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Abstract. An analytical model of water waves generated by (Monin, 1999, and the conformal mapping theory are ap-
the wind over the water surface is presented. A simple modyplied for the waves modelindNgkrasoy 1961).
eling method of wind waves is described based on waves However, despite such an intense intellectual attack there
lengths diagram, azimuthal hodograph of waves velocitiesstill exist issues not well understood in the wave motions the-
and others. Properties of the generated waves are describesky. One of them is the theory of wind waves on the wa-
The wave length and wave velocity are obtained as functionser surface which is usually investigated based on the ideal
on azimuth of wave propagation and growth rate. Motion-fluid theory and neglecting the viscosity. In other cases nu-
less waves dynamically trapped into the general picture oimerical, experimental, semiempirical, probabilistic, statistic
three dimensional waves are described. The gravitation forcenethods are used in investigations. All researches assume
does not enter the three dimensional of turbulent wind wavesthat the wind waves are gravitational. Therefore, nowadays
That is why these waves have turbulent and not gravitationathere does not exist any analytical model of the wind waves
nature. The Langmuir stripes are naturally modeled and exwith account of the fluid viscosity.
istence of the rogue waves is theoretically proved. The idea of modeling of the wind waves neglecting the
influence of viscosity between the water surface and the air
wind seems hopeless since the wind is the generator of these
1 Introduction waves. However, there is a strong reason to neglect the vis-
cosity, and it is due to the internal structure of the Navier-

Great variety of wave types in liquids have been studiedStokes equations. Indeed, in order to take into account ana-
since Newton, Bernulli, Euler, Lagrange, Laplace, Cauchyylytically the wind influence on the water surface one has to
Airy, Lamb, Poincare, Lyapunov and many others. The role@ssume that the location of the main masses of air driven by
of the waves in the fluid dynamics theory is well under- the wind is high enough as compared to the surface wave-
stood. Remarkable advantages for the hundreds of years hal@ngths. As a matter of fact this condition is always satis-
been achieved in understanding of the wave properties. Théed in nature. To model the wind waves in viscous fluid one
main directions of research in the fluid wave motions covershould also assume that the waves do not affect the water
(though not limited to) gravitational waves, internal waves, currentin the deep stream, existing in the sea. In other words
ship waves, tidal waves, acoustic, shock, solitary, convectivéindisturbed deep water flow in the first approximation should
waves, etc. be located infinitely far from the water surface. And again,
The investigation methods are not as diverse as the wave the first approximation the fluid should be considered in-
themselves. The basic tools of investigation are the statisticinitely deep. And the reason why the wind waves cannot
methods, approximation calculus and classical Euler equaP® described on the base of the Navier-Stokes equations is
tions (Lamb, 1932 Stocker 1957. Not many specialists tha_\t the Nawer-_Stokes equations do not have a stationary so-
use the model of viscous fluid in their investigation (see,lUt'On for the fluid flow in the half-space under influence of

for example Sajjadi 1999. Sometimes Lagrange variables stationary tangent stresses on its surf&aehin et al, 1963
Kondrat'ev et al. 1990.

i The idea that conventional Navier-Stokes equations are
Correspondence tP. B. Rutkevich not complete has been mentioned before. For example,
BY (peter@d902.iki.rssi.ru) (Birkhoff, 1960 mentions that the NavierStokes equations
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analytical model of turbulent wind waves over the water cur-
rent is remarkably simple, since the waves are described
through elementary relations. Moreover, the model predicts
existence of the new waves: motionless and barchan’s waves.
The model also describes the choppy sea the kind of waves
that up to now have no analytical description.

2 Basic dispersion relations

As it has already been mentioned above, Navier-Stokes equa-
tions do not have a stable solution in a semi-space with tan-
gent stress on the surface. However, if the deep water current
and high air flow have different directions there should exist
a stable solution, responsible for wind-generated waves on
Fig. 1. Air photograph of the sea surface at strong wind. The light the surface.

Langmuir stripes and the dark stripes of wind wave troughs can be We start from the Navier-Stokes equations with turbulent
observedTitov, 1969. resistanceGill, 1982 Lamb, 1932 Kondrat’ev et al. 1990
Struminskij 1969:

