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Abstract. In a forced-dissipative barotropic model of the
atmosphere on a spherical planet, by following mathemati-
cal techniques in (Thompson, P. D.: The equilibrium energy
spectrum of randomly forced two-dimensional turbulence,
Journal of the Atmospheric Sciences, 30, 1593–1598, 1973)
but applying them in a novel context of the discrete spec-
trum on a rotating sphere, the “minus 2” energy spectrum for
wavenumbers much greater than a characteristic wavenum-
ber of the baroclinic forcing has been obtained if the forcing
is taken in the simplest and most fundamental form. Some
observation-based atmospheric kinetic energy spectra, with
their slopes lying between “minus 2” and “minus 3” laws,
are discussed from the perspective of the deduced “minus 2”
energy spectrum.

1 Introduction

Globally, the atmosphere is permanently observed in the
state of chaos, which serves as a background for individually
better-distinguishable irregular processes of different tempo-
ral and spatial scales (the so called atmospheric circulation
regimes). Chaotic dynamics of the atmospheric climate sys-
tem occurring on its attractor (Lorenz, 1994) could be re-
garded as quasi-equilibrium in that sense that on the attrac-
tor we assume (and for certain atmospheric models it could
strictly be proved (e.g., Dymnikov and Filatov 1997)) the ex-
istence of a unique stationary statistical distribution; that is
an essential invariant measure on the attractor does exist. To
characterize the attractor of the atmospheric climate system,
we shall in this study focus on the steady equilibrium energy
distribution between atmospheric disturbances of different
spatial scales; this question has also fundamental implica-
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tions for the problem of atmospheric predictability (Lorenz,
1969; see also Thompson, 1973).

Energy spectra are skillfully used for diagnostics of global
atmospheric data and global atmospheric circulation model
(GCM) outputs (see, e.g., Frederiksen et al., 2003, and refer-
ences therein), usually with a clear reference to the famous
“minus 3” spectral law. It was introduced by Kraichnan
(1967), Leith (1968) and Batchelor (1969) (hereafter referred
to as KLB) for the two-dimensional turbulence and pro-
posed for the atmospheric quasi-geostrophic flows by Char-
ney (1971) and later on by Gavrilin et al. (1972) (see Monin,
1990, and references therein). This spectrum is also distin-
guished within the predictability theory: for an energy spec-
trum which is less steep than “minus 3” the range of pre-
dictability is finite and intrinsically limited (Lorenz, 1969).
Still, in atmospheric data the evidence for the “minus 3” law
validity is not totally compelling. Most likely, this law is best
applicable to upper tropospheric levels, whereas in the lower
troposphere the observed atmospheric spectra are closer to
the “minus 2” law (cf. Trenberth and Solomon, 1993; see
also our Table 1).

By using the balance (in the ensemble averaged sense) of
baroclinic forcing and viscous damping as constraints and
under the presumably simplest assumption concerning the
baroclinic forcing, we shall show in this note that the “minus
2” spectral law naturally emerges in a barotropic atmospheric
model. We shall closely follow mathematical arguments by
Thompson (1973), who intended to confirm the main pre-
dictions of KLB-theory for continuous spectra of the two-
dimensional turbulence, but shall do it in a novel context
of barotropic non-divergent airflows on a rotating spherical
Earth in the presence of both the baroclinic forcing and quite
general viscous damping. The latter aggregates the Ekman
friction, the Newtonian dissipation and the hyperviscosity of
any order in one viscosity operator but necessarily includes
a scale-selective viscosity term as its ingredient; that is, the
case of only Ekman drag remains beyond the scope of this
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Table 1. Slope of straight line fit to the kinetic energy spectrum
from Trenberth and Solomon (1993) for wavesn=14 to 40 for Jan-
uary 1988 (the global ECMWF analysis at T106 resolution) and
from Boer and Shepherd (1983) for wavesn=14 to 25 for January
1979 (First GARP Global Experiment, FGGE, wavenumbers only
out ton=32). (Adapted from Trenberth and Solomon (1993); their
Table 1).

