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Abstract. Spatial interpolation of precipitation data is un- network but precipitation is a quantity with high spatial vari-
certain. How important is this uncertainty and how can it ability. Therefore, it is a valid question to ask if such a den-
be considered in evaluation of high-resolution probabilistic sity of observations allows for evaluation of daily precipita-
precipitation forecasts? These questions are discussed by etion forecasts in mountainous catchments with a typical area
perimental evaluation of the COSMO consortium’s limited- as small as about 1500 Kfh

area ensemble prediction system COSMO-LEPS. The ap- Recently, ensemble prediction systems (EPS) became op-
plied performance measure is the often used Brier skill scoreerational which predict forecast probabilities by integration
(BSS). The observational references in the evaluation are (agf an ensemble of numerical weather prediction models from
analyzed rain gauge data by ordinary Kriging and (b) ensemslightly different initial states and model parametegaren-

bles of interpolated rain gauge data by stochastic simulationdorfer, 1997 Palmer 2000. The motivation for the EPS is
This permits the consideration of either a deterministic ref-that the spread in the ensemble forecasts indicates forecast
erence (the event is observed or not with 100% certainty)Juncertainty and the interpretation of the forecast probabili-
or a probabilistic reference that makes allowance for un-ties provides better results than interpretation of one single
certainties in spatial averaging. The evaluation experimentsleterministic forecast that is initiated by the best known but
show that the evaluation uncertainties are substantial even fatiethertheless uncertain atmospheric stZteu et al.(2002

the large area (41 300 Kinof Switzerland with a mean rain  showed with a simple cost-loss model that for most users the
gauge distance as good as 7 km: the one- to three-day prensemble forecasts offer a higher economic value than the
cipitation forecasts have skill decreasing with forecast leaddeterministic forecast.

time but the one- and two-day forecast performances differ Here, EPS precipitation forecasts of the limited-area EPS
not significantly. COSMO-LEPS Kontani et al, 2003 with grid-spacing of
10km are evaluated for the year 2005 for Switzerland and
for three selected catchments (cf. Flg. These three catch-
ments are one pre-alpine catchment, the Thur, and two alpine
catchments, the Aare (part of an elongated wet anomaly ex-

Weather forecast systems have to be evaluated. Nowaday£nding along the northern rim of the Alps) and the Hinter-
rhein (relatively dry inner-alpine area).

limited-area numerical weather prediction models provide _ !
meteorological forecasts with kilometer-scale horizontal grid  FOr the evaluation exercise presented here, we apply the
spacing. High-resolution precipitation forecasts are of pri-commonly used Brier skill score (BSS). The BSS assess the
mary interest. For example, in flood forecasting systems thérobability forecasts of dichotomous events (e.g. the proba-
precipitation details are a crucial input parameter. b|I|Fy of more than 10 mm precipitation in the penod and area
A typical distance between precipitation observation site of interest). In BSS application the observational reference

with daily observation frequency in the European Alps is is typically assumed to be certain: the observed event prob-
10 km (cf. Fig.1 for the distribution of precipitation stations

ability is either zero or one. The uncertainty in the observed
in Switzerland). This is a comparatively dense observation

1 Introduction

catchment precipitation is often neglected.

This and the advantage of generating ensembles of inter-
Correspondence td3. Ahrens polated observational fields, i.e. a probabilistic reference,
(bodo.ahrens@iau.uni-frankfurt.de) through stochastic simulations is discussed in Sed@efore
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140 B. Ahrens and S. Jaun: On evaluation of ensemble precipitation forecasts

ble prediction system COSMO-LEPS&I¢ntani et al, 2003
andhttp://www.cosmo-model.ojg The COSMO-LEPS im-
plementation is formally validated iMarsigli et al.(2005.

We selected the year 2005 as our evaluation period, since it
has been without major changes in the operational LEPS set-
up. In that period the ensemble size was set to ten and each
ensemble member’s forecast with grid-spacing of 10 km was
initiated each day at 12:00 UTC. Here precipitation simula-
tions for the forecast hours 18 to 42 h, 42 to 66 h, and 66 to
90h (the one-, two-, and three-day forecasts, respectively)
are assessed.

