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Abstract. Climatological records users, frequently, request
time series for geographical locations where there is no ob-
served meteorological attributes. Climatological conditions
of the areas or points of interest have to be calculated in-
terpolating observations in the time of neighboring stations
and climate proxy. The aim of the present work is the appli-
cation of reliable and robust procedures for monthly recon-
struction of precipitation time series. Time series is a special
case of symbolic regression and we can use Artificial Neural
Network (ANN) to explore the spatiotemporal dependence of
meteorological attributes. The ANN seems to be an impor-
tant tool for the propagation of the related weather informa-
tion to provide practical solution of uncertainties associated
with interpolation, capturing the spatiotemporal structure of
the data. In practice, one determines the embedding dimen-
sion of the time series attractor (delay time that determine
how data are processed) and uses these numbers to define the
network’s architecture. Meteorological attributes can be ac-
curately predicted by the ANN model architecture: design-
ing, training, validation and testing; the best generalization
of new data is obtained when the mapping represents the sys-
tematic aspects of the data, rather capturing the specific de-
tails of the particular training set. As illustration one takes
monthly total rainfall series recorded in the period 1961–
2005 in the Rio Grande do Sul – Brazil. This reliable and
robust reconstruction method has good performance and in
particular, they were able to capture the intrinsic dynamic of
atmospheric activities. The regional rainfall has been related
to high-frequency atmospheric phenomena, such as El Niño
and La Nĩna events, and low frequency phenomena, such as
the Pacific Decadal Oscillation.
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1 Introduction

One of the major problems in examining weather records
for detecting changes in extremes is the lack of high-quality,
long-term data (ground-based meteorological network does
not operate over a common time period of adequate length).
In general, the biggest drawback is that recorded data avail-
able must be gap-filled and quality controlled to provide a
reliable continuous reference time series. It is important for
time periods where no satisfactory reference series can be
built due to insufficient number of suitable nearby stations or
large discontinuities in the time series. Good quality database
undoubtedly provides a key source of historical meteorologi-
cal information for detection and monitoring of climate vari-
ability. However, in general, the meteorological network was
not designed to serve this function, and preliminary evalua-
tions indicate that few weather stations meet the criteria nec-
essary for inclusion in a climatological sub-network.

The spatial distribution precipitation is summarised by the
subjective descriptive four-moment measures: Mean, Vari-
ance, Skewness and Kurtosis, giving support to the spatial
pattern recognition. A number of homogeneity tests (test-
ing for structural stability) to detect non homogeneities were
employed. Methods for all blended and the effect of natu-
ral variability is established taking into account ensembles of
consecutive years currently used are: (1) The Pettitt test by
A. N. Pettitt (1979) also called Mann-Whitney-Pettitt method
and the Chow test by G. C. Chow (1960) were selected for
nonparametric approach based on the Mann-Whitney; (2)
The SNHT – developed by Alexandersson (1986, 1995) and
Alexandersson and Moberg (1997); (3) The Range Buishand
test by T. Buishand (1982); (4) The Von Neumann ratio test
by J. von Neumann (1941) and (5) The Craddock test by
J. M. Craddock (1979)).

Artificial Neural Network (ANN) procedures are increas-
ingly used in climatological applications (Kalogirou et al.,
1997; Michaelides et al., 1995; Abdelaal and Elhadidy, 1995;
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Fig.1: (a) Brazilian political map and the target region (ellipse marked in blue). (b) Target 
and control rainfall stations used in this study. Positions of stations are indicated by cross, 
WMO numbered as referred to in the text. The meteorological stations of control (ellipses 
marked in red) and meteorological stations with larger number of "missing values” (ellipses 
marked in black). 
 

 

Fig. 1. (a) Brazilian political map and the target region (ellipse
marked in blue).(b) Target and control rainfall stations used in this
study. Positions of stations are indicated by cross, WMO numbered
as referred to in the text. The meteorological stations of control (el-
lipses marked in red) and meteorological stations with larger num-
ber of “missing values” (ellipses marked in black).