Pressure Trenberth and Solomon Boer and Shepherd
(hPa) (1993) (1983)

100 −2.2 −2.2
150 −2.7 −2.6
200 −3.0 −3.0
250 −2.9 −2.9
300 −2.9 −2.6
400 −2.6 −2.3
500 −2.6 −2.1
700 −2.5 −1.9
850 −2.1 −1.7
1000 −1.9 −1.5

note. We shall argue that the difference between the deduced
“minus 2” law and the classical “minus 3” spectrum by KLB
can be explained for forced-dissipative flows by discrete na-
ture of the spectrum on the spherical Earth.

2 Forced flow in a dissipative barotropic atmosphere

In spherical coordinates the governing absolute vorticity
equation takes the form

∂

∂ t
∇

2ψ + J
(
ψ, ∇

2ψ + 2� cosϑ
)

= F − µ∇
2ψ +

∑
s

νs (−1)s
[
∇

2s
− (−2)s−1

∇
2
]
ψ, (1)

whereψ is the streamfunction,∇2 is the spherical Laplacian
and

J (A, B) =
1

a2 sinϑ

(
∂ A

∂ ϑ

∂ B

∂ λ
−
∂ B

∂ ϑ

∂ A

∂ λ

)
is the Jacobian, written for two arbitrary functionsA andB.
Also, λ is the longitude,ϑ the co-latitude,� the angular ve-
locity of the Earth’s rotation anda the Earth radius. Below,
the Earth radius is chosen to coincide with the unit of length,
a=1. The time-independent functionF (λ, ϑ) mimics the
baroclinicity action. Also, a quite general frictional operator
is considered in the right-hand-side of Eq. (1). The first term
of this operator describes the Ekman friction with the coeffi-
cientµ. In each summand of the subsequent sum, the order
of the viscous operator has integer values,s=2,3,.., andνs is
the corresponding viscosity coefficient. The case in which
s=2 corresponds to the common Newtonian viscosity with

the coefficientν2; the operator∇2
(
∇

2
+2

)
strictly follows

from the Navier-Stokes equations written down in spherical
coordinates and the eigenfunction of∇

2 corresponding to the
eigenvalue−2 and describing an arbitrary solid-body-like ro-
tation of the atmosphere vanishes in∇

2
(
∇

2
+2

)
. Therefore,

the Newtonian viscosity does not affect the conservation of
the angular momentum of the atmosphere. The ‘hyperviscos-
ity’ operators of the orders≥3, used in Eq. (1), have the same
property. However, an exact, unambiguous specification of
the hyperviscosity operator of a high enough order, with re-
gard to this property, is a more involved task and remains
beyond the scope of this study. On the other hand, a wide
variety of hyperviscosity operators, often without reference
to the property in question, is currently used in numerical
modeling studies. Therefore, as a “working compromise”,
the virtually simplest hyperviscosity operator of the given or-
der s is used in the work, which does not damp an arbitrary
solid body rotation of the atmosphere. Note, that the addi-
tional terms in the above-discussed operators,νs2s−1

∇
2ψ ,

and the Ekman friction term in Eq. (1) can be combined in
a single Rayleigh friction term−µ̃∇

2ψ with the coefficient
µ̃=µ−

∑
s 2s−1νs , which in reality only slightly differs from

µ, because only very smallνs-values are commonly used in
the atmosphere numerical modeling practice. In Eq. (1) and
elsewhere,∇3ψ≡∇

(
∇

2ψ
)
, ∇

4ψ≡∇·∇
3ψ and so on;∇ is

the symbolic nabla operator on a sphere and a dot denotes the
scalar product.

In an inviscid and unforced case, Eq. (1) allows for an infi-
nite number of integrals of motion, called Casimir functions:
any differentiable function of absolute vorticity integrated
over the sphere is conserved, in particular, any integer power
(moment) of absolute vorticity. All these Casimir functions
except of the first and the second moment (the total vortic-
ity and the enstrophy) are lost if spectral representation, and
then truncation at a maximum wavenumber, are applied, as it
is customarily used in numerical modeling.