describe well enough incompressible flows of viscous flu-a—v+(V~V)v = —E+vvzv—x(v—V)+g, Vv =0,(1)
ids, to which belong usual gases and liquids at speeds con® P
siderably smaller speed of sound. However description ofwhereV is the fluid velocity at infinity, and: is turbulent
turbulent flows requires accurate use of statistical analysisesistance of the medium. Equatiot) has to be applied
at high mathematical level. Therefore, instead of use of thewice, first for the air in the upper half-space, and second for
NavierStokes equations at formulation of obvious boundarythe water in the bottom half-space, and satisfy the boundary
problems (for example, the problems of stationary current)conditions between these two regions.
it is necessary to address directly to the physical validity for  Introducing Cartesian coordinatésc’y’z’, with axis Oz’
statement of the appropriate boundary problem. In our modetiirected against the gravity forge and axisOx’ directed
we use the turbulent resistance to resolve this problem. along the direction of the constant air velocity vector at
General structure of the surface waves generated by the’— oo. Density, kinematic viscosity and turbulent resistance
wind can be understood even from a photo image of the se&f the air denote ag1, v1 andk1, respectively, finally veloc-
surface Fig (Titov, 1969. One can notice distinct direc- ity and hydrodynamic pressure of the airds(x’, y', 7', t’)
tions of bright Langmuir stripes and the direction at which andp}(x’, ", z’, t'). Similarly, water is described by the pa-
the waves do not propagate. Motionless waves correspond teameterso, v andxk, (0>>p1), velocity v’ (x, y', 2’ t'), pres-
the zero wavelength in the corresponding direction. Theresure p'(x’,y’,Z',¢') and atz’——oo moves with constant
fore, there is a closed curved line the tangent to which isvelocity Vo=Vo(i cosa + j sina), wherei and j are the
aligned in the direction of no wave propagation (since theunit vectors alongdx’" and Oy’, respectively. The angle
waves are confined such a curve does not go to infinity). Thds counted from vectoV; towardsVo (-7 <a<m). The
chords lengths of such a line counted from the point of con-water-air interface plane is=¢'(x’, y’, t'). Therefore, to de-
tact are equal to the length of wind waves. It is appropriate totermine the parametedy, p;, v, p’ and¢’ we have Eq.1)
call this curve as wavelength diagram along the azimuth ofwith isotropic turbulent resistance for air:
the chosen diagram chord. It is appropriate to call this curve ,
azimuth wind waves velocity hodograph along the a2|mutha_ + @' V)V = Vpl + v V2 —
of the chosen hodograph chord. ot’ o1

The Langmuir stripes represent motionless waves since
they are in fact motionless on the water surface. These waves
“propagate” (i.e. are oriented) in the direction orthogonal to and water:
the Langmuir stripes. It is clear then that along the orien- , ,
tation of the motionless waves (ortho | to the L — "= _E ¢ 2y k(@ — —

gonal to the Langmuir +@ -V = Vp +vVa —k(@ — Vo)
stripes), the velocity of the wind eaves equals zero. o' p

The velocity hodograph and the wavelength diagramofthey . * — 0 (¢ < o,
wind waves really exist and will described later in this paper.

The model of the wind waves is based on the Navier-Stokesupported by the fluxes continuity conditions at the air-water
equation with isotropic turbulent resistance. The presentedoundary;’=¢’ (i.e. equality of their velocities and stresses

—k1(v'1 -V —g, V-v'1=0 (>¢),
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along the tangent direction), kinematic condition,thatthein—Z —0: oi—p +2@ . Zﬂ _p
terface points do not leave this interface and conditions atin-~ ~° P dz 0z
finity. This system of equations with the mentioned boundary
conditions has a stationary solution at the boundary, o8 (1 B ﬂ) oo P11 <1
KKV T pw
v'1 = Vivio, v = Vivo, pj = po— p1g7, P P
P =po—pgz, ' =0,vi0=i®+ jVU, vog=ip+ ji, _g. du_ 0w oUW ,
0z 0x 0z 0x
—constz=2 /% A= |2
R T o0 oo _ (37 oW
Vocosae  §(Vpcosa — Vi) 9z 0y 0z oy
o= 9 Le, (<0, (2)

Vi V(1 +6) whereV, = /kv.

Omitting the terms of the order aﬂ(e) and havmg calcu-
latediz, ¥ andw in order to determiné®, U, V, W we obtain
a nonhomogeneous boundary problem. We are not going to

investigate this problem since the water waves are more in-

Vosina  §VpsSina
= - €, (z<0),
V=T Tvars s @59

Vi Vpcosw —Vi _,,

=V V.d+0) . (@>0), teresting then those in the air over the water surface. We are
* * looking for the solution of the matrii, 7, w, p, £} in the
Vo sin J form
:O—OZG_AZ’ (z > 0), 3:w. ) _
V=1 +9) PV (@, 5., p, &) = (u(2), (), (@), p(2), g} =l
At large wind V1 or water Vp velocities the solution2) ¢ = const )
loses its stability. Therefore we are looking for the solution
of the problem different from (2): where i= /—1.

~ o~ After substitution into (4) one obtains the following dif-

r_ ’r_ —

vi=Vi(o+ V), v =Vi(votv), V={UV, W} ferential equations for unknown variablesv, w and p (for
simplicity we used a vector representation for three variables

v=1{i, 0.} pj=po—ped + PrP i
P1=PpPo— p18 * and three equations):

p/zpo_ng/-i-P*l;, ;‘/:Z*E(-x’ y’t)s (3) i(m(p_i_n‘(p){u’v’ w}—'—w{(p/’ ‘(p/’o}z

oy, 2y =Ly WK/, =1k — —{imp, inp, p'} + L{u, v, w}, (6)
P = p1vik, Py = pvk, Z, =/v/k. . . d? )

e = 1L =P * / w' +imu +inv =0, (z=0), L_F—k2 1+ie,

All the functions marked with tilde+) (exceptz) depend
onx,y,z ands. New variables3 will convert initial equa- k = vm2 + n2.
tions into a dimensionless form, After linearization, the ini-
tial equations and limiting conditions (2) for new variables Here the prime stands for derivative with respect.tdvul-

