
Advances in Geosciences (2003) 1: 27–32
c© European Geosciences Union 2003 Advances in

Geosciences

Error assessment of GOCE SGG data using along track
interpolation

J. Bouman1 and R. Koop1

1SRON National Institute for Space Research, Utrecht, The Netherlands

Abstract. GOCE will be the first satellite gravity mission
measuring gravity gradients in space using a dedicated in-
strument called a gradiometer. High resolution gravity field
recovery will be possible from these gradients. Such a re-
covery requires a proper description of the gravity gradient
errors, where the a priori error model is for example based on
end-to-end instrument simulations. One way to test the error
model against real data, i.e. to see if the a priori model really
describes the actual error, is to compare along track interpo-
lated gradients with the measured gradients. The difference
between the interpolated and measured gravity gradients is
caused by, among others, the interpolation error and the mea-
surement errors. The idea is that if the interpolation error is
small enough, then the differences should be predicted rea-
sonably well by the error model. This paper discusses a sim-
ulation study where the gravity gradient errors are generated
with an end-to-end instrument simulator. The measurement
error will be compared with the interpolation error and we
will assess the latter as a function of the sampling interval.

1 Introduction

The main goal of the GOCE mission (expected to be
launched early 2006) is to provide unique models of the
Earth’s gravity field and the geoid, on a global scale with high
spatial resolution and to very high accuracy (ESA, 1999).
To this end, GOCE will be equipped with a GPS receiver
for high-low satellite-to-satellite tracking (SST-hl) observa-
tions, and with a gradiometer for observation of the gravity
gradients (SGG). The gradiometer consists of six 3-axes ac-
celerometers mounted in pairs along three orthogonal arms.
From the readings of each pair of accelerometers the so-
called common mode (CM) and differential mode (DM) sig-
nals are derived. The CM observations are used to obtain in-
formation about the linear accelerations and are input to the
drag free control system. The measurements of the CM are
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also needed for accurate separation of the non-conservative
and conservative forces and are therefore important for the
long wavelength gravity field recovery from SST measure-
ments. The DM observations are used to derive the required
gravity gradients. The accelerometers and the gradiometer
are designed such as to give the highest achievable precision
in the measurement bandwidth (MBW) between 5 and 100
mHz. For the diagonal gravity gradients in a Local Orbital
Reference Frame (LORF,X-axis in the velocity direction,
the Z-axis approximately radially outward and theY -axis
complements the right-handed frame) this precision will not
exceed 4 mE/

√
Hz (1 E = 10−9 s−2) in the MBW (Cesare,

2002).
The observations will be contaminated with stochastic and

systematic errors. For the GOCE gradiometer, systematic er-
rors typically are due to instrument imperfections like mis-
alignments of the accelerometers, scale factor mismatches
etc. The CM and DM couplings, which are the result of such
instrument imperfections, can be determined to an accuracy
level of 10−2

− 10−4 prior to the mission by the so-called
pre-flight calibration on ground using a test bench (Cesare,
2002). In orbit, a so-called internal calibration procedure
will be used (ESA, 1999), by which the CM and DM cou-
plings can be determined to an accuracy level at which their
effect on the gradients in the MBW stays below the required
4 mE/

√
Hz. The values of the calibration parameters (ele-

ments of the calibration matrix) are measured by putting a
known acceleration signal on the gradiometer in orbit using
the thrusters. After this procedure, the CM and DM read-outs
of the gradiometer are corrected using the measured calibra-
tion parameters.

The gravity gradients are derived from the internally cali-
brated DM accelerations. The internal calibration, however,
is not sensitive to all instrument imperfections. For example,
the true locations of the six accelerometers may differ from
their nominal positions. This accelerometer mis-positioning
as well as the read-out bias, for example, can not be ac-
counted for. Therefore, in order to possibly correct for re-
maining errors after internal calibration, a third calibration
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step is required, which is called external calibration (or abso-
lute calibration). It is performed during or after the mission
and typically makes use of external gravity data (Arabelos
and Tscherning, 1998; Koop et al., 2002).

Along with the external calibration of the observations,
their error needs to be assessed. For this purpose, we could
use either external data, such as terrestrial gravity data, or
use the GOCE data themselves and perform an internal as-
sessment. In view of the very high accuracy of GOCE in
the MBW, it will be difficult to assess the gravity gradient
errors in the MBW with the former method. We therefore
focus on internal error assessment. Specifically, the pros and
cons of along track data interpolation are studied. Albertella
et al. (2000b) use along track interpolation for outlier detec-
tion, while the use of cross-overs and repeat tracks for error
assessment is studied by Albertella et al. (2000a) and Koop
et al. (2002), respectively.