In a statistically steady flow regime, the balance between
energy generation due to the baroclinicity and energy dissi-
pation due to the viscosity is assumed〈
µ

∫∫
(∇ψ)2 dσ+

∑
s

νs

∫∫ [(
∇
sψ

)2
−2s−1 (∇ψ)2

]
dσ

〉

=

〈
−

∫∫
ψ F dσ

〉
, (2)

wheredσ= sinϑ dϑ dλ is the surface area element. Simi-
larly, the enstrophy balance equation reads〈
µ

∫∫ (
∇

2ψ
)2
dσ+

∑
s

νs

∫∫ [(
∇
s+1ψ

)2
−2s−1

(
∇

2ψ
)2

]
dσ

〉

=

〈∫∫
∇

2ψ F dσ

〉
. (3)

Angular brackets in Eqs. (2) and (3) denote the average over
an ensemble of flow realizations on the global attractor of the
system. Existence of this attractor is secured for the time-
independent forcing in Eq. (1) provided any scale-selective
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viscosity term withs≥2 is accounted for in Eq. (1); see
Dymnikov and Filatov (1997) and references therein. Now,
an invariant measure exists on the attractor, giving rise to
a stationary statistical distribution on it. Under ergodicity
assumptions, this stationary statistical distribution is unique
and, also, the ensemble average in Eqs. (2) and (3) can be un-
derstood in the time-mean sense. A similar approach based
on the balance between forcing and viscous damping as con-
straints to derive energy spectra was quite recently applied
by Lynch and Verkley (2007).

Expandingψ in spherical harmonicsYmn (ϑ, λ) and using
Gn for denoting the expectation (expected) value of the baro-
clinic forcing contribution relevant to a subspace6n of di-
mension 2n+1, which is constituted by a set of functionsYmn
with the fixed lower index, or the degree,n, one has from
Eqs. (2) and (3) that

2µ
∞∑
n=1

En + 2
∑
s

νs

∞∑
n=1

[
ns−1 (n+ 1)s−1

− 2s−1
]
En =

∞∑
n=1

Gn (4)

and

2µ
∞∑
n=1

n (n+ 1) En + 2
∑
s

νs

∞∑
n=1

[
ns (n+ 1)s − 2s−1n (n+ 1)

]
En

=

∞∑
n=1

n (n+ 1) Gn, (5)

respectively. Here,En describes the expected value of ki-
netic energy which is relevant to6n. If to consider the
energy/enstrophy balance for different subspaces6n sepa-
rately, then there must be energy/enstrophy fluxes between
neighboring subspaces in order to maintain the steady statis-
tical equilibrium. These internal fluxes cancel out each other
after the summing in Eqs. (4) and (5) is made.

Our approach differs conceptually from the study by
Thompson (1973) who investigated a stochastic system
driven by a time-dependent random forcing. It is closer to
the modern paradigm of internal climate variability, which
is attributed to intrinsic non-linear chaotic dynamics of the
climate system under time-constant external forcing condi-
tions. However, the mathematical results which will be ob-
tained based on Eqs. (6) and (7), see below, are remarkably
insensitive to this conceptual difference, if compared to the
analysis by Thompson (1973) based on his Eqs. (8) and (9).