V,v, P, p andz satisfy the following equations:

R 3V+ 8V+\1/8V+ d©+ dw Wl -
ot ax dy dz dz N

=-—VP+ V2V — A%V, VV =0 (z > 0)

Bv Bv 1” + + Ldyr
ot dz I g )P
=—Vﬁ+V2v—v, Vv =0 (z <0), R:i
vy
a -
z:O:—€+g0§ 1//—§=u~)=W

ot dx ay

i=U,9=V,V=0(z=400), v=0 (z = —
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tiplying the first component of the vector row (6) by,ithe
second by#n and add together the first two components of
the obtained relation. Then taking into account the continu-
ity equation we obtain

k2p = Lw—(mo+ny)w'+(me"+ny"yw = 0, (z < 0)(7)

Now calculate the derivative’ and put it equal to the same
derivative from the third row of the vector Eq. (6). This gives
the equation for determination the component; <0):

[L —i(mg + ny)](w” — kK*w) +i(mg” + ny")w =0 (8)

Multiplying the first component of the vector equation (6)
by n, the second by: and subtracting the first from the sec-
ond yields(z<0)

[L —i(me +ny)](nu — mv) = (mg" — my"w,

Adv. Geosci., 15,45-2008
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mu +nv = iw’ (9) where&1, & are the roots of characteristic equation:

The limiting conditions for the Egs. (8), (9) are obtained £* — (¢ + k%&£ + gk? +i18B =0 (13)
by substitution of the solution (5) into the limiting conditions

(4) ate=0: with negative sign of real parts. Substituting velocity (12)

into the boundary conditions (11) a0, one gets a system

of two linear homogeneous algebraic equations for variables
C1 andC». The determinant of this system is must be equal
to zero, thus giving following dispersion relation is obtained

itme +ny —c)=w, ol =p—2w,
u +imw =1 +inw (z=0)

So(nu—mv)' =0 (z=0) andnu—mv=0 (z=—o00). Exclud-

ing the parametet from the two remained limiting condi-
tions and using the continuity Eq. (6) and the Eq. (7), one
obtains the limiting conditions for the Eq. (7), that is formu-

late the boundary problem for determining the amplitude of — Jok2 +isB _ m
the vertical velocityw(z): §182 \/ﬁ, &1+ & q +k“+ 2582,

(L +me +ny — 2ikDw’ = (mg' +ny' + k20 )w, (z=0), Reyz>0.

(&1 — ED{[(b — ©)(q + 3kD)E160 — I8B(EL + &2 — 1)+

+k2(q — k?)] — ko (51 + £2)} = 0,

(14)

The most important is the situation whép=&> since
in the case of multiple roots of the Eql3) the distur-

The amplitudes ofi, v, p and¢ are not necessary for ob- pances (12) penetrate into water deeper than the distur-
taining the dispersion relation. These amplitudes can be depances of two different root. At =&, instead the re-
rived later from the nonhomogeneous problem for the Eq. (9)ation (12) one has to usev=(C1+C>z) expé1z), (z <
after the component is found. The dispersion relation con- (), which maximal value modulating the oscillations is at-
nects real wavenumbessandn with the complex frequency  tained bellow the surface, rather than on the surface as
¢, it is derived from the spectral problem (8),(10), that canin the case of relations (12). The roots of Eq. (13) are
be solved approximately using the following idea. The equa-equal at(g+42)2=4(gk?+is5B). Therefore the parameter
tion coefficients (8) on account of Eq. (2) are linear functions (; =42+ ./i5 3, (Rey/z>0)). Taking into account the pa-
of explz), (z<0). The parametet=z'./ic/v for finite z' is  rameterq definition (11) one obtains the complex oscilla-
large, since the turbulent resistance is strong during the wav@ion frequency (5): (c=c,+ic;=b—ix(i—sgnB))/€8|B])
formation. So the exponents in the Eq. (8) coefficients aresgnc=1 atx>0, sgrix)=—1 for x <0). Hence the frequency

the pronounced interface layers. For derivation of the disper, and the growth rate; of the waves (5), corresponding to
sion relation these layers are taken into account by replacethe dispersion relation §i=&, become

ment the exponents with units. In the boundary conditions
(20) which define the dispersion relation, the influence of thec, = b F v 26 Bsgn, ci =—-1+~25B.
layers is taken into account more precisely. The so approxi-

w' +kKw=0(z=0), w=0 (z = —00). (10)

(15)

mated spectral problem (8), (10) takes the form

& &

=k’ +1—ic—isB 11
q ) (11)

[(L — 2k? — ib)w’ + i8Bw](b — ¢) + ik’cw =0

w +kKw=0 (z=0), w =0

=—00

_ dmV1+ (mcosa +n sina) Vg

b= ,
A+ 8)/kv
mV1 — (m cosa + n Sina) Vo
B=
A+ 8) kv

Solution of the Eq. (11) vanishing at>—oo has the form
w = Crexpé1z) + C2expézz), (z <0), (12)

Adv. Geosci., 15, 3545, 2008

Here one has to use simultaneously either the upper or the
lower signs.