The along track interpolation and error assessment is in-
troduced in Sect. 2. The interpolation error is discussed in
Sect. 3 for several cases, while the error assessment itself is
discussed in Sect. 4.

2 Along track interpolation

GOCE will deliver time series of gravity gradients along its
orbit. A subset of the time series may be used to interpolate at
time t = i. The difference between the interpolatedŷ(i) and
the measuredy(i) is due to, among others, the interpolation
error and the measurement errors. If the interpolation error
is small enough then the above differences could be used for
error assessment. The general interpolation model as well
as the error assessment are discussed in more detail in this
section.

2.1 Model of condition equations

The model of condition equations is

BT E{y} = 0; D{y} = Qy (1)

with least squares errors

ê = QyB(BT QyB)−1BT y. (2)

The observationsy are the gravity gradientsTXX, TYY , TZZ

in the LORF. The anomalous gravity gradientsTjj , with
j = X, Y, Z, are obtained by taking the difference between
the measured gradients and some reference model values.
The modelBT depends on the specific interpolation method,
but for local interpolation methodsBT will be sparse. The
central idea is: interpolate one or more observations from
other observations and compare the interpolated values with
the original ones. The error variance-covariance matrixQy
is full in general. Due to the coloured noise behaviour of the
gradiometer, the gravity gradient errors will be correlated in
time.

2.2 Overall model test

An unbiased estimate of the variance of unit weight is

σ̂
2

=
ê
T Qy

−1ê

b
(3)

with b the rank ofB, that is, the number of independent con-
dition equations. Thuŝσ 2 depends on the a priori error ma-
trix Qy and the a posteriori errorê. In practice one could use
Eq. (3) to test whether one a priori error model is to be pre-
ferred over the other. The closerσ̂

2 is to 1, the more likely it
is that the corresponding a priori modelQy describes the er-
rors well assuming that outliers have been removed and that
the variance of unit weight is 1.

The distribution ofσ̂ 2 under the null hypothesisH0 (i.e.
the a priori error model is correct) is given as

H0 : σ̂
2

∼ F(b, ∞, 0) (4)

that is a centralF distribution. The a priori error model will
be rejected ifσ̂ 2

> kα, that is, if the a posteriori variance
of unit weight is larger than a critical value with significance
level α. For exampleF0.05(60, ∞, 0) = 1.4, which means
that for 60 conditions equations the a priori error model will
be rejected if the a posteriori variance of unit weight is larger
than 1.4. In approximately 5% of the cases the null hypoth-
esis will be rejected although the a priori error model is cor-
rect.

2.3 Comparison with other methods

The advantage of along track interpolation for error assess-
ment is that it can be started right after the first measurements
are available (provided that the on board navigation solution
is accurate enough). There are no conditions on the repeat
of the orbit or on the cross-overs. Interpolation methods typ-
ically use local data, which means that this method may be
suited to assess the error especially for high frequencies, that
is, near or inside the MBW. A disadvantage may be that sys-
tematic, long wavelength errors will not be visible using local
interpolation methods. Hence, long wavelength errors could
go undetected. This problem may be overcome using global
interpolation methods, however, this may increase the inter-
polation error.

Koop et al. (2002) discuss the use of repeat tracks for in-
ternal error assessment, while Albertella et al. (2000a) use
cross-overs. Both methods are in the form of model (1).
Cross-overs are not suited to test theTXX and TYY errors
due to large measurement errors in the off-diagonal gravity
gradients, which are needed to transform the ascending and
descending measurements to a common frame. The radial
gravity gradientTZZ, however, can be tested. Especially, the
cross-overs after one or a few revolutions can be used, while
the cross-overs further apart in time are less useful. The ra-
dial orbit variations at cross-overs tend to increase in time,
which affects the comparisons (Albertella et al., 2000a). In
addition, cross-overs are less dense than the along track sam-
pling, so the high frequency errors can not be assessed.
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Fig. 1. Spectral densities of theTYY signal and measurement errors.

In principle, repeat tracks can be used to test the whole
spectral range, which is a clear advantage. The method, how-
ever, heavily relies on a close repeat of the orbit after some
time. Specifically the radial distance, that is, the distance
in theZ-direction, between repeat tracks has to be small, and
therefore Koop et al. (2002) consider a so-called frozen orbit,
which minimizes the radial orbit variations. It is, however,
unlikely that the GOCE orbit will be a frozen orbit and a re-
peat is even avoided as much as possible within two months
to get a dense spatial cross track coverage, (see ESA, 1999).