In general cases, the baroclinic forcingF (λ, ϑ) may act
over a range of wavenumbersn, which fall into the interval
of baroclinic instability. Hereafter, we assume thatF is ap-
plied only at one specific wavenumbern0 chosen from this
range, i.e. it is the so-called monoscale forcing (see, Tran and
Shepherd, 2004, and references therein)1. In the context of
large-scale atmospheric dynamics,n0=6−8 or even greater;

1For a time- and longitude-independent monoscale forcing
F (ϑ)=F0Yn0 (ϑ) Eq. (1) has an exact stationary solution. How-
ever, for sufficiently large forcing amplitudeF0 this steady zonal
flow is unstable and a full spectrum of turbulent motions will de-
velop due to non-linear interactions between modes.

in any casen0�1. Consistently with the monoscale forc-
ing set-up, we retain only a single termGn0 corresponding
to n=n0 in the right-hand-sides of Eqs. (4) and (5), respec-
tively, and assume thatGn0 may parametrically depend upon
n0, generally speaking. We have now from Eqs. (4) and (5)
that

2µ
∞∑
n=1

En+2
∑
s

νs

∞∑
n=1

[
ns−1 (n+ 1)s−1

−2s−1
]
En=Gn0 (n0) (6)

and

2µ
∞∑
n=1

n (n+ 1) En + 2
∑
s

νs

∞∑
n=1

[
ns (n+ 1)s − 2s−1n (n+ 1)

]
En

= n0 (n0 + 1) Gn0 (n0) (7)

Following Thompson (1973), we suppose that the energy
spectrum has a universal form

En = e0 (n0) f (xn) , xn =
n (n+ 1)

n0 (n0 + 1)
, (8)

where functionf has to be specified. Equations (6) and (7)
should satisfy for each and everyn0-value, viz. identically
on n0. Therefore, we take Eqs. (6) and (7) for two neigh-
boring parameter valuesn0+1 andn0, say, substitute in them
Eq. (8) taken for the same parameter values, and finally sub-
tract the two resulting equations. Becausen0�1 the rela-

tive increment inn0 is small,O
(
n−1

0

)
; therefore, we can

with fair good accuracy replace the finite differences with
differentials by formally imbedding integern0-values in the
n0-continuum; in this case,xn is also a continuous variable.
Certainly, only integern0-values have physical meaning and
will be retained in the final formulas.

Another way around would be using central finite dif-
ferences, by subtracting the equations taken forn0+1 and
n0−1, respectively, and by dividing the result by two. It
may have certain methodological advantages by increas-
ing an accuracy of our approximate approach; in par-
ticular, applying such a procedure ton0 (n0+1) yields
[(n0+1) (n0+2)− (n0−1) n0]/2=2n0+1, which equals to
the formal derivative ofn0 (n0+1)with respect ton0, regard-
less of whethern0�1.

Keeping in mind what has been said above, we substitute
Eq. (8) in Eq. (6), formally differentiate both parts of the
resulting equation with respect ton0 and use Eq. (6) once
more to obtain

de0

dn0

∞∑
n=1

Knf (xn)− (2n0 + 1) e0

∞∑
n=1

Knf
′ (xn) x

2
n

n (n+ 1)

= e0
d logGn0

dn0

∞∑
n=1

Knf (xn), (9)

where

Kn=Kn (µ, ν2, ν3, ...)≡2µ+2
∑

s
νs

[
ns−1 (n+1)s−1

− 2s−1
]
.
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The prime in Eq. (9) denotes differentiation with respect to
xn. Similarly, from Eqs. (7) and (8) we have

de0

dn0

∞∑
n=1

n (n+ 1)Knf (xn)− (2n0 + 1) e0

∞∑
n=1

Knf
′ (xn) x

2
n

= e0

[
n0 (n0 + 1)

d logGn0

dn0
+ 2n0 + 1

] ∞∑
n=1

Knf (xn) xn. (10)

We regard Eqs. (9) and (10) as a system of two linear alge-
braic equations for unknown variablesde0/dn0 ande0. The
condition for the existence of a nontrivial solution of this sys-
tem is
∞∑
n=1

n (n+ 1)Knf (xn)

∞∑
n=1

Knf (xn)

(11)

=

(2n0 + 1)
∞∑
n=1

Knf
′ (xn) x

2
n +

[
n0 (n0 + 1)

d logGn0
dn0

+ 2n0 + 1
] ∞∑
n=1

Knf (xn) xn

(2n0 + 1)
∞∑
n=1

Knf ′(xn)x2
n

n(n+1) +
d logGn0
dn0

∞∑
n=1

Knf (xn)