Schizas et al., 1994). The ANN can provide proper solu-
tions for climatological problems that are characterised by
non-linearities. The idea in using neural networks or any
other stochastic method for estimating missing rainfall val-
ues is considered because the rainfall recorded at any par-
ticular period at the target and its respective control stations
determines a state in the space-time domain that can be em-
ulated from past or future states. (cf., Kalogirou et al., 1997;
Michaelides et al., 1995)

As expected, this robust reconstruction method has a good
performance; since more information is introduced in the
decision-making system (the conclusion highlights the use of
climate proxies response as potential weather predictor). We
capture the intrinsic dynamics of atmospheric activities, re-
producing good long-term forecasting for periods of at least
a complete cycle of the “El Niño South Oscillation” (ENSO),
the Pacific Decadal Oscillation (PDO) and the Pacific/North
American Teleconnection Pattern (PNA). It seems that the

dynamics are essentially non-chaotic in this time scale, but
perturbed by a fairly large amount of noise. Moreover, some
meteorological variables over Brazil could be accurately pre-
dicted taking into account the model developed by artificial
neural network. This approach recognises very well the mu-
tual spatiotemporal rainfall variability dependence. In addi-
tion, the knowledge of phenomena connected to the precip-
itation variability is very important, particularly where the
cases of extreme precipitation events affect negatively the
life of the populations provoking flooding and dislodgement
of families, or droughts that deprive them of essentials re-
sources of subsistence.

The purpose of this work is to obtain homogeneous cli-
matological series starting from a set of meteorological at-
tributes. A reconstruction criteria based on the construction
of an artificial neural network was adopted. This procedure
was used to substantiate the obtained values integrated in the
spatiotemporal structure of the time series, making possible
to calculate the error estimated by each predicted value of
the new series. The technique can be used to fill-in miss-
ing data from the rainfall observation network but also for
checking suspected data by using the records from surround-
ing stations. This work also consists in analysing long-term
observed rainfall series for localities of some Brazilian re-
gions, corroborating the spatial consistency, apparent cycles
and respective trends. The regional rainfall has been related
to interannual variability, such as El Niño and La Nĩna events
(Kousky et al., 1984; Grimm et al., 2000); and low fre-
quency phenomena, such as the PDO (Andreolli and Kayano,
2005) A complementary application was carried out correlat-
ing the “monitored” rainfall database with the National Cen-
ter for Environmental Prediction (NCEP) – National Center
for Atmospheric Research (NCAR) reanalysis dataset to ver-
ify possible divergences relative to the observed data.

In a first phase, with the objective of illustrating the
method, 6 meteorological stations (83907, 83914, 83950,
83967, 83919 and 83995), of the State of the Rio Grande
do Sul – Brazil were selected (Fig. 1). They were considered
representative of the climate variability of the area, esteem-
ing and filling out the “missing values” in the series of accu-
mulated monthly precipitation. It is important to emphasise
that ANN models can be trained to determine the best mathe-
matical relationship between the atmospheric circulation and
the regional climate, without pre-defined restrictions. This
methodology is capable to capture some of the nonlinear re-
lationships between the local climate and the atmospheric
circulation in large scale. The utility of ANN models lies
in the fact that they can be used to infer a function from ob-
servations.

2 Time series reconstruction background

Data reconstruction is a methodology developed by climate
scientists and meteorologists to remove inconsistencies in a
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time series due to factors unrelated to weather, such as sta-
tion location change, station environment change or change
in instrumentation. The objective of this work is to access
the availability, reliability and homogeneity of the historical
series of meteorological data. The developments of a contin-
uous and complete monthy dataset are useful in a variety of
meteorological and hydrological research applications.

