode
-100- have shown that the growth rate in not limited by nonlinear
|M terms. However, accounting several modes (we used up to
-200- 1 ‘ four modes, three of them with negative growth rate) satu-
H ‘ M ‘\\ rates the oscillations and shows a reasonable mechanism for
0O 2 4 6 8 10 12 the amplitude limitation, through energy transfer to decreas-
Time [h] ing modes. Similar mechanism of energy transfer is usually
used in turbulence theorypnin and Yaglom 1967. Ac-
counting sufficient number of decreasing modes one can ex-
4] pect to saturate the amplitude of the stable solution. How-
(b) ever, accounting a big number of modes in numerical simu-

2- lation requires big computational resources.
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