Equations (6) and (7) imply, however, that the left-hand side
of Eq. (11) equals ton0 (n0+1). Therefore, functionf is
specified by the equation

∞∑
n=1

Kn (µ, ν2, ν3, ...) F (xn) = 0, (12)

where

F (xn) = (2n0 + 1) xn
[
f ′ (xn) (1 − xn)− f (xn)

]
+n0 (n0 + 1)

d logGn0

dn0
(1 − xn) f (xn) . (13)

Strictly speaking, the precise choice of the dependency
Gn0 (n0) to be used in Eq. (13) should rely upon the observa-
tional/modeling results about the baroclinic instability in the
real atmosphere, which however are not entirely conclusive
or, at least, are not easy to be interpreted, in the given respect.
Therefore, we shall first consider the conceptually simplest
case whenGn0 remains invariant,Gn0=const, when the
wavenumbern0 experiences variations within the range of
atmospheric baroclinic instability. It yieldsdGn0/dn0=02,
hence the last right-hand-side term in Eq. (13) vanishes and
from Eqs. (12) and (13) we obtain the condition for the exis-
tence of a nontrivial solution
∞∑
n=1

Kn (µ, ν2, ν3, ...) (2n0+1) xn
[
f ′ (xn) (1−xn)−f (xn)

]
= 0.

(14)

2From the perspective of the theory of atmospheric general cir-
culation, the assumptionGn0=G=const corresponds to the fixed
rate of kinetic energy generation/dissipation per unit mass; in the
real atmosphereG∼5×10−4m2s−3. It can alternatively be as-
sumed that the atmospheric general circulation is functioning in the
most efficient way andGn0 achieves its maximum stationary value
G for most rapidly growing baroclinic disturbances with wavenum-
bersn0=6−8.

Since we are seeking for a universal energy spectrum, whose
shape is independent on a specific form of the viscous
operator in Eq. (1), Eq. (14) should be satisfied for ev-
ery functionKn (µ, ν2, ν3, ...) and vanishing of this infinite
sum is guaranteed only if its common member is zero, i.e.
f ′ (xn) (1−xn)−f (xn)=0; hence,

f (xn) =

{
C (xn − 1)−1 , xn > 1
C (1 − xn)

−1 , xn < 1
, (15)

whereC>0 is a constant. The distinction between the two
cases,xn>1 andxn<1, respectively, is necessary because of
the requirementf (xn)>0. By introducingxn from Eq. (8)
into Eq. (15) and considering only integern0-values, we ob-
tain the spectral energy distribution

En =

{
n0(n0+1)Ce0

n(n+1)−n0(n0+1) , n > n0
n0(n0+1)Ce0

n0(n0+1)−n(n+1) , 1 ≤ n < n0
. (16)

For the applied simplest forcingGn0 the model predicts the
“minus 2” energy spectrum atn�n0. In the opposite limit
case of 1≤n�n0, Eq. (16) shows an approximate equiparti-
tion of the energy between subspaces6n. As in Thompson
(1973), the energy spectrum has singularity atn=n0 and this
peculiar property of the model is discussed in the paper just
cited. The energy spectrum regularity could be retained if
the energy were injected into the system, at minimum, at two
neighboring wavenumbers.

As another tractable special case but of increasing com-
plexity we consider

Gn0 (n0) ∝ [n0 (n0 + 1)]r , r > 0 (17)

whereas the previous case corresponds tor=0. We have from
Eqs. (12) and (13) the condition for the existence of a non-
trivial solution
∞∑
n=1

Kn (µ, ν2, ν3, ...) (2n0 + 1)[
f ′ (xn) xn (1 − xn)− f (xn) xn + rf (xn) (1 − xn)

]
= 0,

orf ′ (xn) xn (1 − xn)−f (xn) xn+rf (xn) (1 − xn) = 0 (see
above). Consequently,

f (xn) =

{
C (xn − 1)−1 x−r

n , xn > 1
C (1 − xn)