In Eischeid et al. (2000) six different methods of spatial
interpolation were used to create a complete serial dataset
for the western United States (all states west of the Missis-
sippi River). It includes 2034 minimum-maximum tempera-
ture stations and 2962 total daily precipitation locations. The
methods were: (1) the normal ratio method (NR); (2) simple
inverse distance weighting (IDW); (3) optimal interpolation
(OI); (4) multiple regression using the least absolute devi-
ation criterion (MLAD); (5) the single best estimator; and
(6) the median (MED) of the previous five methods (Eis-
cheid et al., 1995). The interpolation schemes were evalu-
ated by monthly integration method. The cross-validation of
the results indicated a distinct seasonality to the efficiency
of the estimates, although no systematic bias in the estima-
tion procedures was found. Statistical summaries were gen-
erated using cross correlations between observed daily val-
ues and those estimated for each of the six different meth-
ods described. The six techniques respond to variations in
season and geography, and the best estimation method is se-
lected based on the efficiency of the estimate over time. The
cross correlations were used to measure the efficiency of each
method, and the method that exhibits the highest correlation
relative to the other methods is utilized to replace missing
values.

Additional investigations performed by the Northeast Re-
gional Climate Center (DeGaetano et al., 1993) have shown
that regression based methods of data estimation tend to
be more accurate than within-station methods. An addi-
tional work (Huth and Nemesova, 1995) has shown that other
weather elements, such as relative humidity, wind speed, and
cloudiness, contribute very little to regression-based meth-
ods and that temperature at neighbouring stations has by far
the highest spatial correlations. DeGaetano et al. (1993) go
on to mention that “while such methods are useful over lim-
ited areas, they are computationally intensive and therefore
not feasible when data estimates are needed for a large num-
ber of stations over a long period of time”. These limitations
have been partially overcome with the use of new high-speed
workstations and large mass storage capabilities that now
provide the horsepower required to perform these intensive
calculations in a reasonable time period. In effect, Statistics
is changing. Modern computers and software make it possi-
ble to look at data graphically and numerically in ways previ-
ously inconceivable. The Artificial Neural Network methods
are part of this revolution.

3 Artificial Neural Network (ANN)

Time series is a special case of symbolic regression and can
be done using the framework of mathematical modelling by
an artificial intelligence network (Bishop, 1995). The Ar-
tificial Neural Network (ANN) explores the dependence of
meteorological attributes as a function of space and time on
inputs to the computer simulations. The use of ANN has
been recognized recently as a promising way of making es-
timations on time series, detecting irregular behaviour. Be-
cause estimates are required for each sample unity separately
over a variety of terrain with a differing number of avail-
able surrounding observations, we have chosen a different
method for filling meteorological gaps. An ANN is an inter-
connected group of artificial neurones that uses a mathemati-
cal model for information processing based on a connection-
ist approach to computation. In most cases an ANN is an
adaptive system that changes its structure based on external
or internal information that flows through the network. In
more practical terms neural networks are non-linear statisti-
cal data modelling tools. They can be used to model complex
relationships between inputs and outputs or to find patterns
in data.

The ANNs are essentially simple mathematical models
defining a functionf :X→Y . Each type of ANN model cor-
responds to a class of such functions. In effect, the word net-
work in the term “artificial neural network” arises because
the functionf (X) is defined as a composition of functions
gk(X), which can further be defined as a composition of
other functions. This can be conveniently represented as a
network structure, with arrows depicting the dependencies
between variables. A widely used type of composition is the

nonlinear weighted sumf (X)=K

[∑
i

wigi(X)

]
, whereK

is some predefined function, such as the hyperbolic tangent
(widely used for climate data).

Learning: Given a specifictask to solve, and aclassof
functionsF , learning means using a set ofobservations, in
order to findf ∗