One can see, that there is no gravity fogcm the disper-
sion relations 15), thus the waves described by relatidm)
can be called as non-gravitational. Analysis presented in the
rest of this work is based on the relatidiby.

3 Length and velocity of the wind waves

Introducing the azimuth of the wave vectok={m, n} with
respect to the wind velocity 1, one obtainsn=k cosf,
n=k sind, and the relationsl(l) for » and3 can be rewriten
as

_k«/Zsin(Ger) 253—k‘/65i”(’3_9)
N N

A = §2V2 4 28ViVpcosa + V¢,

C = 45%(VZ? — 2V Va cosa + V@), (16)

www.adv-geosci.net/15/35/2008/
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sinf = 26(V1 — Vpcosa) 0sf = 28V sina
B JC ’ - Jc
. 8V1+ Vpcosa Vo sina
siny = —————, = —,
VA VA
Now from (15)
o VAsin@+y) ¢ +1 .
A —0),
K~ (Ato)Jiv o Sgnsing —6)
) 2
k= (1+6)(Cl+1) \/I(]). (17)
VClsin(B - 0)

39

B = 25[V§ — (1 - §)V1Vocosa — V7],

, T
Ox = ESQF(K) — 0k,
. K (V1 + Vgcosa) — 25(V1 — Vo cosa)
Sinfg = s
~VAK?2+2BK +C
Vo(K + 268) sin
costy = o(K + 268) sina

~ JAKZ+2BK +C
B? — 4AC = —45°(1 4 8)2VEV¢sinfa < 0.

Here |Zk| is the maximum velocity of the-waves with

The waves defined by the expressions (17) can be called agspect to the azimuth at the fixed valuek, correspond-
x-waves, since they have turbulent and not gravitational naing to waves propagation in the directiée=0;. At K=0

ture (i.e. the gravity forcg does not appear in the formulas
(17)). To describe the-waves let us abandon the tradition

the growth ratec;=—1. It follows from (15) and (L6)that
in this case ethek=0 (there is no wave motion), &=g

and investigate their properties not as function of the waveor 6=8+m. The uncertainty zero divided by zero Et=0,

numberk, but as a function of the growth rate, or, more pre-
cisely, as a function of paramet&r=c;+1. The K depen-
dence ofk is presented in (17). The valu&s<1 correspond
to the decaying waves, the valué=1 corresponds to the
neutral waves, and & >1 there exist non decaying waves.
In order to obtain the dimensional velocity from Eq. (L7)
and the wavelengthx of x-waves the ratia;, /k sould be
multiplied by the velocity scale/kv, and the dimensional
wavelength 2/ k by the length scalg/v/«:

_ VAsin®G +y)  /Csing —6) (18)
K= 1+8K
Ak = Lg|sin(B —0)|, Lk = 2nyC (19)

kK(1+8)K2

The formulas (18) and (19) describe the wave front veloc-
ity and the wave length at any directiérwith respect to the
wave velocity. The formula (18) is convenient for descrip-
tion of the waves velocities at large values of the absolut
value of dimensionless characteristik€sof the growth rate
c;. It follows, for example, from formulas (18) and (19) that
at large values ofK | the decaying waves and the non decay-
ing waves move at the same velocity symmetrically with re-
spect to directio®=(xr/2)—y, in which the velocity of the
waves is maximal. Note that the wavelength§)(of these
waves are not symmetric with respect to this direction. If the
parametet K | does not increase then instead d8)(for the
velocities description-waves it is more convenient to use
another expression. Let us use i8) the definition of the
parameterst, C and the angleg, y from (16). Then

(K — 2)Vycost + (K + 25)Vgcod6 — )

. (20
VK 1+ 8K (20)
vk = Tk Sin@ + 0k) = |Zk|cogb — 0}),
VAK?2+2BK +C
« = , (21)

1+8K

www.adv-geosci.net/15/35/2008/
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0=pB, 0=+ in the formula (19) is prescribed the value
zero, since any-waves atk /=0 at the direction®=4,
0=pB+m have zero lengths. The direction in which the de-
veloped water waves have zero lengttigf is not seehare

well known from the air photography observationstgv,
1969. This direction corresponds to the orientation of the
wind waves troughs. Formula$g) define thes dependence

of this orientation on the values and directions of the wind
and water flow velocities. Note that the directiehsg+m/2

of the waves propagation of the maximal azimuth wavelength
and the direction®=g, 6=+ in which the wavelength
equals zero do not depend on the growth rate. These direc-
tions do not depend even on air and water physical properties.
At K=0 the velocity 21) and the lengthX9) of the«-waves

go to infinity. There takes placen internal resonancef

the growth rate of the-waves with the turbulent resistance
frequency (in this case =—«). If one expresses the param-
eter K2 with the use ofLx and the formula19), then the
approach of the parameté&r to zero means just increase of
the maximal wind waves length.