−1 x−r
n , xn < 1

, (18)

whereC>0 is a constant. By introducingxn from Eq. (8) into
Eq. (18) and considering only integern0-values, we obtain
the spectral energy distribution

En =


n0(n0+1)Ce0

n(n+1)−n0(n0+1) ·
nr0(n0+1)r

nr (n+1)r , n > n0

n0(n0+1)Ce0
n0(n0+1)−n(n+1) ·

nr0(n0+1)r

nr (n+1)r , 1 ≤ n < n0
. (19)

To specifyr-value, we might for example, invoke a certain
analogy with equilibrium statistical fluid dynamics (see also
below) and make a special assumption that in the considered
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case ofn0�1 the amplitudeGn0 should be proportional to
the dimension of subspace6n0,

Gn0 ∝ 2n0 + 1. (20)

It gives r=1/2 in Eq. (19) if to require, within the accuracy
of the factor of two, the correspondence between Eqs. (17)
and (20) forn0�1. However, direct substitution of Eq. (20)
in Eq. (13) would lead to mathematical inconsistencies: vari-
ablesn0 andxn could not have been separated and a closed
expression for the solution of Eq. (12) in terms of function
f and its derivative could not have been obtained. Now, for-
mally likewise in Thompson (1973), who however investi-
gated the continuous energy spectrum on an infinite plane,
we obtain the “minus 3” spectrum forn�n0; whereas, there
is a hint on the “minus 1” spectrum for 1≤n�n0. Interest-
ingly, the latter spectrum appears in the study by Frederiksen
and Sawford (1980) and Frederiksen et al. (1996) of equilib-
rium statistical mechanics for barotropic atmospheric flows
over the rotating spherical Earth.

When Eq. (17) withr=1/2 is applied, then our Eqs. (6)
and (7), on the one hand, and Thompson’s (1973) basic
Eqs. (8) and (9), on the other hand, are mathematically iso-
morphic, as far as it concerns the functional dependence
of their right-hand-sides upon the scalar wavenumber, i.e.
√
n0 (n0+1) in our case. The very fact that we have obtained

for r=1/2 the same energy spectrum as in Thompson (1973)
proves a posteriori the consistency of applied approximate,
asymptotic analysis.

Whereas the virtually most natural choice by Thompson
(1973) of the baroclinic forcing on an infinite plane leads
to the “minus 3” spectrum of KLB-theory, the simplest,
“gauge-invariant”, baroclinic forcingGn0 (n0)=const on a
sphere gives then−2-spectrum for largen. Therefore, the
relationship between the continuous and the discrete spectra
in forced-dissipative systems is not as straightforward, as it
might seem. It includes a crucial dependence on the baro-
clinic forcing and could be highly sensitive to the way how
the forcing is translated from the continuous into the discrete
spectral variables.

In synthesis, in the frame of our model the question of
energy spectral distribution is reduced to the problem of the
baroclinic forcingGn0 (n0) specification. Here, the “minus
2” spectrum has a definite advantage over other possible en-
ergy spectra including the “minus 3” spectrum, since it is
based upon the conceptually simplest assumptionGn0=const
when virtually no baroclinic forcing parameters enter its def-
inition. At the very least, the two spectra, “minus 3” and
“minus 2”, are seen as if they were placed on a similar, if not
the same, conceptual footing.

