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Abstract. The vertical columnar current density in the global
atmospheric electrical circuit depends on the local columnar
resistance. A simple model for the columnar resistance is
suggested, which separates the local boundary layer compo-
nent from the upper troposphere cosmic ray component, and
calculates the boundary layer component from a surface mea-
surement of air conductivity. This theory is shown to provide
reasonable agreement with observations. One application of
the simple columnar model theory is to provide a basis for
the synthesis of surface atmospheric electrical measurements
made simultaneously at several European sites. Assuming
the ionospheric potential to be common above all the sites,
the theoretical air-earth current density present in the absence
of a boundary layer columnar resistance can be found by ex-
trapolation. This is denoted the free troposphere limit air-
earth current density,J0. Using early surface data from 1909
when no ionospheric potential data are available for corrob-
oration,J0 is found to be∼6 pA m−2, although this is sub-
ject to uncertainties in the data and limitations in the theory.
Later (1966–1971) European balloon and surface data give
J0=2.4 pA m−2.

1 Introduction

In the global atmospheric electrical circuit, a fair-weather
current flows vertically between the ionosphere and the sur-
face, which is related to the ionosphere-surface potential dif-
ference and the resistance of the atmospheric column. This
charge transfer results because atmospheric air is weakly
electrically conductive, as a result of radioactive ion produc-
tion from Radon isotopes in continental surface air and cos-
mic ray ionisation elsewhere (Harrison and Carslaw, 2003).
Long-term global circuit changes (Harrison, 2002; Märcz
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and Harrison, 2005) have been suggested to result from the
twentieth century reduction in galactic cosmic ray ion pro-
duction from increased solar activity (Lockwood et al., 1999;
Carslaw et al., 2002), but the analysis of surface data from a
single site is complicated as smoke and aerosol concentra-
tions exert a local influence on surface atmospheric electri-
cal measurements (Williams, 2003). Solar activity increased
during the twentieth century, and a greater change occurred
in approximately the first half of the century than the sec-
ond half of the century (Lockwood, 2001). Most atmospheric
electricity measurements in the first half of the twentieth cen-
tury were made at the surface (Harrison, 2004), but a 1909 to
1959 reduction in lower atmosphere ion production is appar-
ent in early European balloon-carried atmospheric electricity
measurements (Harrison and Bennett, 2007).

The potential of the ionosphere with respect to the surface
is a measurable parameter in the global atmospheric electri-
cal circuit (Fig. 1). Direct measurements of the ionospheric
potential are available in the second half of the twentieth cen-
tury (e.g. Ungetḧum, 1966; Imyanitov and Chubarina, 1967;
Mülheisen, 1971; Markson, 1985). Although instrumented
balloon ascents began in the late nineteenth century (Israël,
1970, 1973), these early ascents did not reach sufficient al-
titudes to permit the ionospheric potential to be directly cal-
culated (Harrison and Bennett, 2007). Measurements of at-
mospheric electrical properties above the surface are, how-
ever, important in assessing global geophysical changes in
atmospheric electricity, as regions of the troposphere above
the continental boundary layer are relatively little affected
by surface aerosol changes. To obtain quantitative data in
the period before direct and routine balloon measurements, a
new approach is developed here, in which simultaneous mea-
surements from several surface observation sites are com-
bined to reduce local surface effects.

A discussion of data analysis using multiple site measure-
ments in the first half of the twentieth century was given by
Isräel (1973), based on the results of Hogg (1950). Hogg
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Fig. 1. Charge separation processes in the atmosphere (adapted from Harrison and Carslaw, 2003). Large arrows illustrate current flowing in
the global circuit, in the conducting ionosphere and planetary surface. The fair weather current between ionosphere and surface results from
the small finite conductivity of atmospheric air, principally due to cosmic ray ionisation.

found that, if the mean air-earth current density was plotted
against the mean surface air conductivity, the measurements
from different global sites clustered around a line. The non-
linear relationship showed that the air-earth current density
Jz increased with the surface air conductivityσs . For large
values ofσs (i.e. increasingly clean air),Jz extrapolated to
Jz>5 pA m−2, although an exact asymptotic value was not
clearly identified. Using a vertical profile of the air conduc-
tivity, Hogg (1950) deduced the value for the ionospheric po-
tentialVI to be 340 kV.