Each LEPS member is nested into a different representa-
tive forecast of a coarser-grid global EPS (the operational
ensemble forecast of the European Centre of Medium Range
Forecasts, Reading). These representative global members

ments named Thur (1700Ia)1 Aare (1200 krﬁ), and Hinterrhein &€ selected by grouping the g!ObaI memb,ers ir?to ten clus-
(1500 knf). The circles show the locations of the rain station net- ters based on the analysis of wind and vorticity fields over a

work ALL and the subset indicated by the red crosses show thedomain covering most of Europiblteni et al, 2003). From
locations of the network SUB. each cluster the central member (with minimum distance to

all cluster members) is chosen to host a limited-area forecast.
In the evaluation presented below we consider limited-area
that we introduce the available observational data and thgePS members either weighted with cluster size or not.
evaluated limited-area EPS. Fina”y, evaluation results with Figurez shows the One_day forecast of the LEPS member
and without observation Uncertainty will be discussed |nthat is driven by the most representative member (the cen-
Sect.5 and some concluding remarks will be given. tral member from the cluster with about 25% of the global
members) for 21 August 2005. This precipitation event led
to major flooding in the northern European Alps. Also given
in Fig. 2 are interpolated precipitation observations (cf. next
gsection). The forecast depicts the coarse-scale features of

This paper investigates precipitation in Switzerland an S ; o
smaller catchments in the year 2005. The considered temthe precipitation pattern but also over-estimates precipitation

poral resolution of the evaluation is daily. The reference Substantially in the central region of the event.
are precipitation data as observed by the Swiss conventional
precipitation station network available through the national

weather service MeteoSwiss with about 430 stations in 200§

and a mean next-neighbor distance of about 7 km. The dat . .
from this dense network is named ALL here. Also con- Fhe direct model output at grid-box scale should not be ap-

sidered in the evaluation is a coarser data subset observe[%l'ed and some tempora] and spatlfal smoothing of th.e output
iS recommended for being numerically representative (e.g.

by 65 stations, which are located close to stations of the au- .
tomatic measurement network ANETZ of MeteoSwiss with Grass 2009 Ahrens 2003. Here, daily catchment means

mean next-neighbor station distance of about 17 km, ThiSof precipitation are evaluated with averages over at least 15

S |model grid-boxes and thus the forecasts can be assumed rep-
subset resembles the data availability in case of near real- . . . .
.resentative. But how to estimate representative observational

time evaluation or in less densely observed regions and is o . .
. : . . references from the limited number of rain gauge stations

named SUB. ANETZ data itself is not applied to avoid prob- : : . .

. L . . . . available? This has to be done by interpolation and averag-
lems with mixing of different station types in the evaluation. .

D . . ing to the catchment scale.
The spatial distributions of the two station sets are illus- Here we aoplv ordinary Kriging with a soherical vari

trated in Fig.1. Within the considered catchments the num- ' pply y 1nging P

bers of stations are of the order of ten in case of ALL but og[am mof?el as one (ljntergolatllc_mdmethod_. _tK:_lglng VTH'.
only of two in case of SUB. Therefore, differences in evalu- ants are often proposed and applied In precipriation analysis

ation with the different data sets are to be expected. (Creutin and Obled1982 Atkinson and ngyd 1998 B_eck.
and Ahrens2004). For the necessary variogram estimation

we adopted a sub-optimal but robust approathréns and
3 Limited-area prediction system COSMO-LEPS Beck 2006. From the daily data of the year 2005 we esti-
mated from standardized observations a climatological vari-
The experimentally evaluated ensemble data are forecast bygram range to about 40 km with a sill of 1 (mn#dpy con-
the consortium for small-scale modeling limited-area ensem-struction). For daily analyses the sill is rescaled with the data