4 Wave lengths diagram

The formulai x =L g | sin(6—pB)| (see Eql9) describing the
wind wave lengths for all values of the anglemeans that
the wave lengths diagram is a pair of equal circles. Let us
mark an arbitrary pol® on the plane=0 and fix a counting
out directionV 1 of the azimuthd. For simplicity the rays
on thez-plane are marked by their azimuths. The circles of
the wind wave lengths diagram touch the straight tres,
0=B+n (Fig. 2).

The centers of the wave lengths diagram cirdeand C’
are located on the straight lie=p+37 at distance} L
from the diagram circles point of contact.

It follows from the formula {6) that the angle8 does not
depend of the wind waves growth rate and thegatoes
not depend of the parameter d (see Eqthat is, does not

Adv. Geosci., 15,45-2008
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Note also that the wind wave lengths have all the prop-
0 erties of circle chords. In particular the sum of wave lengths
squared in two perpendicular directions equals to the squared
maximal waves length:

32(0) + 22 (9 + %) —12.

5 Wind waves velocities azimuth hodograph

From formulai x =% sin(6+0x) (see Eq21) one can see,
that the wind waves velocities diagram is also a circle. We
are going to call the wind waves velocities diagragimuth
hodographof the wind waves.

5.1 Motionless wind waves

The azimuth hodograph circle of the wind waves touches the
straight line9=—0g, 6=—06k+m. Therefore at the direction
6=—0k the wind waves velocity equals zero.

In the orthogonal directiord=(rr/2)sgnK)—60x (see
Eq.21) the zero velocity troughs are located. We will call the
waves with zero velocity amotionlessvaves. In the motion-
less wave’s troughs foam, driftweed and other minor material
from the water surface is accumulated. Thereby the motion-
less waves are marked on the water surface as motionless
light stripes called “the Langmuir stripes”. The motionless
waves are seen on the water surface air photographs at strong
wind (Fig. 1). We do not consider in this paper the Langmuir
circulations as it was made in the pap@érdik and Leibovich
V1 andVo. It means that the straight in@s=p, §—p-+ 1979, though it should be noted, that our approach is more
andé=pB+17, characterizing all (by the growth rate) wave preferable, since we use both the water current and the wind

2 cyrrant and not just the surface stresses as in the p@pak(

length d_lagrams are obtained by measurements and smplegnd Leibovich1976.
calculations.

The mostimportan szt ) propeny st the | 1BUL8s0e Al e damped neut) and o damped wind
wave length at this direction equals zero. This follows face will become crin): ed in the direction ortr’m onal to the
from the formula 19) and also from the wavelength diagram P 9

(Fig. 2). The zero wavelength directiah=4 is easily seen Langmuir stripes. The amplitude of such a goffer dimin-
on tﬁe Water waves air photograph at strong wind (Ejg ishes at damped waves and increases up to total destruction

e iness—, == andy—p=x are ozemn e 110 ST, T ot o e e vind s
wave plane. They are callélde skeletorof the wave length . . y
diagram. . As aresult of the Wlnd waves dyqamlc interaction Fhe mo-
tionless Langmuir stripes are described here for the first time.
4.1 The wave lengths similarity theorem The center of the wind waves velocities hodograph is sit-
uated of the strait lin@=(x/2)sgnK)—0k at the distance
It was mentioned above that Et=1 the wind waves are neu- %EK from the point of contact of the hodograph with the
tral. In this case it follows from the formuld ) that the line 6=—0k, 6=—0kx+n (Fig. 3).
wind wavelengths at any value of paramekeare similar to The axisd=(r/2)sgnK)—0 of the wind waves veloci-
the lengthsi1=L1]| sin(@—pB)| of the neutral waves for any ties hodograph rotates at the paramétathange (see the for-
fixed directiond. The stated theorem essentially takes into mulas (21), defining the trigonometric functions of the angle
account the fact that the angbedoes not depend of th& 0k). That is why there is no wave velocity similarity theo-
parameter. rem.
The circle A1=L1|sin(@—p)| does not depend of the Figure3 describes one of the possible wind waves veloc-
growth rate. That is why it also enters the skeleton of theities azimuth hodographs with the center at the pd@igt
wind wavelengths diagram. The vectorX in Fig. 3 equals the maximal wind waves

K

Fig. 2. Wave lengths diagram.

depend neither of the viscosity, nor of their turbulent resis-
tances. That is why thg angle is defined only by the air and
water velocitiesVy, Vg and the angle: between the vectors
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velocity for the given parametet’ value. The vectoiO A )
in Fig. 3 equals the wind waves velocities at the direction
0 (for the given parametek value). The vectoV 1 equals
the wind velocity. All the azimuths are counted out from the
vector V1 on thez-plain. The velocity hodograph diameter
directed along the maximal wind waves velodity is called
the main diameteof the hodograph.

(m/2)signK — Gk

5.2 o-hodograph

Let us find the wind waves velocity along the directiag. 0 \%
Let in the formula (18p=p and take into account formulas
(16). Then —6
Asin ViVpsin
= VA 1'_83(;_ v _ 1708 (22) Fig. 3. Wind waves velocities azimuth hodograph.

