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Abstract. In this paper we investigate some basic propertiesWilliford et al. (2003), McKeen et al. (2004), Mutemi et
of the multi-model ensemble systems, which can be deducedl. (2004), Yun et al. (2005), Delle Monache et al. (2006a),
from a general characteristic of statistical distributions of theMallet and Sportisse (2006), Van Loon et al. (2007), Vautard
ensemble members with the help of mathematical tools. Iretal. (2009), Wang et al. (2009), Potempski et al. (2008). The
particular we show how to find optimal linear combination of multi-model ensemble technique constitutes yet the extreme
model results, which minimizes the mean square error botrapplication case of the ensemble technique and therefore it
in the case of uncorrelated and correlated models. By provis worth attention. Ensemble weather prediction systems
ing basic estimations we try to deduce general properties deshould serve as an example of techniques build out of a ro-
scribing multi-model ensemble systems. We show also howbust theory that relates to predictability and uncertainty. Ap-
mathematical formalism can be used for investigation of theproaches based on either singular vector or bred vectors, have
characteristics of such systems. been developed from that theoretical framework and are used
in operational activities such as ECMWF and NCEP (Atger,
1997; Buizza and Palmer, 1995; Buizza, 1997; Buizza et al.,
1999; Buizza et al., 1999; Molteni, 1996; Toth and Kalnay,
1993; 1997; Kalnay, 2004 for more bibliography).

The use of ensemble techniques in atmospheric dispersion is Regardless of the methodology selected it is rather indis-
becoming more and more a popular research topic as welputably recognized that the treatment of several model results
as application. A large number of modeling communities optProduces an overall improvement of the quality of the model
for joining forces in a common multi-model effort to improve Simulations when compared with measurements. It is our
their results, thus moving from the “deterministic” approach CPinion, however, that the technique deserves a yet renewed
typical of the 80ies and 90ies to the statistically based en@tténtion by the scientific community that should attempt
semble approach of the last decade. to define its boundaries of applicability by formal methods
As described by Galmarini et al., 2004a there are severaPther than through examples and applications. An attempt in
ways in which an ensemble can be constructed either as gns direction has been made, recently, in Riccio et al. (2007)
group of model runs produced by different modeling SyS_where the ensemble results of Galmarini et al. (2004b) were
tems, or with one model and different input data or model reproduced in a Bayesian context and a formal explanation
settings. In this work we will mainly focus on multi-model Was presented. _ _
ensembles in which models in principle have “nothing more”  TO date, several questions remain unanswered. Among
in common than the modeled case. Examples of these kind€m one that is constantly present in the case of ensemble
can be found in Stull et al. (1997), Krishnamurti et al. (2000), dispersion modeling relates to the way in which the ensem-
Dabbert and Miller (2000), Ziehmann (2000), Galmarini ble should be setup. In other words, which criteria should be
et al. (2001, 2004a, 2004b, 2008), Delle Monache and@dopted to guarantee that the ensemble results will always be

Stull (2003), Killip et al. (2003), Vijaya Kumar et al. (2003), superior to those of any individual member? Moreover, how
should the members be selected?

o It is extremely interesting to note that all the multi-model
Correspondence tdS. Galmarini ensembles presented in the last decade or so in the literature,
BY (stefano.galmarini@jrc.ec.europa.eu)  found their reasons of existence in the opportunity of joining
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forces rather than in the analysis of the model characterisematical analysis. We have identified a precise number of
tics, the specificity and peculiarity of their results, and the questions that we wish to address in this work, namely:

way that might have affected the ensemble. This interesting

aspect of science sociology can be easily verified. The en- 1. Is the ensemble average result always superior to that of
sembles are made out of existing groups of scientists that get  individual members?

together offering their model results and having in return the
added value of the ensemble. It feels good to be on one side “*
or the other of the ensemble mean since it does not make a
difference as long as the latter compares well with the mea-
surements and no one is neither too near nor too far frbm it

No a priori investigation is known to have been conducted on 3 oy should an average of the ensemble be modified in
the degree of kinship each model has had in the constituted  ger to extract an optimal representation from all its
community, the models independence and complementarity.  nembers?