Fig. 1. Switzerland (total area: 41300Knand three catch-

2 Precipitation data

Evaluation method
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Fig. 2. Precipitation of 21 August 2005 in Switzerland as interpolated by Kriging (upper left panel), by stochastic simulation with ALL
stations (upper right) or SUB stations (lower left), and as predicted by a 1-day forecast of the most representative COSMO-LEPS member
(lower right). The locations of the considered stations are indicated by small circles.

variance. For either data set, ALL and SUB, a local neigh-covariance structureJ¢urne] 1974 Chiles 1999 Ahrens
borhood of 8 stations is considered in interpolation. Figure and Beck 200§. Therefore, the spatial variability is rep-
shows the Kriging analysis for the day 21 August 2005 with resented more realistically in the stochastic realizations than
ALL data. in Kriging. For the evaluation exercise a large ensemble of
Kriging is an example of a data-fitting technique. There- observation-based realizations is generated and thus a prob-
fore, it is expected that the interpolated fields underestimatebilistic observational reference (POR) is available. This al-
the true field variance (the smoothing relationship of Kriging lows the comparison of probabilistic EPS forecasts against
states that the interpolated field variance at any location ishe POR by comparison of probability distributions. Addi-
the data variance minus the Kriging variance) with the con-tionally, an ensemble of comparisons against the multiple
sequence that the variance of the catchment time series i®alizations reference (MRR) of the observational ensemble
underestimated. More important in evaluation is that the escan be performed and the spread in these comparisons pro-
timation of the interpolation errors is extremely difficult in vides a precision measure for the evaluation without trou-
case of precipitation since the stationarity and normality as-blesome estimation and interpretation of the Kriging vari-
sumptions of Kriging are not very well fulfilled. Here, the ance. Averaging the ensemble of observation-based realiza-
areal precipitation estimate through ordinary Kriging is con- tions yields a data-fitting technique (and this mean interpo-
sidered a deterministic observational reference (DOR) beifator is thus smoother than any ensemble member) and is in
cause no uncertainty in interpolation is considered. the limit of large ensembles equivalent to a Kriging approach.
An alternative interpolation approach is based on stochasThe ensemble average yields another DOR in the following
tic simulation of an ensemble of precipitation fields with evaluation.
conditioning on the available station data. The idea is to Stochastic interpolation is done by conditioned sequen-
simulate stochastically field realizations that “honor” the ob- tial Gaussian simulation (e.glphnson1987 Chiles 1999
served data, their point values, their areal mean, and thei€hap. 7) as it is implemented in the geostatistical software
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less, the applied methods are state-of-the-art for daily high-
resolution precipitation interpolation.

An often applied performance measure in evaluation of
probabilistic forecasts also applied here is the Brier skill
8 score, BSS, (cfStanski et al. 1989 Wilks, 2006 and
| Il — references wherein). The BSS compares probability fore-
UL castsY;=P(y;<yp) atdates=1, 2, ..., T of forecast events
y:<yo (yo is a chosen event threshold: e.g. 10 mm/d in case
i of precipitation forecasts,;) with the observed event prob-
abilities O;,=P (x;<xg) of some observational quantity
g aniiia with related thresholdg. Commonly, the observations are
assumed perfect and thds € {0, 1} — the event occurred
= 1 or did not. This is the assumption made in evaluation with
o DOR. Figure3 shows that our knowledge about observed

w w w w w event occurrence is uncertain: for several precipitation days

0 10 20 30 40 the 90th percentile threshold is within the confidence inter-
val of the reference values. Therefore, POR has to be applied
and theO,’s codomain is the interv4D, 1].

The BSS is defined b
Fig. 3. The median LEPS 1-day forecasts versus the median y

observation-based stochastic interpolations of the SUB network. BS(Y, 0)

The precipitation values are daily and Swiss averages. The bars iBBSS=1— BS(C.0) 1)
dicate the 90% confidence intervals of the forecasts (red) and of the ’

interpolations (blue). The thick black lines give the 90th percentileswith the Brier score

of the interpolations (10.5 mm/d) and the forecasts (13.8 mm/d).