These three internal error assessment methods (along track
interpolation, cross-overs, repeat tracks) are therefore more
or less complementary.

3 Interpolation error

The along track interpolation errors should be small enough
compared to the measurement errors. This is a necessary
condition for the along track interpolation method to be use-
ful. Two simple interpolation methods are tested: linear in-
terpolation and Overhauser splines (Overhauser, 1968). Al-
though the interpolation methods do not require so, it is as-
sumed for simplicity that the along track sampling is regular.
In practice this will probably be realized for many time in-
tervals during the GOCE mission and it is certainly true for
our simulations. Results for linear interpolation will not be
shown. Despite the interplation error is small compared to
the measurement error for this method, Overhauser splines
yield a factor of two smaller interpolation errors. The former
method will therefore not be used in this paper.

True gravity gradients in the LORF were generated using
the global gravity field model EGM96. Anomalous grav-
ity gradients were computed by subtracting reference gravity
gradients computed with OSU91A. These anomalous grav-
ity gradients will be used in the interpolation error test. First,
no errors are added to the measurements and the orbit is as-
sumed to be known. Then the residualsBT y 6= 0 are entirely

Table 1. RMS of gravity gradient measurement errors and Over-
hauser spline interpolation errors in [mE]

TXX TYY TZZ

interpolation errors 0.04 0.01 0.04
measurement errors 8.2 9.7 8.5

due to the interpolation. The gravity gradient data sets have
a length of 1 day and the sampling interval is 1 s.

Overhauser splines are cubic splines that are one time
continuously differentiable at the data points (Overhauser,
1968). For equidistant data points the condition equations
take the form

y(i) =
7

12
[y(i − k) + y(i + k)] +

−
1

12
[y(i − 2k) + y(i + 2k)] (5)

wherek = 1 or 2 or. . .. If k = 1 then neighbouring points
are used for the interpolation, ifk = 2 then every second
point is used, etc. Supposek = 1 and there arem measure-
ments, theni may take the values 3, . . . , m − 2.

Table 1 lists the Root Mean Square (RMS) of the gravity
gradient measurement errors as well as the RMS of interpola-
tion errors due to interpolation with Overhauser splines. The
former errors are obtained after external calibration of the
original gravity gradients as described in Koop et al. (2002).
The errors due to interpolation are therefore two to three or-
ders smaller than the measurement errors, with theTXX and
TZZ interpolation errors larger than theTYY errors.

The spectral densities of the full and residual signal as
well as the measurement errors are shown, forTYY , in Fig. 1,
whereas the interpolation errors are shown in Fig. 2. The er-
ror due to interpolation is below the measurement error over
the entire spectrum. Since the interpolation is local, the inter-
polation error is small for the low frequencies. In the MBW
the interpolation error is clearly correlated with the residual
signal, that is, with the gravity gradient anomalies (EGM96
– OSU91A). It should be noted that degree 360 is the max-
imum spherical harmonic degree of the gravity field models
in the simulations. At the Earth’s surface this corresponds to
a resolution of roughly 55 km, which is a distance the GOCE
satellite will travel in 7 s, given its along track velocity of
7.8 km/s. Consequently, the true gravity signal is probably
not well presented in our simulations for frequencies larger
than 7×10−2 Hz or so. Above the MBW,> 0.1 Hz, the inter-
polation error increases. Since there is practically no resid-
ual signal in the current simulation above the MBW, this may
be caused by round-off errors. The small peak at 0.1 Hz is
not well understood. The interpolation error in the MBW is
slightly larger forTXX andTZZ, although still well below the
measurement error.

In general the interpolation error increases for increasing
sample distance. This is shown in Fig. 2 for the time series
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Fig. 2. Spectral densities of measurement and interpolation errors
for TYY .

resampled such that time distance between successive obser-
vations is 4 s. The interpolation error is smaller than the
measurement error for samples up to 2 s distance for all fre-
quencies (not shown). The interpolation error is larger than
the measurement error in the MBW forTXX andTZZ for a
sample distance of 4 s, whereas the interpolation error for
TYY is still below the measurement error for all frequencies
at this sampling interval, as is shown in Fig. 2.

So far, overlapping intervals have been used, that is, ob-
servations 1, 2, 4, and 5 are used to predict 3, then 2, 3, 5,
and 6 are used to predict 4, etc. One could also use non-
overlapping intervals, that is, use observations 1, 2, 4, 5 to
predict 3, then use 6, 7, 9, 10 to predict 8, etc. Since the
interpolation error is a systematic error (it depends on the
signal), the error decreases slightly for the non-overlapping
case: there are 5 times less condition equations (results are
not shown).