Models are not selected for a specific common or exclusive

characteristic they show, their results are just assumed to be 4. Is there a condition which guarantees that the variance
appropriate for that specific application. In this context, the of the ensemble mean is less than that of any individual
ensemble practice relies on what we could defihenotyp- model?

ical model distinction Models differ for a limited number

of modules, characteristics, or simply for the data used. Thelhe paper is structured as follows: in the second section we
differentiation of a common model genotype occurs when-present basic assumptions, and then the analysis for uncor-
ever the model is adopted or used in a specific modeling€lated multi-model ensemble follows. In the fourth section
environment (modeling group or modeling application). In we generalize the results to the case where the models should
most of the cases the ensemble practice brings together modte considered as correlated ones. In Sect. 5 we summarize
els that show no substantial differences and that are availableulti-dimensional case. The last section contains the conclu-
since they survived theatural selectiorof individual model  sions. Inthe Appendix we include some technicalities related
evaluation. Another important element motivating ensembleto multi-dimensional case.

model practices and, in particular the multi-model ensemble, An explanation is probably due on the title of this paper.

is the relationship between multi-model ensemble result and'he expression: Est modus in rebtisis a verse from the
scientific consensus. Examples in this sense are the last IPC8atire (1, 1, 106-107) by the Latin poet Quintus Horatius
reports or to a much smaller scale and different contest, thélaccus (aka Horace). The sentence should be translated as:
ENSEMBLE activity (Galmarini et al., 2004a). The concur- “There is an optimal condition in all things” which in the
rence of different results, originating from different sources, original text is followed by the sentence: “There are there-
to the determination of an ensemble is an optimal methodore precise boundaries beyond which one cannot find the
to represent all available scientific evidences (including theirright thing” (sunt certi denique finesquos ultra citraque
variability) and a way to facilitate agreement around a syn-nequit consistere rectum We think that these expressions
thetic and relatively comprehensive result. summarize quite well the central topic of this paper and we

Whatever motivates the choice of ensemble modeling in0P€ it will result clearly in the proceedings.
atmospheric dispersion and air quality, we feel like pointing
out that no investigation has ever been published on the fun, 11,0 starting point
damental elements that define an ensemble of atmospheric

transport and dispersion model results and on the theoreticahyr work starts from the article of Van Loon et al., 2007
requirements that define it. (VL2007) in which a simple formula was presented to ex-
This paper is a humble attempt to give formulas and waysplain the advantage of the multi-model ensemble system for
to identify a priori the ensemble characteristics and to trylong-term ozone simulations in comparison with a single
to give a formal definition to a number of aspects that havemodel approach. The formula proposed was obtained un-
never been discussed in the context of atmospheric dispersiotier the assumption that statistical distributions of model re-
modeling. The main aim of this paper is to introduce somesults and observations were identical and independent. More
basic properties of multi-model ensemble systems, whichprecisely, they considered daily ozone maxima in summer-
can be deduced from general characteristics of statistical disime determined by seven models and observations made in
tributions of the ensemble members with the help of math-a number of stations. After bias corrections, the Talagrand
diagrant created from model results became flatter, which

If one of the models has essentially a higher variance,
should we remove it from the ensemble while calcu-
lating the ensemble average to minimize the ensemble
variance? Under which conditions?

1\We take the liberty to be so critical since we have been respon-  2In a Talagrand diagram regular bins are created extending from
sible for setting up one of these communities and we have the inthe minimum to the maximum value predicted by the ensemble of
sider’s perspective. model results. A normalized-frequency distribution is then obtained
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allowed them to conclude that the actual ozone concentration Spread
has similar statistical properties as the ensemble members
This justified the assumption that both simulated and ob-
served concentrations could be sampled randomly from iden-
tical distributions (i.e. their variances are all equal), which in

turn led to the following formula for the mean square error | | —
(msqge): B 24h
B 45h

