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Abstract. Hydrologic rainfall-runoff models are usually cal-
ibrated with reference to a limited number of recorded flood
events, for which rainfall and runoff measurements are avail-
able. In this framework, model’s parameters consistency de-
pends on the number of both events and hydrograph points
used for calibration, and on measurements reliability. Re-
cently, to make users aware of application limits, major at-
tention has been devoted to the estimation of uncertainty in
hydrologic modelling. Here a simple numerical experiment
is proposed, that allows the analysis of uncertainty in hy-
drologic rainfall-runoff modelling associated to both quantity
and quality of available data.

A distributed rainfall-runoff model based on geomorpho-
logic concepts has been used. The experiment involves the
analysis of an ensemble of model runs, and its overall set up
holds if the model is to be applied in different catchments
and climates, or even if a different hydrologic model is used.
With reference to a set of 100 synthetic rainfall events char-
acterized by a given rainfall volume, the effect of uncertainty
in parameters calibration is studied. An artificial truth – per-
fect observation – is created by using the model in a known
configuration. An external source of uncertainty is intro-
duced by assuming realistic, i.e. uncertain, discharge obser-
vations to calibrate the model. The range of parameters’ val-
ues able to “reproduce” the observation is studied. Finally,
the model uncertainty is evaluated and discussed. The ex-
periment gives useful indications about the number of both
events and data points needed for a careful and stable cali-
bration of a specific model, applied in a given climate and
catchment. Moreover, an insight on the expected and maxi-
mum error in flood peak discharge simulations is given: er-
rors ranging up to 40% are to be expected if parameters are
calibrated on insufficient data sets.
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1 Introduction

In recent years, major interest has been devoted to environ-
mental monitoring and modelling. Thanks to a growing un-
derstanding of physical processes, it is now possible to obtain
realistic catchment-scale descriptions of the dynamics of the
involved components. These improvements led many mod-
ellers to study new methods to calibrate and validate mod-
els. Despite these advancements, hydrologic modelling is
still uncertain. To discriminate different sources of uncer-
tainty in complex non-linear systems, as those that describe
hydrological processes, is very hard (Beven, 2004a, b). A
different way to improve hydrological model reliability is
to advance calibration methods. As a consequence, a num-
ber of calibration methods have been proposed: for example,
Bayesian (Kuczera, 1994), multi-objective (Sorooshian et al.,
1993; Gupta et al., 1998), the GLUE method (Beven and
Binley, 1992) and Kalman filter based (Bras and Rodriguez-
Iturbe, 1985). Nowadays, Markov Chain Monte Carlo algo-
rithms have achieved a growing importance, e.g. Kuczera and
Parent (1998) have used Metropolis and Hastings algorithms
(Metropolis et al., 1953; Hastings, 1970) to evaluate param-
eters’ uncertainty. Nevertheless, calibration is performed by
using a limited number of observations. As a consequence,
it is important not only to apply calibration best procedures,
but also to estimate the uncertainty associated with calibra-
tion results. This approach gives a double advantage: users
are conscious of not having a “perfect” tool and, by knowing
its strength and weak points, they can use it at its best.

The purpose of this work is to delineate an experiment able
to improve our confidence in hydrologic models calibration
based on standard hydrologic observations. Since calibra-
tion reliability increases with the number of events and the
number of hydrograph points – usually peaks – available to
describe each event, the aim of the present work is to ex-
plore external uncertainty associated to model calibration in
terms of the number of both available events and hydrograph
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Figure 1. Location of the Graveglia basin and of the Caminata station, Northern Italy. 

 
Figure 2. Hydrographs ensemble obtained from a single rainfall event with reference to the 
investigated parameter sets (216 channel and hillslope velocities couples). 