∈F , which solves the task in anoptimal
sense. This entails defining a cost functionC : F→< such
that, for the optimal solutionf ∗, C(f ∗)≤C(f ) ∀f ∈F , i.e.,
no solution has a cost less than the cost of the optimal solu-
tion. The cost function is an important concept in learning,
as it is a measure of how far away we are from an optimal
solution to the problem that we want to solve. Learning al-
gorithms search through the solution space in order to find a
function that has the smallest possible cost. For applications
where the solution is dependent on some data, the cost must
necessarily be a function of the observations, otherwise we
would not be modelling anything related to the data. It is fre-
quently defined as a statistic to which only approximations
can be made. In this work we consider the problem of find-
ing the modelf which minimises the error function, for data
pairs(x∈X, y∈Y ) drawn from some distributionD.
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Pratically, the cost is minimised over a sample of the data
rather than the true data distribution. Despite the three ma-
jor learning paradigms, in supervised learning, we are given
a set of(x∈X, y∈Y ) pairs and the aim is to find a function
f in the allowed class of functions that matches. In other
words, we wish toinfer the mapping implied by the data; the
cost function is related to the mismatch between our map-
ping and the data and it implicitly contains prior knowledge
about the problem domain. A commonly used cost is the
mean-squared error which tries to minimise the average er-
ror between the network’s output,f (x), and the target value
y over all pairs. When one tries to minimise this cost using
gradient descent (done by simply taking the derivative of the
cost function with respect to the network parameters and then
changing those parameters in a gradient-related direction) for
the class of neural networks called Multilayer Perceptrons,
one obtains the well-known backpropagation algorithm for
training neural networks. Tasks that fall within the paradigm
of supervised learning are pattern recognition (also known
as classification) and regression (also known as function ap-
proximation). The supervised learning paradigm is widely
applicable to sequential data. The algorithms are mathemati-
cal techniques for minimising the discrepancy between a pa-
rameterised function and a set of pairs of inputs and “correct”
outputs, where the overall function is partitioned into layers
of vector functions.

Back Propagation: It is the best-known training algo-
rithm for multi-layer neural networks. It defines rules of
propagating the network error back from network output to
network input units and adjusting network weights along
with this back propagation. It requires lower memory re-
sources than most learning algorithms and usually gets an
acceptable result, although it can be too slow to reach the er-
ror minimum and sometimes does not find the best solution.

Quick Propagation: It is a heuristic modification of the
back propagation algorithm. This training algorithm treats
the weights as if they were quasi-independent and attempts
to use a simple quadratic model to approximate the error sur-
face. In spite the fact that the algorithm hasn’t got theoretical
foundation, it’s proved to be much faster than standard back-
propagation for many problems. However, sometimes the
quick propagation algorithm may be unstable and inclined to
stuck in local minima.

Training a neural network model essentially means select-
ing one model from the set of allowed models, i.e., in a
Bayesian framework, determining a distribution over the set
of allowed models that minimises the cost criterion. Evo-
lutionary methods, simulated annealing, and expectation-
maximisation and non-parametric methods are among other
commonly used methods for training neural networks.

The stochastic ANN approach using empirical Bayesian
updating seems to be an important tool for the propagation
of the related weather information to provide practical geo-
statistics solution of uncertainties associated with the inter-
polation and capturing the spatiotemporal structure of the

data. The basic idea is to import the entire posterior distri-
bution from other locations allowing prediction of unsam-
pled weather parameters using spatial related sampled in-
formation. The temporal dependence of model parameters
is evaluated in a Bayesian framework. A model is used to
predict the process of interestY at the timet . This mul-
tivariate procedure uses the available related weather data
sets and climate proxies (monitoring and assembling network
sites). The ANN methodology is applied to climate time se-
ries (regional precipitation records, using climate proxies).
In particular, cross-correlation technique is applied to exam-
ine coherence and phase relationships between various cli-
mate time series on interannual scale. A model is used to
predict the processY at the timet and locations.

Lemma 1:The prior information at timet can be modelled
by a temporal prior function given by:

2(Y(t)) = f (Y (t)|X(t1), ..., X(tk)).

Lemma 2: The model of temporal dependence allows an
empirical Bayesian updating of any prior2(Y(t)) by neigh-
bouring related datas1, ..., sn.

The basic idea is to interpret the prior distribution
2(y∈Y (t)) as realisations of the corresponding temporal
random function2(Y(t)). The spatiotemporal dependence
can be explored by examining the distribution of nearest-
neighbour distances.