2 Theory for columnar properties

The vertical columnar resistanceRc determines the cur-
rent densityJz flowing between the ionosphere and the sur-
face (Isräel, 1970), and typically varies between 130 and
300 P� m2 (Roble and Tzur, 1986). In principle,Rc is de-
fined by integrating the resistances of all atmospheric layers
between the surface and ionospheric equipotential layer. In
practice,Rc can be found through solving the ion-aerosol
balance equation (Harrison and Carslaw, 2003) for the air
conductivity as a function of altitude, and then integrating
the conductivity profile. This approach requires local aerosol
and ion production rate profiles. The effect of aerosol on

the conductivity profile is most substantial in the continental
boundary layer (BL), but cosmic rays have an increasingly
dominant effect above the boundary layer, in the free tropo-
sphere (FT) (Callahan et al., 1951). Accordingly, the total
columnar resistance can be represented by a free troposphere
componentRFT and a boundary layer componentRBL, as

Rc = RBL + RFT . (1)

TheRBL term is variable, and depends on surface aerosol
concentrations and mixing of the Radon isotopes. TheRFT

term is relatively constant, with variability from cosmic ion
production changes with solar activity and volcanic aerosol
injection into the stratosphere(Fig. 2a). Variation of cosmic
ray ion production with geomagnetic latitude will also cause
RFT to vary between sites located at substantially different
latitudes.

A simple approximation is used here to representRBL.
Analysing Rc variations in 1966–1971 at Kew (Harrison,
2005), it was found thatRBL was closely linked to the mea-
sured surface air conductivity. This can be understood in
terms of a shallow layer of low conductivity air causing the
lower atmosphere resistance. In such circumstances,RBL

would be inversely proportional to the conductivity of the air
in this layer (Fig. 2b). The exact relationship depends on the
form of the conductivity profile chosen: it could be repre-
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Fig. 2. (a) Columnar resistance in the global circuit. The colum-
nar resistanceRc determines the local global circuit current density
Jz. Rc consists of a boundary layer componentRBL(from aerosol
and radon isotopes) and a free troposphere componentRFT (from
cosmic rays).(b) RBL can be represented by a resistive layer of
variable height, or approximated by a shallow fixed depth layer of
variable resistance.

sented as a variable thickness layer with a varying conduc-
tivity, or an equivalent fixed height layer of constant conduc-
tivity. Using the surface air conductivityσs to determine the
constant resistance layer near the surface, (1) can be written
as

Rc =
k

σs

+ RFT , (2)

wherek is a proportionality constant related to the conduc-
tivity profile in the polluted layer, but can be equivalently un-
derstood physically as representing the height of a constant
conductivity layer. Calculation of the terms in Eq. (2) is now
considered further.

The air-earth current densityJz is related to the iono-
spheric potentialVI and columnar resistanceRc by

Jz =
VI

Rc

, (3)

which permits Eq. (2) to be written as

VI

Jz

=
k

σs

+ RFT . (4)

Equation (4) links surface (σs) and balloon sounded quan-
tities (VI ), through the column quantities of the air-earth
current densityJz and the free troposphere resistanceRFT .
Making the low turbulence approximation (Tammet et al.,
1996), Ohm’s Law can be used to link surface measurements
of PGEs andσs

Jz = σsEs, (5)

giving a further form for Eq. (4) as

VI

Es

= k + RFT σs . (6)
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 Fig. 3. Comparison of Weissenau ionospheric potential measure-
ments with simultaneous measurements, when available, of(a)
ionospheric potential determined over the north Atlantic using bal-
loon soundings from the research shipMeteor(17 March to 2 April
1969),(b) the surface potential gradient (PG), measured at Lerwick
in fair weather or non-hydrometeor conditions (17 March to 2 April
1969).