Fig. 1. Location of the Graveglia basin and of the Caminata station,
Northern Italy.

points. This experiment proposes an alternative reading of
a more classical sensitivity analysis: in fact, to obtain infor-
mation about the reliability of a model, an analysis of its po-
tential accuracy is set up. While this approach provides the
best performance the model can give for specified climate
and catchment, the overall procedure here proposed can be
taken as a guide for model calibration. Independently from
the hydrologic model used, concepts introduced in this work
can be seen as useful in delineating an optimal calibration
strategy.

The morphology of the Graveglia basin (Fig. 1), in North-
ern Italy, closed at Caminata station, with drained area
∼=40 km2 is taken as laboratory for the experiment. Its el-
evation is modelled through a 40×40 m grid Digital Eleva-
tion Model. To highlight the role of surface propagation
processes, and their relations to observational uncertainty,
the catchment is considered impervious, i.e. infiltration pro-
cesses are not modelled in this experiment.

2 Experimental set up

Hydrologic modelling is performed using the DRiFt – Dis-
charge River Forecast – model: a linear, semi-distributed
event model based on a geomorphologic approach (Giannoni
et al., 2000, 2003, 2005; Boni et al., 2007). This model is
focused on the efficient description of the drainage system in
its essential parts: hillslopes and the channel network are ad-
dressed with two kinematic scales, which determine the base
of the geomorphologic response of the basin.

In the DRiFt model, the geomorphologic module is cou-
pled with a simple distributed representation of soil infiltra-
tion properties, while the rainfall event is schematized with
its variability in time and space. The model presents four
parameters: two for drainage network recognition and two
kinematic parameters. The runoff volume is routed to the
outlet with a Time Variant Unit Hydrograph (TVUH) tech-
nique, which, although representing the basin as a linear sys-
tem, takes into account the spatial and temporal variability
of the runoff generation. While in standard IUH convolution
procedures the whole elementary response of the basin, mul-
tiplied for an average rainfall excess intensity, is considered
and then summed, here, at each temporal step, only those
cells where an actual runoff is produced are used to compute
the UH. This results in that each time step UH is different
from the other. This approach allows the representation of
the runoff generation dispersion due to both rainfall and soil
characteristic heterogeneity, if any, producing a more realis-
tic simulation of basin behaviour.

To simulate rainfall events, the RainFARM model (Rain-
fall Filtered Autoregressive Model, Rebora et al., 2006) has
been used. RainFARM is a method for stochastic rainfall
downscaling. It is based on a non-linear transformation of
a linearly-correlated Gaussian random field; it conserves the
total amount of precipitation cumulated on a chosen spatial
and temporal box, and it takes into account anisotropy be-
tween space and time, if any. It conserves the spatial and tem-
poral correlations of observed meteorological rainfall fields,
and, to take into account orography effects, it conserves also
the spatial position of large rainfall structures. RainFARM
model uses LAM rainfall output and, assuming that rain-
fall’s spectrum has a power-law form, it estimates its spec-
tral slopes. Using RainFARM, 100 realistic and independent
events, with fixed rainfall volume – 7×108 m3 within a 24 h
overall event duration – have been generated, and used as
input for hydrologic modelling.

Although the proposed experiment is a synthetic one, it is
strictly linked with reality: in fact the Graveglia basin mor-
phology is considered, and the rain maps reproduce the char-
acteristic of intense rainfall events.

2.1 Synthetic hydrographs simulation

The aim of this work is to evaluate hydrologic model uncer-
tainty related to parameter sets calibration. For the specific
hydrologic model used, parameters subject to calibration on
the basis of rainfall and discharge observations are those re-
lated to the dynamic of water movement, i.e. hillslope and
channel velocities. As a consequence, an ensemble of hy-
drographs has been first produced with reference to all the
available rainfall events for a wide range of parameter sets.

The investigated parameter sets range includes channel ve-
locities from 0.2 to 4 m/s (Vc) and hillslope velocities from
0.02 to 0.44 m/s (Vh). Within those boundaries, 12 channel
velocities and 18 hillslope velocities have been investigated,
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Figure 1. Location of the Graveglia basin and of the Caminata station, Northern Italy. 