V2 - 2Vivocosa + V3

Here velocityo=ix (8) is the velocity of the zero length The locus of all the main diameters ends of the

waves that is the velocity of the wave ripples in the direction ~ Wind waves velocity hodographs is a strait line

0=8. passing perpendicular to the vecter via their
o-hodograph is the circle which main diameter equats to ends.

and is directed along the azimuth-p at O<a<x and along  Consequence.

the azimuthh=g+r at (—m)<a<0. Theo-hodograph cir-

cle takes the form:

Since the vectos is oriented along or against the
ray6=p, perpendicular to the vectercenters line
and the main diameters ends line are parallel to the

i =ocotl —pB), (O<a<n). (23)

axisd=g+mr /2 of the wavelengths diagram.
Let us find the minimal value of the velociyx with re-

spect to parametek using the formulas (21) and (16). It
turns out as a result that the minimum is obtained at

Therefore, the wavelengths diagram, the main
hodographs diameter and the two lines: the line of the centers
of the main velocity hodographs diameters and the line of the

K=K, =——, (24)  ends of the same main diameters enter into the general skele-
B ton of the wind waves dynamics.
and The physical meaning of the theorem and its consequence
) is in the fact that the maim-hodograph diameter can be mea-
rr}(in k| = meaxrr}gn Ak| = |o]. (25) sured by the value and directién

This means that the minimal wind waves velocity with re-
spect toK equalsio|.

But the main property of the wind waves velocity of zero
length is that the velocity does not depend of the growth
ratel. That is why since the valug, corresponding to the )
main diameter of ther-hodograph (see Eq. 24) belongs to Ax = g Sin@ + 6k) (26)
a set of values of the parametgr, the main diametes of
theo-hodograph is a chord @nyvelocity hodograph of the
wind waves. Now it is possible to formulate the main the-
orem of geometric dynamics of the non gravitational wind
waves:

6 Absolutely motionless waves, freak waves

Motionless wind waves in this approach appear in a natural
way since the sine in the formula

always reduces to zero at the directiba—0k (see Eq. 21).
There appears a question whether wind waves with zero ve-
locity exist at any azimuth valug. To answer this question

let us see at what values of tfie parameter reduces to zero
the coefficientXg (K) in the formula 26). Applying once
again to the formulas (21) we can see that there are two such
of the wind waves velocity hodographs is a strait values. Their expressions after some simplifications take the

line passing perpendicular to the vectowia its form: )
. S(V — WV
middle. K =Ko= 2 = Vo) (a =0), (27)
sV + Vg

The locus of all the centers of the main diameters

1in accordance with the formula (22) the parametés calcu-
lated after when the velocities of the air and water fldsandV o 2The vectoro direction is defined by the sign of the function
and the angle between them have been obtained. Sina.

www.adv-geosci.net/15/35/2008/ Adv. Geosci., 15,452008



42 M. V. Zavolgensky and P. B. Rutkevich: Turbulent wind waves on the water current

28(V 4+ V,
g = BV Vo)

(@ = 7). The main hodograph diametez9) is oriented along the
8V —Vo velocity vector of the underwater curreWy. The radius of
At these growth rate values the wind waves represent ahe velocity hodograph circle2) equals% Vo. Since 2-1,
dynamic barkhan-like water surface deformation. The heighthe hodograph29) (the underwater current velocity hodo-
of the water barkhans diminishes if the valug3)(are less  graph) belongs to the set of non damped waves.
than unity and increase up to overturningsat>-1 or K, >1. Both hodographs28) and @9) can be defined by means
If Ko=1 or K;=1, the wind born water barkhan are neutral. of measurements and simplest calculations of the afigle
The barkhan like waves are encountered in the vicinityIndeed, let us choose on theplane an arbitrary pol® and
of south-east Africa and more rearly along the Gulf Streamdraw two vectors from it: vectoV of the air velocity and
flow. In the case when the barkhan like wave’'s amplitudevector V of the underwater current velocity. Consider the
increases quicklyK >1), the absolutely motionless wave is triangle OV V. This triangle can always be plotted since its
called freak wave, rogue wave, rabid-dog wave and so ontwo sides(V and Vp) and the angle: between them can be
The waves like this sometimes sink ships. In the south-easteasured.
Africa region the rogue waves appear on the Agulhas Current Remind now that the locus of the main diameters of the
when the wind is directly oriented along the water currentwind waves velocities is a straight line. Since the vectors
(=0). This Agulhas Current and the Agulhas Retroflection v and v are the main diameters of some hodographs the
can give rise to immense rogue waves that can threaten suvhole line of the ends of the wind waves hodographs main
pertankers. For that reason, mariners who successfully nawliameters passes by the ends of the veckoemdV g that is,
igated the Cape of Good Hope frequently breathed a sigh ofhe line of the wind waves hodographs main diameters ends
relief. A very well known is the New Year’'s Day wave, that contains the triangl® V Vo base opposite to the apex.
struck the stationary Draupner oil platform in the North Sea  Now it is clear that the locus of the hodographs centers of
on 1 January 1995. During this event, minor damage was inthe wind waves is the triangle@ V V¢ centerline parallel to
flicted on the platform, confirming that the reading was valid. the base/ Vj.
From that time it was concidered that once thoughtto be only Therefore, one can conlude that the locuses of the centers
legendary, they are now known to be anatural phenomeoryt the wind waves velocities hodographs and the ends the
not rare, but rarely encountered. On the Gulf Stream in thesgme diameters are easily determined by means of wind and
region of the Bermuda Islands, the rogue waves appear andnderwater current velocities measurements.
gain height of 18 meters. In 1912 in the Bermuda Islands re- ; 5 easily understood that the main diameteiof the
gion a three masts sailing vessel was knocked out by a rOQUE _hodograph is an oriented triang@V V altitude passed