Data to test the validity of the approximations in de-
riving Eq. (6) are rare, however the ionospheric potential
measurements by R.M̈ulheisen at Weissenau, Germany (e.g.
Mülheisen, 1977), and the frequent Wilson instrument air-
earth current density and PG measurements made at Kew by
the UK Met Office (Harrison and Ingram, 2005) were oc-
casionally coincident and provide suitable data for analysis.
Some of the daily measurements ofJz and σs at Kew co-
incided withVI soundings made from Weissenau in 1966–
1971 (Harrison, 2005).

A necessary assumption for this comparison is that that
theVI soundings made from Weissenau also represented the
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Fig. 4. Daily measurements of ionospheric potentialVI (over Weis-
senau) and surface measurements from Kew on the same days of po-
tential gradientEs and air conductivityσs , with σs plotted against
VI /Es . A 20% worst-case uncertainty has been assumed forVI ,
and 5% forEs andσs (data from Harrison, 2005).

VI above Kew, i.e. that a common equipotential surface ex-
isted above both sites, as expected from the global circuit
model. Confirmation of this spatial equipotential assumption
requires, at least, corroboration with simultaneous measure-
ments in the same region. Surface measurements were made
throughout this period at Lerwick, Shetland, and furtherVI

soundings are available made in the western Atlantic. The
VI measurements were led by Mülheisen, using theMeteor
research ship. Many of the soundings made from theMe-
teor were simultaneous with soundings made from Weisse-
nau (Mülheisen, 1971). Figure 3a shows a comparison be-
tweenVI soundings made at Weissenau and those from the
Meteor, during the observation period in March and April
1969, from data tabulated by Buduko (1971). There is close
agreement in theVI values obtained at the two sites. Fig-
ure 3b shows a comparison between Lerwick PG measure-
ments and the WeissenauVI soundings, for PG measure-
ments simultaneous with the soundings when the conditions
at Lerwick were either classified as fair weather or no hy-
drometeors were recorded. There is a linear relationship be-
tween the Lerwick PG and the WeissenauVI , which implies
that the surface PG at Lerwick was modulated by the iono-
spheric potential above. This agreement between the mea-
surements at Lerwick,Meteor and Weissenau, which geo-
graphically bound a triangle including Kew Observatory in
the southern UK, provides the basis for considering the Weis-
senauVI soundings as representative of the ionospheric po-
tential above Kew.

Figure 4 shows the comparison between the surface and
balloon measurements, plotted in terms of the model repre-

sented by Eq. (6). The Kew surface measurements using the
Wilson technique determinedEs and Jz independently, as
Es was obtained by measuring the induced potential on the
sensing plate, andJz from the rate of change ofEs . (The lo-
cal air conductivity was calculated assuming Ohms Law’ i.e.
σs=Jz/Es). Figure 4 can therefore equivalently be regarded
as a plot of (VI /Es) against (Js /Es), in which all three quanti-
ties are determined separately. The model provides a signif-
icant fit to the experimental data (49 points,r=0.61), show-
ing that Eq. (6) does provide a representation of the physi-
cal processes concerned, under the assumptions made. Fig-
ure 4 also allows determination ofRFT =(92.9±18) P� m2

andk=(268±92) m. This indicates thatRBL can be repre-
sented by an equivalent constant conductivity layer of fixed
depth 268 m, with the layer containing air of conductivity
equal to the measured surface conductivity. The mean val-
ues of air-earth current density at Kew for the same pe-
riod (1966–1971) wasJz=(1.58±0.04) pA m−2 and the mean
ionospheric potentialVI =(217±4) kV, giving a columnar re-
sistance at that site ofRc=137 P� m2 calculated from Eq. (3).
Applying Eq. (1) allowsRBL to be found from the values of
Rc andRFT .

A theoretical limiting case can be considered, in which
only the upper atmosphere term contributes resistance and
there is no contribution from the lower atmosphere, i.e. when
RBL=0. In such conditions, the current density flowing
would be increased, asRc=RFT . The current density in these
circumstances is denoted thefree troposphere limit air-earth
current densityJ0.J0 provides a measure of upper properties
of the columnar independently of the surface properties. For
the 1966–1971 values analysed,J0=2.4 p Am−2.