Precip(LEPS) [mm/d]
20
|
il

Precip(Obs) [mm/d]

T
BS(Y, 0) =1/T Y (¥, — 01)° )

t=1
package “gstat’"Pebesma2004). Sequential simulation in- ) _
volves the generation of a Gaussian random field, condi-The BS is essentially the mean squared error of the proba-
tioned to the observed data, that honors the variogram of théilistic forecast. The B&, 0) of some climatological fore-
random field. Since daily precipitation is a non-Gaussian,castC is introduced as a reference forecast in the BSS for
non-negative process, the data has been normalized by a |o§_ormalization. The skill score equals one in case of_ perfect
arithmic transformation and applying variogram estimatesforecasts (a perfegt fprecast ofan uncertain observational ref-
for the transformed data based on rescaling of the climato€'€nce is uncertain itself) and zero if the evaluated forecast
logical variogram with an estimated climatological range of SKill compares to the skill of the climatology.
about 100km. For each day and data set an ensemble of The estimation of forecast probabilities from small EPS
realizations with one hundred members is generated and agéads to biased BSS valuediiller et al, 2009. The
plied in the following comparisons. Each ensemble membe/COSMO-LEPS ensemble size is ten only. Therefore, we de-
is less accurate than the Kriging analysis in a squared-erroPiased the BSS followingveigel et al.(2006. The clima-

sense by construction, but respects the covariance structuf@logical probability of some precipitation forecast thresh-

given by the observations. old can not be estimated reliably because of the short pe-
Figure2 shows two realizations of stochastic interpolation: riod of avallaple (.:OSMO'LEPS d_ata. We applied instead the

one is conditioned on ALL and the other on SUB obser- 90th percen_tlles in 2005 depending on the data-set (forecast
vations. As expected the stochastic interpolation is rougheP IreOtt)ﬁgr;/r?rt;?\-c?IZS; ? tﬁzti?imsg?e?;g:fsmgs' AFLoLr ;;(tzm-
than Kriging. Additionally, it can be seen that the condition- pie, 9

. 4 - : in Switzerland is 9.5mm/d, for the stochastically interpo-
ing by ALL is more restrictive than by SUB by comparison lated realizations 9.7 mm/d, and for the EPS forecasts about
with the Kriging interpolation of the dense ALL network ' :

data. Figure3 illustrates that in case of the SUB network 13.5mm/d. This data-set dependent selection of thresholds

there is even for daily and Swiss averages substantial scatt 1$ equivalent to some forecast post-processing and improves

in the observational reference. The scatter is even larger fo(:fr'[1e BSS.

the smaller catchments (not shown).

Optimal interpolation of precipitation fields is an active 5 Results
field of research. The remaining deficiencies of the Krig-
ing analysis and stochastic simulation upscaling motivate theAs mentioned above the probabilistic EPS forecasts are usu-
discussion of the advantages of PORs over DORs. Nevertheally compared against deterministic references (DORS). This
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Table 1. BSS values for the 1-,2-, and 3-day COSMO-LEPS - |

_ ; : ! S O Swiss, weighted
forecasts with weighted members. Different observational refer- O Swiss, unweighted
ences based on ALL observations are applied in the BSS estima- © | O Aare, weighted
tion: (a) deterministic observational references (DOR) by Krig- e O Aare, unweighted
. R . . . _ filled: ALL, unfilled: SUB
ing/averaging of ensembles of stochastically interpolated fields, (b) o
multiple stochastic realizations (MRR) yielding an BSS ensemble S AHH
(the first and third quartiles of the BSS distributions are given), and W 0" ®omo

e} m]

=
(c) probabilistic references (POR). g P A 1]
o ﬂ Ir [m] Cusy
lday 2days 3days @ Onm " ©n
Switzerland %Lﬂj E Eﬂ]

DOR  .44/45 .42/45 .36/.33 S IF
MRR  .44-48 .43-45 .31-.33
POR .48 .46 .34 2

Thur \ \ I
DOR  .44/.46 .36/.37 .27/.28 d 2d 3d
MRR .39-.44 .32-37 .24-.28
POR 45 37 28 Forecast Day