4 Experimental dataset and missing data estimation

The ANN technique is illustrated by means of some real case
studies of precipitation through the state of the Rio Grande do
Sul (RS) in Brazil (Fig. 1), taking into account the monthly
total rainfall series recorded in the period 1961–2005. The
meteorological stations 83967 (Porto Alegre), 83907 (São
Luiz Gonzaga), 83914 (Passo Fundo) and 83980 (Bagé) are
the time series that presented smaller number of missing val-
ues – that’s because they have been chosen as “control” for
the local information, to verify the behavior and the per-
formance of the trained network. In a similar way, it was
observed that the meteorological station 83919 (Bom Jesus)
presented a total of 95 continuous missing values in the be-
ginning of the series and the station 83995 (Rio Grande) in-
clude a total of 49 intermittent missing values – these are our
“target” stations!

In any spatial interpolation scheme the selection and quan-
tity of surrounding stations are critically important to the re-
sults of the interpolations. Problems arise when using cli-
matological data because of missing values and the varying
availability of stations through time. In order to determine
which stations are to be used, surrounding stations are pre-
selected based on their relationship with the target station.
The closest stations are identified for each target station and
are ranked by the value of the correlation coefficient between
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Fig.2: The Niños Region: Niño1+2: 0-10OS, 90-80OW, Niño3: 5ON-5OS, 150-90OW, 
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Fig. 2. The Niños Region: Nĩno1+2: 0–10 OS, 90–80 OW, Niño3: 5 ON–5 OS, 150–90 OW, Niño4: 5 ON–5 OS, 160 E–150 OW, Niño3+4:
5 ON–5 OS, 170–120 OW. 

  

  
Fig.3: The time series graphic representation of the monthly "climate proxy: 4 indicators 
employed in this manuscript. 
 

 

Fig. 3. The time series graphic representation of the monthly “climate proxy: 4 indicators employed in this manuscript.

the candidate station and its neighbours. The ANN esti-
mation technique based on spatiotemporal objective analysis
scheme is used to estimate monthly values, with the “best”
estimate chosen as a missing value replacement for the de-
velopment of regional monthly total precipitation time series
over Brazil.

One determines the embedding dimension (number of past
observations) of the time series attractor (delay time that de-
termine how data are processed) and uses this measure to
define the network’s architecture. Physically, the attractor is
the object to which the time series in a phase space (space in
which each point describes the state of a dynamical system

www.adv-geosci.net/10/67/2007/ Adv. Geosci., 10, 67–76, 2007
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Fig.4: Sensibility analysis  of the input variables in the precipitation times series 
reconstruction, via ANN, of the meteorological stations 83919 and 83995. 

 
 
 
 
 
 
 
 
 

 

Fig. 4. Sensibility analysis of the input variables in the precipitation
times series reconstruction, via ANN, of the meteorological stations
83919 and 83995.

as a function of the non-constant parameters of the system)
is attracted to. Some meteorological attributes can be ac-
curately predicted by the spatiotemporal ANN model archi-
tecture: designing, training, validation and testing. The best
generalisation of new data is obtained when the mapping rep-
resents the systematic aspects of the data, rather capturing the
specific details of the particular training set.

The replacement of missing monthly values for total pre-
cipitation includes the use of nearby simultaneous values to
calculate an estimated value at the target station over the pe-
riod of time for which adequate data are available. The ef-
ficiency, or accuracy, of the estimates over a long period of
time provides the information used to assess the quality of es-
timated monthly values. Estimated monthly values are used
in “ lieu” of missing values as a mean of making a particular
station serially complete. There are numerous spatial inter-

polation methods available for point estimation with irregu-
larly spaced data. Typically, the choice of methodology is de-
pendent on several factors: the meteorological variable under
consideration, the geographical area, the spatial distribution
of surrounding observations, and the day–month–season for
which the target station will be estimated.

5 Large-scale teleconnections

Climate proxies are sources of climate information and vari-
ability from natural archives such as historical records, which
can be used to estimate climate conditions. The proxy in-
dicators typically must be calibrated to yield a quantitative
reconstruction of past climate. In effect, a proxy variable is
something that is probably not in itself of any direct inter-
est, but from which a variable of interest can be obtained.
In this work we use the information of particular sea sur-
face temperature (Fig. 2) and some climate proxies (Fig. 3)
of ocean characteristic to “create” rain-gauge based precip-
itation records. These indicators are considered in the first
(input) layer of the ANN, where it is necessary to carefully
calibrate the proxy against the variable of interest, in this case
local monthly precipitation.