waves of 30 m high. The next wave sank the vessel. from the apex0.
7 Wind waves express-forecast 7.3 The main hodographs diameters orientation sectors
7.1 (—25)-hodograph The wind waves dynamics has one peculiarity. As we have

just seen, the main diamet€rof the hodograph28) belongs
Let us assume in the formula (2R)=—25. Then obtain the  to the region of non damped waves. The main diamgteof
velocity hodograph of the wind waves the hodograph29) belongs to the region of damped waves.
(28) What is the hodograph that is the boundary dividing the
damped and the non damped waves? At first sight the answer

The main hodograph diamete2d) is oriented along the  js simple: the boundary is the hodograiph=%1 sin(0-+61)
wind vectorV. The radius of the velocity hodograph circle (see Eq21) of neutral wavesK=1). Indeed atk <1 the
(28) equals half of the wind velocity. Sinde-26)<1, the  \ind waves damp and & >1 do not damp right up till de-
hodograph8) (the wind velocity hodograph) belongs to the stryction a cause of the wave amplitude growth.
damped weaves set. So, if we move along the centers of the wind waves

Despite the simplicity of the hodograpBq), it illustrates hodographs from the azimut®=p—=/2 to azimuth
the main property of the considered waves: the wind wavey—g1 /2, the situation changes. Point is, that the hodo-

propagate at many possible directions (in the considered Cas§raphK =00, that is, (by the EqL8), the hodograph
itis the direction(—z <6 <m)). The usual plane waves would

v(—2d) = V c0oso

propagate only in one directioA£0). VA
Voo = ——SIN0O +y) (30)
7.2 2-hodograph 1+

of the wind waves velocities of zero lengths (see Eg).en-
ters the wind waves dynamics. That is why the velocities
hodograph (Egq30) is located at the certain poiid of the

vy = Vpcos0 — ). (29) velocities hodograph centers line of the wind waves.

Assume in the formula20) K=2. Then obtain the velocity
hodograph of wind waves
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¢ Orientation sectors of the
main hodographs
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% damped waves
' non damped
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p-m2 N DM— strongly

damped waves

Fig. 5. Distribution of the sectors of the strongly- and weakly-
damped waves

Fig. 4. A freak wave.
In the point of view of the Fig. 5 the destroying non-
damped waves are weaker than the damped waves, since

Let us mark the cente€ of the hodograph (Eq30) the orientation sector of the velocities hodographs of non
(K=00) on the centers line of wind waves velocities damped waves occupy smaller part of the wave surface.
hodographs. Let us take an arbitrary pol@ on thez-plane. Draw via

If we move along the indicated line of the centers from the poleO a counting out vectoV ; of the azimuth®. Than
the pointC (K=o0) to the pointk =1 we will pass the cen- via pole O draw a skeletod=8, =8+ andd=p=+nr/2 of
ters of the velocities hodographs of the non damped waveshe waves lengths diagram (Fig. 6).
(1<K <o0). At K=1 we get to the center of the velocities | et ys draw a vectors the main diameter of the
hodograph of neutral waves. At the further decrease of thg;_hodograph from the poled along the azimuthh=p
parametek’, at O<K <1 we move along the hodograph cen- (9<y<z). Along the azimutt9=a from the poleO draw
ters of damped waves. Af=-+0 we obtain an internal res- 5 vectorV of the velocity of the underwater current. Via
onance of the growth rate of the waves with the turbulent rexne ends of the vector® and Vo draw a straight? Q — line

sistance frequenay; =1 or in dimensional forme;=«. This  of the ends of the main hodographs diameters of the wind
will take place on the damped waves. waves velocities (Figf).
Note, that atk=2>1 the hodograph2f) of the water Draw a lineM N via the triangleO V V¢ centerline of the

current velocity enters the velocities hodographs set of Norgenters of the main hodographs diameters of the wind waves
damped waves. The main hodograj@9)(diameter is lo-  \g|ocities.

cated on the ray=«. That is why at G« <r the velocities
hodographs centers of the wind wavexXat-+0 go upward

along the ray’ 6=p+/2. . ) the velocities hodograph of the wind waves with the growth
Let us pass now from the poidt (K=—o0) to the point ratec;=K —1.

K=-0. We will again pass along the hodographs centers Draw a ray0=0), = (/2)sgr(K )~ via the poleO up

of the wind waves velocities but this time along the ve- . L
o to the centers lines and the ends of he main wind waves ve-
locities hodographs centers we go downward along the ray_ ... . ; ;
ocities diameters intersection.