Hinterrhein

DOR .20/.18 .18/.17 .19/.17 Fig. 4. BSSs of ensemble forecasts in the Swiss and Aare areas.
MRR .18-20 .17-.18 .17-.20 The darker symbols (black, dark red) indicate evaluation against the
POR .20 .18 .19 probabilistic reference, the lighter symbols (grey, light red) indicate

Aare evaluation against the deterministic ensemble mean reference, the
DOR .37/.36 .29/.20 .25/.21 bars indicate the inter-quartile range of evaluation results against
MRR .31-36 .18-22 .21-24 single members of the observational ensemble, and the filled and
POR .38 .23 .26 unfilled symbols and bars show the results for the networks ALL

and SUB, respectively. Bullets and squares with the close-by bars
discriminate between weighted and unweighted forecast ensembles,
respectively.
paper generates DORs either by Kriging or by averaging en-
sembles of stochastic interpolations of the precipitation ob- Also given in the Table are the BSSs if the probabilistic
servations followed by averaging to the evaluation areas. Foforecasts are evaluated against PORs. These BSSs tend to
large ensembles applying the same variogram models etde better than for the deterministic or single member evalu-
these references converge. Here, the observational ensemtd€ions. This is not surprising since in this cagecan take
consists of one hundred members and there are differences imalues between zero and one and — remembering that the BS
the climatological variogram and data normalization. Tdble s a quadratic difference — this leads to smaller BSs and larger
shows that these differences yield differences in the BSS. IBSSs as long as the observational uncertainty is smaller than
is interesting to note that the second method gives slightlythe forecast uncertainty. This is a welcome feature since an
better BSS in the larger and relatively better observed areagncertainty in the observational reference should not punish
(Switzerland and Thur) and slightly worse results in the morethe forecasts.
difficult areas (Hinterrhein and Aare with relatively less ob- Figure 4 clearly shows that the evaluation uncertainty is
servations, but also, as the smaller BSS values indicate, thgyrger for the smaller Aare catchment than for Switzerland.
more challenging forecast regions). At the same time the forecast performance is at least one day
Table 1 also shows the inter-quartile range of BSS val- better in the larger area. Again the consideration of the refer-
ues if the probabilistic forecasts are compared against thence uncertainty through the PORs increases the BSSs. The
stochastic MRRs. The spread is substantial and larger thadifference in probabilistic or deterministic reference evalua-
the differences between the deterministic results. For examtion is especially large, as expected, in the Aare catchment if
ple, taking the spread into account the performance of one- othe coarse observation network SUB is considered.
two-day forecasts for Switzerland do not differ significantly =~ As mentioned in Sect3 the LEPS members can be
(the inter-quartile ranges overlap) for the 10% heaviest rairweighted by the size of the global forecast clusters. This
events which are evaluated in this paper. The forecasts for thehould lead to better forecasts in general but not necessarily
Hinterrhein are less good as for the other areas and there i®r Switzerland since the clustering is based on large-scale
no significant difference between one-, two-, and even threeweather patterns. Figueindicates that the one-day fore-
day forecasts. In this area only rather large-scale rain eventsast for Switzerland is insignificantly better with unweighted
are well forecasted and those are well represented in the EP@embers and that for two- and three-day forecast weighting
quite independent of the forecast lead time (not shown). marginally improves the forecasts. In case of the smaller
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Aare area the weighting is detrimental for one- and two-day 245-255, 2003.
forecasts. Non-uniform weighting decreases the spread in théhrens, B. and Beck, A.: On upscaling of rain-gauge data for eval-
forecast ensembles (the inter-quartile ranges in the forecast uating numerical weather forecasts, Meteorol. Atmos. Phys., in
ensemble are 2.8 mm/d for the weighted and 2.9 mm/d for Print, 2007. , S
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. . . . . and Dec. Analysis, 2, 65-76, 1998.
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