3 Discussion and concluding remarks

Table 1, which is adapted from Trenberth and Solomon
(1993) and also uses the results by Boer and Shepherd
(1983), clearly shows that observed atmospheric spectra have
slopes lying between the dependencyEn∝n−2, cf. Eq. (16),
and the dependency,En∝n−3, which formally corresponds
to KLB-theory for the two-dimensional turbulence. It is un-
easy, in principle, to give a preference to any of these de-
pendencies when looking at Table 1, though the later and
more complete data by Trenberth and Solomon (1993) show
systematic shift towardEn∝n−3. Nevertheless, at the low-
est atmospheric levels the obtained spectra in both cases are
very close to the spectrumEn∝n−2, see Eq. (16). Also,
Lambert (1981) based on FGGE IIIa global data (January
1979, the same 10 isobaric levels as in Table 1) for the range
of wavenumbers 14≤n≤25 demonstrated strongly decreas-
ing enstrophy spectral cascade and spectral slopes of−2.2,
−0.3 and−2.1 for the kinetic energy, the enstrophy and the
available potential energy, correspondingly. These values are
close to the scaling lawEn∝n−2. As a whole, the spectra
En∝n

−2 andEn∝n−3 virtually serve as a lower and an up-
per bound, respectively, for the observed atmospheric spectra
slopes (see, Table 1).

In order to get additional insight into the “minus 2” spec-
tral law (this time, from the perspective differing to that of
Sect. 2), let us consider a time-constant influx of enstrophy
G0, per unit atmospheric mass and with dimension of s−3,
which is due to the baroclinic forcing applied within a nar-
row interval of wavenumbersn centered at a wavenumber
n0. Both the width of the interval and the exactn0-value
are immaterial; they do not enter the final result. In a sta-
tistically steady regime,G0 equals to the rate of enstrophy
destruction due to viscosity. We recall that the total kinetic
energy per unit mass,E, of a barotropic flow on a sphere

is given byE=

∞∑
n=1

En, whereEn has dimension of m2 s−2

and describes the expected value of energy contribution com-
ing from a subspace6n. For a scale-selective dissipation in
Eq. (1), viz. when accounting for at least one viscosity term
with s≥2, we would have an inertial range of wavenumbers
n0�n≤n∗ (νs)with the nearly constant downscale enstrophy
flux G0. On dimensional grounds and in the spirit of KLB-
theory we obtain

En = C∗G
2/3
0 a2 [n (n+ 1)]−1 , (21)

whereC∗ is a non-dimensional constant. Here, the original
Earth radiusa definition of Sect. 2 is used together with the
fact that for a subspace6n the proper spatial scale squared
is reciprocal to the magnitude of Laplace operator’s eigen-
value, n (n+1)/a2. We thus have formally obtained the
“minus 2” energy spectrum as a discrete counterpart of the
classical “minus 3” spectrum in KLB-theory dealing with
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continuous spectra3. Comparison between Eq. (16) taken
at n�n0 and Eq. (21) enables one to specify the functional
dependencee0=e0 (n0) which remained undetermined in
Sect. 2. First, we haveCn0 (n0+1) e0=C

∗G
2/3
0 a2. Second,

for a nearly monoscale forcingG0a
2
=n0 (n0 + 1)Gn0 and

eliminating ofG0 between the above two formulas yields:
Ce0=C

∗ (aG)2/3 [n0 (n0+1)]−1/3, where Gn0=G=const.
The case of solely Ekman friction is more subtle and differ-
ent sort of argument were needed to support the “minus 2”
spectrum. They necessitate truncation of the spectral model
at a maximum wavenumberN�n0 and will be reported else-
where. So, a pending theoretical task could be paraphrased as
rather to explain why the observed spectra in the upper tropo-
sphere are algebraically steeper than the “minus 2” law than
to explain observed deviations from the “minus 3” spectrum
(cf. numerical simulations of forced 2D turbulence which are
referred to by Tran and Shepherd (2002) and definitely show
energy continuous spectra algebraically steeper than the “mi-
nus 3” spectrum).

A remaining controversy concerning the fundamental sig-
nificance of either the “minus 3” or the “minus 2” atmo-
spheric energy spectrum on a spherical planet could partly
be resolved if to accept that it is of importance whether to
use the main results of KLB-theory obtained for continuous
spectra and then to translate them into the terms of discrete
spectra, or alternatively, to consider from the very beginning
the discrete spectral distributions and, afterwards, to apply
the physical arguments borrowed from KLB-theory.
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