4 Statistical test results

In the previous section it was shown that for a 1 s sample
interval the interpolation error can be neglected compared
to the measurement error. The model of condition Eqs. (1)
holds, and the appearance ofBT depends on whether we use
1 s shifts or 2 s shifts etc. between successive condition equa-
tions. The error assessment requires that an a priori error
modelQy is available. Our first aim is therefore to compute
such an error model, and to study its characteristics.

In general, the error variance-covariance matrix is full.
The errors on the GOCE gravity gradients are coloured, that
is, the error is small in the MBW and increases outside the
MBW, see also Fig. 1. This yields along track error correla-
tion. If the full data period is considered (1 day) then error
correlations exist that can not be neglected. Especially for
TYY andTZZ this is true because 1, 2, etc. cpr (cycles per rev-
olution) errors are present, see Figs. 2 and 3. These errors
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Fig. 3. Gravity gradient error covariances for 1 day. Top panel:TYY

1 day; middle panel:TYY zoom in on first 2 h; bottom panel:TXX

zoom in on first 2 h.

are much smaller forTXX, which results in much smaller er-
ror correlations. Shown in the top panel of Fig. 3 are the true
TYY error covariances for the total time series of 1 day, scaled
with the variance att = 0. Hence, att = 0 the error covari-
ance is 1, but this is hard to distinguish in the present graph.
Zooming in on the first 2 h of the error covariances shows
strong correlations (middle panel). The error covariances of
TZZ are similar to those ofTYY . Because external calibration
significantly reduced theTXX errors at 1 and 2 cpr, the cor-
relation is less for longer time intervals (see Fig. 3, bottom
panel).

The overall model test requires the inversion of the (full)
error matrix Qy, Eq. (3). Limiting our test to time win-
dows of 1000 s, for example, would allow straightforward
computations. A disadvantage is that the test of the valid-
ity of a priori error models becomes limited. However, the
most interesting part of GOCE, the MBW, is contained in
these windows and the along track interpolation, which we
study here, is not sensitive to longer wavelengths. Figure 4
shows theTYY error covariances, averaged over 86 windows
of 1000 s. Before the error covariance of each window is
computed, the mean was subtracted, which in effect removes
part of the long wavelength errors. Therefore, the average er-
ror covariance for the full 1000 s period appears to be noisy
(top panel). Zooming in, however, on the first 100 s shows
that correlations up to 10–15% still remain (Fig. 4, middle
panel). The correlation is strongest for the first 2–3 s (bot-
tom panel). TheTXX andTZZ error covariances for 1000 s
show similar behaviour to those ofTYY .

The averaged empirical error covariance functions for the
1000 s windows have been used to create three a priori
error matricesQy (one for each studied gravity gradient).
Since these matrices are based on the true (simulated) er-
rors, one should expect that the a priori error model will be
accepted for nearly all error assessment windows. Two ex-
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Fig. 5. Rejectedσ̂2 values. In total 22 out of 6∗ 86 = 516 values
are rejected.

amples are shown in Fig. 5 and Tables 2 and 3. The trian-
gles denote the rejected test values for interpolation in win-
dows of 1000 s length, 1 s sampling and 5 s shifts between
condition equations. Hence there are roughly 200 condi-
tion equations:F0.05(200, ∞, 0) ≈ 1.2. The circles de-
note the rejected test values for interpolation in windows of
1000 s length, 1 s sampling and 2 s shifts between condition
equations. Hence there are roughly 500 condition equations:
F0.05(500, ∞, 0) ≈ 1.1. In total 4.3% of the a posteriori
variances are too large and rejected, which is a satisfactory
result.

As the bottom panel of Fig. 4 suggests, the full error matrix
Qy can be approximated by a sparse matrix (band matrix).
Considering the error covariance functions, we use the first 4
points of the covariance functions. The number of rejected a

Table 2. Average a posteriori variance of unit weight andF -test
results. Error assessment window is 1000 s (86 windows), sampling
interval is 1 s, interpolation shift is 2 s

Qy full band diag Qy of TXX

σ̂2 rej. σ̂2 rej. σ̂2 rej. σ̂2 rej.