3 Extension to historical atmospheric electrical data

3.1 Formulation

Many early surface atmospheric electricity records exist of
Potential Gradient measurements. Some European sites also
measured the air-earth current densityJz and surface ion
properties (number concentrations and mobilities) or the air
conductivityσs . A summary of data sources is given in Har-
rison (2004). Whilst these could in principle provide use-
ful data for Eq. (6), there are, as mentioned earlier, no di-
rect measurements ofVI from the first half of the twenti-
eth century. This precludes the use of Eq. (6) at a single
site. However asVI is a global equipotential, the surface at-
mospheric electrical measurements made simultaneously at
different sites will all have experienced the sameVI above
them (Fig. 5). A set of simultaneous measurements from
several sites consequently contains information about the av-
erage global circuit properties common to them all, and the
ratios of their local columnar resistances (Harrison, 2007).

If a plot of Jz againstσs were made for a set of simultane-
ous measurements from different sites (e.g. Hogg, 1950),Jz
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Fig. 5. Schematic of the effect of global circuit changes on simulta-
neous measurements of the air-earth current density at different Eu-
ropean sites. The ionospheric potential has a constant value above
all the sites. The columnar resistance consists of a free troposphere
component (shaded dark gray), and a boundary layer part compo-
nent (shaded black).

would increase non-linearly withσs , and approach an asymp-
totic value. Physically, this asymptotic value arises when
the (local) lower atmosphere resistance term (RBL) becomes
negligible compared with the (global) upper atmosphere re-
sistance (RFT ). In the limit asσs→∞, the asymptotic value
of current density becomes the free troposphere current den-
sityJ0. This limit provides a method for determiningJ0 from
surface measurements, by using the linear theory in the limit
as (1/σs)→0.

Equation (4) can be rearranged to give

1

Jz

=

(
k

VI

)
1

σs

+
RFT

VI

. (7)

This separates the boundary layer effects (first term on
RHS) from the free troposphere effects (second term on
RHS), which both determine the air-earth current densityJz

at a specific location. This form of the equation is partic-
ularly useful as the second RHS term is independent of the
boundary layer propertiesk andσs . If the boundary layer
is considered to become highly electrically conductive, i.e.
allowing (1/σs)→0, only the free troposphere term remains.
In this theoretical limit, the corresponding value ofJz would
be that corresponding toRBL=0, which is the limiting con-
dition Jz=J0. Equation (7) therefore provides a basis for the
calculation ofJ0 from surface measurements alone, if simul-
taneous, multiple site, values ofJz andσs are available.
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Fig. 6. Measured air-earth currentJz andσs plotted according to
Eq. (7) for(a)Davos, Munich, Kew and Potsdam in 1909 and(b) for
Davos, Munich, Kew, Potsdam and Edinburgh in May–June 1909.
(Error bars are from one standard deviation. For Davos, Munich
and Potsdam in (b), the fractional standard deviation was assumed
to be the same as that for Kew.)

3.2 Test with 1909 data

Simultaneous data sets are relatively rare in atmospheric
electricity, but such measurements were more common in
the first part of the twentieth century. Measurements from
the early twentieth century, from Europe in 1909, have been
used to test Eq. (7). These are:

1. Annual measurements ofσs andJz, given as monthly
values for Munich, Davos, Kew and Potsdam in 1909
(Dobson, 1914)
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Table 1. Annual averages for surface air conductivity and air-earth current density for Potsdam, Kew, Munich and Davos in 1909.

Site Total conductivity (fS m−1) Air-earth current density (pA m−2)
Annual mean standard deviation Annual mean standard deviation

Potsdam 4.72 1.0 1.14 0.2
Kew 2.91 1.3 0.5 0.1
Munich 5.28 1.8 1.51 0.4
Davos 29.88 7.9 1.73 0.2

Table 2. Averages for surface air conductivity and air-earth current
density Davos, Munich, Kew, Potsdam and Edinburgh, for May–
June 1909.