The Southern Oscillation Index (SOI) is based on the stan-
dardised pressure difference between Tahiti and Darwin. The
El Niño Southern Oscillation (ENSO) phenomenon is the
major cause of year-to-year variations in climate over the
globe. The Pacific Decadal Oscillation (PDO) is a leading
index associated to the ENSO phenomenon by taking into
account the monthly Sea Surface Temperature (SST) anoma-
lies in the North Pacific Ocean. In effect, to characterise the
nature of the ENSO, SST anomalies in different regions of
the Pacific is used.

The Trans-Nĩno Index (TNI), which is given by the differ-
ence in standardised (1950–1979) anomalies of SST between
Niño1+2 and Nĩno4 regions, is used as an optimal descrip-
tion of the character and evolution of El Niño or La Nĩna.
The Pacific Decadal Oscillation (PDO) is a leading index as-
sociated with the Sea Surface Temperature (SST) anomalies
in the North Pacific Ocean. In effect, to characterise the na-
ture of the ENSO, SST anomalies in different regions of the
Pacific is used.

The Multivariate ENSO Index (MEI) is calculated based
on the six main observed variables over the tropical Pa-
cific. These six variables are: sea-level pressure (P), zonal
(U) and meridional (V) components of the surface wind,
sea surface temperature (S), surface air temperature (A), and
total cloudiness fraction of the sky (C). The MEI is com-
puted separately for each of twelve sliding bi-monthly sea-
sons (Dec/Jan, Jan/Feb,..., Nov/Dec). The MEI is calculated
as the first unrotated Principal Component (PC) of all six ob-
served fields combined.

The PNA teleconnection index, a measure of the strength
and phase of the Pacific/North American teleconnection
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Fig.5: 83919 – ANN Architecture: [15-76-1], “Bootstrap” resampling rate: |W|=80% 
(percentage of the cross-validation) and 83995 – ANN Architecture: [15-39-1], |W|=14%. 
Hyperbolic tangent, Quick Propagation algorithm. Learning rate was set to 1%; momentum 
factor rate: 1.75. 2000 iterations and 2 retraining. 68% of the data were used for training 
(TRN) the network, 16% were randomly selected to be used as test (TST) pattern and 16% 
were used for validation (VLD). 

 

Fig. 5. 83919 – ANN Architecture: [15-76-1], “Bootstrap” resampling rate:|W |=0.8% (percentage of the cross-validation) and 83995 –
ANN Architecture: [15-39-1],|W |=1.4%. Hyperbolic tangent, Quick Propagation algorithm. Learning rate was set to 1%; momentum factor
rate: 1.75. 2000 iterations and 2 retraining. 68% of the data were used for training (TRN) the network, 16% were randomly selected to be
used as test (TST) pattern and 16% were used for validation (VLD).
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Fig.6: Mapping learning with correlation coefficient of about 0.84 for 83919 and 0.72 for 
83995. 

 

Fig. 6. Mapping learning with correlation coefficient of about 0.84 for 83919 and 0.72 for 83995.

pattern, is used to examine changes in the midtropospheric
flow over North America on decadal, interannual, and intra-
annual time scales. The index corroborates previous find-
ings that a major change in the midtropospheric circulation
took place over North America during the late 1950s. The
time series of index values also demonstrates the existence
of a previously unknown quasi periodicity in the configu-
ration of midtropospheric heights over the North American
sector (Leathers and Palecki, 1991). A different formulation
of the PNA index, namely as the second principal compo-
nent of Northern Hemisphere extratropical sea-level pressure
anomalies, was proposed in the 1990s. The Northern Annu-
lar Mode (NAM) is the first Empirical Orthogonal Function
(EOF), which explains the maximum variability of the pro-
cess (EOF1) and the PNA is the EOF2

In practice, one splits the available data in training, test-
ing and validating (evaluation) sets. For each proxy vector
the corresponding rain-gauge values on the ground were also
known in neighbour related or control stations. The rain-
gauge values were used as the table of truth in order to decide
whether the rain prediction using the proxies’ measurements
was successful.