 
Figure 2. Hydrographs ensemble obtained from a single rainfall event with reference to the 
investigated parameter sets (216 channel and hillslope velocities couples). Fig. 2. Hydrographs ensemble obtained from a single rainfall event
with reference to the investigated parameter sets (216 channel and
hillslope velocities couples).

for a total of 216 hydrographs for each rainfall event. The
hydrographs ensemble for a selected rainfall event is shown
in Fig. 2.

Calibration reliability increases with the number of events
and hydrograph points – i.e., flow peaks – made available
to describe each event. In the present work, the uncertainty
associated with the calibration is therefore described as a
function of the number of both events and hydrograph points
made available for calibration. Since the results of this anal-
ysis strictly depend on the type – e.g., peaks – and quality
– e.g., reported in terms of measurement accuracy – of the
available hydrograph points, an objective sampling proce-
dure has been implemented as follows.

2.2 Sampling procedure

A common use of hydrologic modelling is to evaluate peak
flow discharge, in order to identify flooding risks. As a con-
sequence, the proposed sampling procedure firstly identifies
peaks. For a given event, one could easily recognize the first
peak, i.e. the overall discharge maximum. More difficult is
the objective identification of secondary peaks, often con-
fused by automated recognition processes with minor dis-
charge fluctuation. To disregard peaks generated by minor
discharge fluctuations, a smoothing procedure, based on a
moving average technique, is applied as

Qs (i) =

N∑
j=0

[
Q

(
i −

N

2
+ j

)
× f (j)

]
(1)

whereQs(.) is the smoothed discharge,N the number of fil-
ters’ coefficients, andf (j) the Gaussian filters’ coefficients.
The filterf , by means of 11 coefficients, weights the hydro-
graph points’ values in function of their distance from the
analyzed one, assuming a Gaussian distribution.

Once the hydrograph is smoothed, maximum points are
first identified, by calculating the first order derivative, and
then sorted in decreasing order. This procedure, with dif-
ferent number of filter’s coefficients, has been applied itera-
tively to the entire hydrograph set to identify, and disregard,
peaks generated by minor discharge fluctuations.

3 Hydrologic model sensitivity to uncertainty in dis-
charge measurements

As discussed above, calibration results depend on the num-
ber of available events and hydrograph points. Moreover,
they depend also on observations accuracy, as discharge and
rainfall data are far from “perfect”. For example, discharge
estimates are always obtained from depth measurements by
means of a rating curve (for this study area rating curve pa-
rameters are reported by the Italian National Technical Ser-
vice, 1996). This involves two sources of uncertainty: the
first related to the depth measurement, the second to the rat-
ing curve consistency. For this reason, to analyse calibra-
tion reliability in a “real” situation, uncertainty associated
with discharge observations has been explicitly taken into ac-
count.

Once a hydrograph – and the corresponding parameter set
– is assumed as the observed one, all the 21 600 members that
constitute the hydrographs ensemble have been analyzed to
identify congruent hydrographs, and corresponding parame-
ter sets. A hydrograph is considered congruent with the ob-
served one if respective discharge points are included in a
specific range, whose width mimics the uncertainty associ-
ated to discharge measures. While there is neither reference
nor an adequate theoretical explanation on how to select spe-
cific time and water level – i.e., discharge – range, hereinafter
the time window has been selected to mimic the most com-
mon format for discharge records – i.e., one data point for
each hour. Less a-priori knowledge is available for choosing
the discharge range since it depends on different aspects that
include, e.g., the instrument type – with its own accuracy –
and the rating curve consistency.