2.50E-08

2.00E-08

1.00E-08 +—

msge= (1+£)02+b2 1)
m

In Eq. (1) 02 and b stand for the variance and ensemble T . I

bias respectively, while: represents the number of ensem- . - . . . 1
ble members. Expression EdL) (shows the advantage of m1 m2 m3 ma
ensemble approach as it demonstrates that the msge for the
ensemble (after bias correction) is always less than that ofig. 1. ETEX-1 case: spread for 4 different models using the same
any individual models =1). meteo data (ECMWF-EPS).
In general the assumption on identical statistical distribu-

tion is obviously a simplification as the models differ in terms collected for the same variable. Both model data and ob-

of used parameterizations or numerical concept not mention- : . o L
servations are characterized by some estimation of variabil-

ing application of distinct meteorological data. Also in the ity or the error. For the models this can be done for ex-

case considered in VL2007, the Talagrand diagram althougrll

) . . . ample, by perturbing model parameters and some input data
improved after bias correction still was not perfect. An anal- ~ . : o )
! : . using Monte Carlo technique or through sensitivity analysis
ysis we conducted on 204 different realizations produced by ) - o
. . ! (e.g. Saltelli et al., 2006). The formal description of this situ-
four atmospheric dispersion models applied to the ETEX'lation implies that the values predicted by the models are re
case (Girardi et al., 1998), using ECMWF-Ensemble Pre- P P Y P

diction System (EPS) weather fields, demonstrates that th(raesented by random variables j =1,...,m, wherexj.cgr-
. S .. responds to data produced by mogetachy ; has statistical
spreads of the results sometimes can be significantly differ-

. distributions characterized by probability density functions
ent among the models (see Fig. 1), and as a consequence alf.o L : : 2
the variances. pdf) with bias and variance, which we denotdy@andoj ,

Regardless of these additional considerations, the simplerzeSpeCtlvely' Analogously we also assume that the observed

: . . . . values have some uncertainty characterized by random vari-
formulation given in Eq. 1) illustrates very well and quite

synthetically the basic idea of the multi-model ensemble ap—abley with a pdf, which is described py the Va”am:oé (we
: . . . : can treat the measurements as not biased). In this context we
proach. Starting from this, we would like to give a slightly

deeper look at the analysis based on statistical characteristic?laor Tr?; nnisgeﬁ Snpoercmlfoyr ?;:Z gzrstg\jl:‘tgggm 3&;2? v?/ceif ::gget:)
of the mean square error and present more general math?{now however. are biases and variances.

matical formalism. We will start our consideration with the . . .
. . . . ; . An important aspect that requires clarification from the be-
simplest one-dimensional case i.e. when the simulation re-

sults can be described bysaalar-valued random variable ginning is the level of diversity, independence, or correlation
X . . that we expect each of the models of the ensemble to ex-
for each model (for instance when multi-model ensemble is, . . o o -
hibit as a priori condition. These concepts or definitions are

appll_ed at a single point in space and t.lm?)’ thgn we WIIImost of the time ignored, or given for granted thus leaving
provide analogous formulas for the multi-dimensional case

; . . every reader with his own interpretation and sometime mis-
i.e. when the problem is described byector-valued ran- . . . .
dom variable understanding. To avoid that, we define explicitly the con-

. . . ditions we want the ensemble members to satisfy. The first
First we introduce the notation and some relevant assump-__ " . ) L
. condition we could impose on the members is that the indi-
tions. The model results we want to focus on are those of &', . : .

i~ : o vidual models are independéntn this sense we will need to
prediction of the concentration levels of an unspecified sub-

. o . specify whether we intend independence of the systems or of
stance at a single point in space and time. Let us assum : : ;

. o ; the results. Two models could be defined independent if they
that by using a set ofi atmospheric dispersion models we

obtainm simulations of the concentration evolution at that are structurally different, in other words if they are based on

. ; different modeling approaches or philosophies or if they are
point. We assume that at the same point measurements wefe . L ;

ased on different parameterization of physical processes.
by counting the number of measured values that fall in the corre-At the same time they might be considered independent (or

sponding bin. An even distribution of the measurements guaranteegartially so) because they calculate atmospheric dispersion
that the ensemble covers the spectrum of measurement values. Any

deviation from that structure is an indication of biased ensemble  3This concept is most of the time confused with model differ-
behaviour. ence which is just a qualitative and unrealistic definition.
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3 The case of an ensemble of uncorrelated model results