0=B—m/2.

Let us fix the parametek , make for its value a waves
lengths diagram and draw a tangéat—0g, 0=—0g +x to

Thus the orientation sectors of the main diameters As a result make a main diameter of the velocities hodo-
graph of the wind waves with the given growth rate. The
hodographs of the damped waves a0<K<1 and hodograph center is in the intersection point of the &y

—oo<K <—0 are dividedby the orientation sector of the ) . .
main hodographs diameters of the damped waves velocitie\é\”th the rayp=0 . The main hodograph diameter end of the

(1<K <o00). In this sense the damped wavestdl<K <1 \slglr?](;trlgs Ijél,r) t?Fei II’]t;I’SGCtIOI’] pointofthe AN with the
and at—oo< K <—0 differ from each other and the waves at }9— x (M9 . i ) )
+0<K <1 we will call weakly dampeth contrast testrongly Knowing the rayf=0 let us define the maximum wind

dampedvaves at-co<K <—0 (see Fig5). waves veIo_cityEK of the given growth rate and their length
Lx=0D (Fig. 6):

SMotion downward along the ra§=—m/2 in this case is im-
possible since atfx <7 the azimutld=8—r/2<0 Lg = Lk Sin(G}( - B)I.
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8 Conclusions

A common practice in both theoretical and practical hydro-
dynamics is to consider sea waves as gravitational. Results
presented in this work at least qualitatively coincide with

6= 0% both visual observations and with air-photography observa-
tions, therefore assure us that the main sea and river waves
6=« have not the gravitational but turbulent nature: the initial re-

lations (14) do not contain the acceleratigriThese relations
have a profound hydrodynamic nature — cluster and micro-
heterogeneous liquid structure and as the consequence their
\ turbulent resistance — the main wind waves stimulator, since
6= 13 in its absencex(=«1=0) it is impossible to formulate the ini-
tial non disturbed adjacency current (2). It is quite natural,
0 that though the approximately obtained dispersion relation
(14), proves to be so informative. These relations not only

explain all the main properties of the considered waves (vari-
\ ety, crestedness, propagation direction, velocity, wave length,

f=— 6 choppy sea etc.), but also reveal new — motionless — waves
O=—6x+ 72 that are marked on the water surface by driftweed, foam as
light Langmuir stripes, and thus are observed on the water
O=p-72 y " 0O surface in windy weather as real motionless waves. The
value of turbulent resiatance for air and water have to be
Fig. 6. The wind waves express forecast. measured experimentally. Recently, we obtained the value
for « in case of turbulent flow of water through a pipe (to be
published). The value i8=0.023 1/s. Using this value for
both water and air turbulent resistance, and reasonable esti-
mation for wind velocity (10 m/s), water velocity (1 m/s), and
a=30° one obtains from (19) estimation of the wavelength of
the Langmuir waves approximately 21 m. More precise val-
ues are subject of further experimental work.
ok = Xk Co0S0k + B+ 7/2). Physically the multiple order roots of dispersion relation
means more profound penetration of the influence of surface

Having fixed some direction (Fig. 6), find the velocity effects on the profound water layers. In this sense the turbu-

0 A and the wave lengt® B in this direction. lent parté1=¢&> of the dispersk_)n rela_\tion is more important
o . . than the other parts of (14), including gravitational waves.
The non gravitational wind waves have one more interest- o I
. i . The cause for this is the soundness of the description of the
ing property: the waves of the equal velocity value can have . . .
: wind properties on the water surface resulting from these
different wave lengths. The waves of equal wave length can_. . . .
. I simple relations. The apparent three-dimensional wave chaos
have different velocities. . o :
) o ) on the water surface in reality is fully regulated and in order
For example, in the directioi=p, the wave velocity g understand it one needs to know two angkess, 6=6),
equalso, and the wave length eq/uals zero. The waves symynd three circles: wave lengths diagrams astbdograph of
metric with respect to the axis=0; of the hodograph have  neir velocities. Express information of the turbulent waves
the same velocity valu® E, but not the same wave length 4, the water surface is given only by three vectors: the wind
OF. velocity V1 , the water curren¥Vg and the vector, direc-
The neutral wavegK =1) of the equal velocity and dif- tion =g (or 9=-+x) of which can be determined by visual
ferent wave length represeohoppy sea The problem of  observation and its magnitude is equal to the velocity of the
choppy sea has not been yet described analytically. Here thizave front-line in this direction. That is whapplication

problem is solved with the use of a couple of circles. of the obtained results into practice can be done on-the-fly
The double lines on the Fig. mark the Langmuir stripes by taking the wave characteristics (wave lengths, their ve-

that are evidently parallel to the main hodograph diametedocities, propagation directions) on the monitors screens in

¥ of the wind waves velocities at the given valuekbf The  ship deck- cabins, in dispatching offices of sea ports, drilling

lines Lx B, BoO and others (Fig6) represent the troughs plants on shelves, lighthouses, etc.

lines of the wind waves propagating with velocity along

the azimutlo.

In the intersection point of the strait lie=847 /2 with
the velocities find the velocityx of the waves of maximal
length
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