TXX 1.00 5 1.00 5 1.80 86 1.00 5
TYY 1.00 4 1.00 5 1.76 86 1.35 86
TZZ 1.00 3 1.00 5 1.74 86 1.00 5

Table 3. Average a posteriori variance of unit weight andF -test
results. Error assessment window is 1000 s (86 windows), sampling
interval is 1 s, interpolation shift is 5 s

Qy full band Qy of TXX

σ̂2 rej. σ̂2 rej. σ̂2 rej.

TXX 0.99 3 1.00 3 0.99 3
TYY 1.00 5 1.01 4 1.35 77
TZZ 1.01 2 1.01 2 1.01 3

posteriori variances increases slightly: 4.7% is rejected. Ne-
glecting all correlations and using the variances only does not
give satisfactory results. The a priori error model is rejected
for all error assessment windows. See Tables 2 and 3.

If the a priori error matrixQy of TXX is used for the other
two gradients, then it is rejected for (nearly) allTYY win-
dows, whereas theTZZ results stay the same, see Tables 2
and 3. This is a consequence of the fact that, in our simu-
lation for short time intervals, theTXX error covariances are
almost equal to those ofTZZ. The differences with theTYY

error are somewhat larger for short time intervals. The error
assessment using along track interpolation is therefore rather
sensitive to the correct error model. Or at least, sensitive to
too optimistic error models. If we use a pessimistic error
model, for example multiply the error model ofTZZ with a
factor of 1.5, then the a priori error model is accepted for all
windows. However, the average a posteriori variance of unit
weight is σ̂

2
= 1/1.5 for 86 windows. It may therefore be

necessary to apply a double-sided statistical test instead of
one-sided test as we do now.

Finally, a 1 s sampling and 1 s condition equation shift
yields a badly conditionedBT QyB matrix. Consequently,
the test results are unreliable. This may be a consequence
of too much correlation or may have some other cause, yet
unresolved.

5 Conclusions and discussion

Along track interpolation is well suited to test the a priori
error model for GOCE SGG observations. This method is
complementary to other methods of error assessment such as
the use of repeat tracks and cross-overs. The major advantage
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of along track interpolation is that it is independent of the
repeat conditions of the satellite ground track and that it may
be applied real time. Thus, in the context of quick-look data
quality assessment, this tool is a major candidate for real time
monitoring of the instrument in flight.

The assumptions underlying the current simulation study
are that no outliers are present and that the orbit naviga-
tion solution is accurate enough. In reality, outliers will be
present, and they have to be dealt with before the interpola-
tion error assessment is performed. Outliers can be removed
on basis of an a priori error model. Hence, a kind of iter-
ative procedure comes to mind. Further, orbit uncertainties
in the navigation solution contribute to the interpolation er-
ror, since the method assumes known locations of the mea-
surements, and the observations are reduced w.r.t. an a priori
gravity model. It has to be assessed what the upper limit is
for the accuracy of the navigation solution for our method to
work properly.

The interpolation error is very small compared to measure-
ment error for 1 s sampling. For theTXX and TZZ gradi-
ents the interpolation error is larger than for theTYY gradi-
ent. In our simulations we used a reference model and sub-
tracted it from the simulated gravity gradients, which gives
residual gravity gradients. Since the maximum spherical har-
monic degree is 360 in these simulations, there is concern
that the residual signal is unrealistic for high frequencies.
Or, in other words, the residual gravity gradient signal may
be much larger for high frequencies when reference gravity
gradients are subtracted from true, measured gradients. How
this influences the interpolation needs to be studied.

Error assessment windows are limited to 1000 s or so due
to computer restrictions. An advantage is that the error corre-
lation is largest for the first few seconds, so that a priori error
matrix Qy may be approximated by a band matrix. In addi-
tion, the interpolation methods are local and therefore proba-
bly not too sensitive to long wavelength errors. Disadvantage
is that not the entire spectrum can be tested. Importantly, the
entire GOCE MBW is contained in our test.

We accept the a priori error model if theF -test does not re-
ject too many a posteriori variances of unit weight (based on
a chosen signifigance level) and the average a posteriori vari-
ance of unit weight has to be “close” to one. In this way, we
can use this method in reality to test any choice of an a priori
error model to find the best model for the real observations.
In order to prevent a false acceptance of a too pessimistic a

priori model, our one-sided statistical test should be replaced
by a double-sided test.

If the a priori error model is rejected then either the model
is wrong indeed or the interpolation error is too large. We
may then increase the sample interval, a factor of two for
example. If the statisical test yields the same results then the
a priori model is false. If more points are rejected then at
least the interpolation error in the latter test is too large. We
can not say more about the former test. We therefore need
information on the interpolation error beforehand.
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