If just one point, the peak, is available for calibration, con-
gruent hydrographs present peak discharge and time to peak
values that are in the vicinity of the observed values as fol-
lows:

1. Qreal → rating curve:Q=72.51× (H−1.05)
3
2 → Hreal

2. Uncertainty assignment:→ Hmax=Hreal+15 cm
→ Hmin=Hreal−15 cm

3. Hmax→ rating curve:Q=72.51× (H−1.05)
3
2 → Qmax

4. Hmin → rating curve:Q=72.51× (H−1.05)
3
2 → Qmin

5. Tmax=Treal+30 min

6. Tmin=Treal−30 min
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Figure 3. Average number of parameter sets able to produce hydrographs that are congruent with 
the observed one as a function of the number of events and data points used for calibration. 

 
Figure 4. Average channel flow velocity as a function of the number of events and data points used 
for calibration. Shaded area represents the variability, in term of one standard deviation, associated 
with the one hydrograph point calibration.  

 

Fig. 3. Average number of parameter sets able to produce hydro-
graphs that are congruent with the observed one as a function of the
number of events and data points used for calibration.

where:Qreal=peak discharge of the observed hydrograph;
Treal=time of peak discharge for the observed hydrograph.

As a consequence, congruent hydrographs must have a
peak in:

Tmin ÷ Tmax and Qmin < Q(Treal) < Qmax

If more points are available for calibration, congruent hy-
drographs should present all of them in the vicinity of the
corresponding observed values.

In the following, the hydrograph obtained with channel
velocity Vc=1.63 m/s and hillslope velocityVh=0.15 m/s has
been considered as the truth, i.e. the “observed one”.

Figure 3 shows the average number of parameter sets able
to produce hydrographs congruent with the observed one, as
a function of the number of events available for calibration.
The four curves show how this number changes with an in-
crease of the number of hydrograph points available for cali-
bration. It is possible to observe that either an increase in the
number of hydrograph points or in the number of events im-
plies an increase in hydrologic model reliability. For exam-
ple, if only one hydrograph point, e.g. the peak, is available
for calibration, 38 events are needed to identify the correct
parameter set. On the other hand, only two events are needed
if the entire hydrograph is available for calibration. This is
however difficult with simple models targeted to simulate at
best a certain range of discharges.

Figures 4 and 5 show results for the identification of pa-
rameter set values. Hillslope and channel velocities values
are reported as functions of the number of events and hydro-
graph points available for calibration – the grey area high-
lights the variability, i.e. standard deviation, associated with
the curve obtained with one hydrograph point.

One could observe that, having during calibration ob-
served peak discharges for four rainfall events, it is possi-
ble to estimate the first parameter – channel velocity – with

 
Figure 3. Average number of parameter sets able to produce hydrographs that are congruent with 
the observed one as a function of the number of events and data points used for calibration. 

 
Figure 4. Average channel flow velocity as a function of the number of events and data points used 
for calibration. Shaded area represents the variability, in term of one standard deviation, associated 
with the one hydrograph point calibration.  

 

Fig. 4. Average channel flow velocity as a function of the number of
events and data points used for calibration. Shaded area represents
the variability, in term of one standard deviation, associated with
the one hydrograph point calibration.

 
Figure 5. Average hillslope flow velocity as a function of the number of events and data points used 
for calibration. Shaded area represents the variability, in term of one standard deviation, associated 
with the one hydrograph point calibration. 

Fig. 5. Average hillslope flow velocity as a function of the number
of events and data points used for calibration. Shaded area repre-
sents the variability, in term of one standard deviation, associated
with the one hydrograph point calibration.

a 0.2 m/s uncertainty. On the other hand, it is very hard to
reliably estimate the second parameter – hillslope velocity.
Even if a greater number of events will be made available for
calibration, the uncertainty associated with the estimation of
this parameter is large and almost constant with respect to
the number of available events.

4 Effects of uncertainty on flood forecast

If only one point – the peak – for one event is available for
calibration, results show that, on average, 26 parameter sets,
with a standard deviation equal to 16, are able to generate an
output congruent with the observed one. On this basis, one
could be interested in a quantification of the consequences of
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Table 1. Calibration effects in flood forecast.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

this uncertainty when those “congruent” parameter sets are
used for the prediction of peak discharge. To answer this
question, a simple experiment is proposed here.