6 Results and conclusions

This research work summarizes a procedure used to cre-
ate serially complete monthly precipitation datasets (1961–
2005) for the state of Rio Grande do Sul - Brazil. Deter-
mining target and estimator stations by scanning the quality
of individual station records, reconciling metadata (includ-
ing observation times and station locations), and categoris-
ing observations proved to be time consuming but necessary.
Estimating the missing data values and cross validating the
results proved to be relatively straightforward once prepara-

tory work was accomplished. Our results show that the ef-
ficacy of the estimation procedure and thus the reliability of
the estimated missing values are dependent on a number of
factors.

In this study, different neural network architectures and
learning rates were tested, aiming at establishing a network
that resulted in the best possible reconstruction of missing
rainfall data. A multiple hidden layer architecture was cho-
sen. This kind of architecture has been adopted for solving
problems with similar requirements. The parameters used for
the training of the network were collected at each control sta-
tion and climate proxies. It is well known that depending on
the meteorological parameter under study, the selection and
quantity of surrounding stations are critically important to the
results of the interpolations. We feel that the pre-selection of
surrounding stations, based on their relationship with the sta-
tion to be estimated, is an integral first step.

Through inputs importance (sensibility analysis) – Fig. 4,
it was verified that the periodicity variables (month and sea-
son) were the most important for the network during the
training phase in both the stations (greater than 50%). Al-
though should be emphasised that for the station 83919 the
proxy MEI presented an importance of 10% while for the sta-
tion 83995 the variable NINO3 was the most important proxy
(6%). In Fig. 5 and 6 were verified for the station 83919 a
correlation of 0,84 and R2 of 0,72 with the selected neural
network architecture [15(29)-76-1] – input: 15 attributes (13
continuos variables = 4 rain-gauge stations, 5 climate proxies
and 4 sea surface temperature from Niño regions; 2 categor-
ical variables: months and seasons) linear neurons (input:
29 (13+12+4) attributes if we consider that each categorical
variable can be represented by each intrinsic classification) –
hidden: 76 neurons (hyperbolic tangent with Gaussian com-
plement) – output: 1 linear neuron (with logistic control) –
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Fig.7: Time series of monthly precipitation: Original versus Reconstructed. 

 

Fig. 7. Time series of monthly precipitation: Original versus Reconstructed.

while for the station 83995 presented a correlation of 0.72
and R2 of 0.51 with [15-39-1]. It was demonstrated that
the network presented a optimum answer during the train-
ing phase, however, during the validation and test phase the
net tends to overestimate the observed values, mostly, at the
station 83995. Subsequent to the net calibration and train-
ing was accomplished the series reconstruction of monthly
precipitation to stations 83919 (81 missing values at the be-
ginning of the series) and 83995 (49 missing values intermit-
tent).

On the other hand, should be carried in consideration that
the trained network just results from some variables “prox-
ies” and rain-gauge data from 4 control stations of input
(without missing values or maximum of 10 missing values
inside the series). Maybe, new variables inclusion (informa-
tion locals in situ) in the training phase will be able to con-
tribute for a more robust form for the results generated by the

model. The correlation coefficient obtained for the training
data set was about 70%. The verification of the network was
done by using unknown data for the target station. This was
made for months, whose data were excluded from the train-
ing set. The correlation coefficient for the unknown case was
about 80%.

The conclusions highlight the use of climate proxies re-
sponse as potential weather predictor. The use of ANN has
been recognised recently as a promising way of making pre-
dictions on time series, detecting irregular behaviour. As ex-
pected, this robust reconstruction method has good perfor-
mance; since more information is introduced in the decision-
making system (cf., Fig. 7). The technique introduced in the
present study aims primarily at producing a spatiotemporal
series of monthly rainfall at an observation site with a limited
set of data. The findings presented in this study show that the
series reconstruction using artificial neural networks for the
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intended purpose is adequately acceptable. The prediction
error was confined to less than 5%, which is considered by
the meteorologist satisfactory.
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