Site Total conductivity Air-earth current density
fS m−1 pA m−2

Edinburgh Obs 2.31 0.41
Edinburgh Obs 2.65 0.52
Waverley Park 4.70 0.97
Blackford Hills 8.02 2.87
Kew 4.03 0.52
Munich 8.17 1.26
Davos 37.30 1.5
Potsdam 5.83 1.17

2. May-June values for 1909σs and Iz for Munich,
Davos, Kew and Potsdam (Dobson, 1914) and Edin-
burgh (Carse and MacOwan, 1910).

These measurements sites all have, in common, air within
a continental boundary layer, but a range of different air
pollution conditions. Tables 1 and 2 give values ofσs and
Jzfrom these sources.

Figure 6 plots the data values as (1/Jz) against (1/σs), for
(a) the annual values and (b) the May–June values, with least-
squares straight lines added. In Fig. 6a, the use of an annual
value compensates to some extent for different seasonal cy-
cles between the different sites, however there are only four
values. In Fig. 6b, extra points are available, but the valida-
tion of Eq. (6) may be less appropriate as only a short period
of data (2 months) is available, and seasonal effects will not
be removed in the same way. It is clear from both plots, how-
ever, that extrapolation to (1/σs)=0 provides a finite positive
value ofJ0. Using the annual values (Fig. 6a), the most prob-
ableJ0=6.0 pA m−2, with a (1 standard error) lower limit of
1.7 pA m−2. For summer values (Fig. 6b), the linear fit gives
J0=5.6 pA m−2 (lower limit of 1.3 pA m−2).

4 Conclusions

A multi-station synthesis approach seems particularly useful
for determining global circuit properties in the period before
balloon or aircraft ascents reached sufficient altitudes to ob-
tain direct measurements of the ionospheric potential, i.e. for
the first half of the twentieth century, when many sets of sur-
face measurements are available.

The use of a simple approximation to the boundary layer
columnar resistance provides a basis for a multi-station syn-
thesis of atmospheric electricity measurements, which per-
mits estimation of electrical properties above the bound-
ary layer without using data requiring balloon ascents. The
method assumes that the shape and variations in the conduc-
tivity profile at each site can be represented in a similar way
on average, although the absolute surface layer columnar re-
sistances are allowed to be different. For the sites examined,
the variability in the data is likely to dominate over the uni-
form conductivity profile assumption. At many sites, such as
the Marsta Observatory in Sweden (Israelsson and Tammet,
2001), the winter boundary layer shows so little variability
that surface measurements in the PG exhibit the global cir-
cuit (Carnegie) variation in the diurnal data. The regularity
in this behaviour across many years indicates that a uniform
conductivity profile assumption is reasonable.

The free tropospheric currentJ0 derived for 1909 in Eu-
rope is poorly constrained because of the variability in the
available data and the limitations of the linear theory applied,
but is estimated to be greater than 1.7 pA m−2, with a prob-
able value of 6 pA m−2. This compares with the direct de-
termination ofJ0=2.4 pA m−2 obtained in 1966–1971, for a
similar region. This suggests a reduction in the global circuit
current density, qualitatively consistent with the reduction in
cosmic ray ion production determined in other studies for the
first half of the twentieth century.
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Isräel, H.: Atmospheric Electricity, Vol. 2 (Fields, charges, cur-
rents) (Problems of Cosmic Physics, Vol. 29), Israel Program for
Scientific Translations, Jerusalem, 1973.

Israelsson, S. and Tammet, H.: Variation of fair weather atmo-
spheric electricity at Marsta Observatory, Sweden, 1993–1998,
J. Atmos. Solar-Terr. Phys., 63, 1693–1703, 2001.

Lockwood, M.: Long-term variations in the magnetic fields of the
Sun and the heliosphere: their origin, effects, and implications,
J. Geophys. Res., 106(A8), 16 021–16 038, 2001.

Lockwood, M., Stamper, R., and Wild, M. N.: A doubling of the
sun’s coronal magnetic field during the last 100 years, Nature,
399, 437–439, 1999.
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