First a rainfall event is selected, for which 36 parameter
sets are able to identify a peak discharge congruent with the
observed one (Fig. 6). Hydrograph peaks forecasted on the
basis of these parameter sets are then investigated. The re-
maining 99 events have been used for the purpose, and mean
and maximum error on peak discharge evaluation, together
with the percentage of success using these parameter sets,
identified. Results of this analysis are reported in Table 1.
The red colour identifies the parameter set of the observed
hydrograph. In detail:

– the first and the second columns show parameters val-
ues, channel and hillslope velocities, able to identify
peak discharge for the rainfall event available for cal-
ibration;

– the third column shows the percentage of events, cal-
culated on the remaining 99 events, in which peak dis-
charge and time are correctly estimated, according to
the assumed range;

– in the fourth column, the mean peak-discharge error is
reported, as estimated on the remaining 99 events;

 
Figure 6. Observed (red curve) and congruent hydrographs. The dashed box represents peak 
discharge and time to peak range used to identify congruent hydrographs. For this event, 36 
hydrographs out of 216 are selected as congruent.  

Fig. 6. Observed (red curve) and congruent hydrographs. The
dashed box represents peak discharge and time to peak range used
to identify congruent hydrographs. For this event, 36 hydrographs
out of 216 are selected as congruent.

– the fifth column shows the maximum peak-discharge er-
ror in the remaining 99 events.

 
Figure 7 – Example of peak discharge forecasts obtained through the “36” parameter sets selected 
through calibration. The dashed box represents peak discharge and time to peak range used to 
identify congruent hydrographs. One could notice that many hydrographs are not congruent with the 
observed hydrograph (red curve), i.e. the peak falls outside of the dashed box. 

 

Fig. 7. Example of peak discharge forecasts obtained through the
“36” parameter sets selected through calibration. The dashed box
represents peak discharge and time to peak range used to identify
congruent hydrographs. One could notice that many hydrographs
are not congruent with the observed hydrograph (red curve), i.e. the
peak falls outside of the dashed box.

On average, the peak discharge error is about 11%, while the
max peak-discharge error is 39%. It can be noted that the
coupleVc=1.63 m/s–Vh=0.149 m/s provides a correct assess-
ment of the peak-discharge only in 10% of the cases, with a
mean error equal to 21% and a max error of 36%. Moreover,
9 velocity couples –Vc=1.93 m/s; 0.103<Vh<0.44 m/s – are

www.adv-geosci.net/12/33/2007/ Adv. Geosci., 12, 33–38, 2007



38 T. Ghizzoni et al.: Calibration of hydrologic rainfall-runoff models

able to correctly estimate peak-discharge for all the events:
then, by considering the range previously assumed, a correct
assessment of hillslope velocity is almost insignificant.

Figure 7 shows the hydrographs produced through rainfall-
runoff modelling for one of the 99 available events as ob-
tained by using the 36 parameter sets estimated during the
calibration phase. Consequences on peak-discharge forecast-
ing are very strong: it would be possible to forecast a peak
discharge value of 220 m3/s, much lower than the correct one
(350 m3/s).

5 Conclusions

An experiment is described, which is able to improve our
confidence in hydrologic models calibration. This is per-
formed on the basis of standard hydrologic observations, and
proposes an alternative reading of a more classical sensitivity
analysis. The proposed approach can be taken as a guide for
model calibration. In fact, its independence from the specific
model used makes its application possible for a variety of
hydrologic models applied for different catchments and cli-
matic regimes. External uncertainty is associated to model
calibration in terms of the number of both available events
and hydrograph points.

Results give quantitative information about the number of
events and hydrograph’s points – usually peaks – required to
improve calibration and, as a consequence, to increase model
reliability, also in case of uncertain observations.
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