Independent
; [ We assume that the results predicted by #henodels can
Uncorrelated [ | be represented in the ensemble form. We define the ensem-
- T = ble representative as any combination of model results in the
form of an average or a generic linear combination of model
Dependent | | results or median or any other percentile and that we denote
by x. The ensemble value is also supposed to be independent
of measurements as all the members of the ensemble.
Finally we use standard notati@dz) andV (z) for the ex-
pectation operator and variance one respectively ofrany
dom variable z
Using the notation from Sect. 2 we can introduce the bias
gb) and mean square error (shortly written$3$ of the en-

Fig. 2. Classes of models.

starting from meteorological fields originating from differ-
ent weather models. In this context we will not distinguish
between these two instances and we will refer to both case

indistinctively as independent models. More formally, the semble as:

independence of two systems can be expressed by the i — Ex — y)andS, = E (% — )2 @)
dependence afandom variabled.e.: two variables; and

z2 representing two models amedependentvhenever their Under these assumptions the following formula holds:

joint probability can be calculated as a product of individual _ 2
ones i.e.p(z1,22) = p(z1)p(z2). This condition is reason- 2= VE—y+b ®)
able in the case in whicky is the result of a model antk  Equation 8) is a direct consequence of the definition of bias
is @ measurement, but it is not difficult to imagine that it will and msqge, namely:
not apply necessarily to two models. In fact in this case the
condition applies to all results extracted from the two pdfs
and implies that there is not possibility of a synergic contri- S2=E(x — VE=EG—y)2—(Ex—y)2+(Ex—y))?
bution of the two models to the same result. In general this= v (x — y) + »° (4)
is a condition that is difficult to satisfy and verify for any at-
mospheric model. We will therefore relax the independenceJsing well known properties of the variance and under the
condition, thus requiring that the members of our ensembleassumed condition of the models independence of observa-
areun-correlatedin the sense afin-correlated random vari- ~ tions, from Eq. 8) we obtain:
ables This is a more realistic assumption to the extent thatit, ., — 2
applies to the average behavior rather than the intrinsic propfg2 =V@+VO) 5% ©)
erties of each model. The un-correlation is in fact defined asAt this stage we defing explicitly as a linear combination
E{z1z2} = E{z1}E{z2} where E{} is the expectation value. of ensemble membersi.e.:
The un-correlation includes the VL(2007) condition of inde- _
pendence of identical pdfs but also the condition of different™ = Z“fxf'
pdfs or partly overlapping ones, as depicted schematically in
Fig. 2. Hence we have transferred the notion of correlationlt is also reasonable to assume that the coefficientare
(or independency) fromandom variable$o the models. We normalized i.e.
are aware of the fact this is not commonly used term in en-

ZO(]' = 1

J

(6)

J

@)

semble systems but this allows us to use precise mathemat
cal formulations.

Any consideration that will be derived for un-correlated Since the models are uncorrelated expression®de#éds to
models case, will then be extended to the correlated modelthe following equation:
case, thus producing as result that whole model space will 2
be covered. In fact by looking at Fig. 2 it is also clear that  _ 20 2_ 2 2. 2 .
when we cover the correlated and uncorrelated model spaceSsz_;a"' VOVt _Xj:ajgj oot (;a"b’) ®
we will include automatically also the dependent model class

(dotted area) which is complementary to independent modef’lease note that Eql) derived in VL2007, is a very spe-
class. cial case of EQ.§), as it can be obtained from the latter by
taking the mean (i.e. alt; =1/m) and assuming that all the
variances to be equal, i.er? =02 = o2
More in general Eq.8) o%fers us the possibility of finding
optimal coefficients:; so that they minimize msqge. This can

be transformed into the optimization problem.

Atmos. Chem. Phys., 9, 9473489 2009 www.atmos-chem-phys.net/9/9471/2009/
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Finday, ..., a,, such that:

7am)
i 2.2, 2 2
almlr(lm {Zajaj +o,+ (Zajbj) }
j

J
and) "a;=1
J

So(ag, ...

(9)

We then proceed by removing the bias from the model re—%:

sults first (i.e. introducing new variable%; =x;—b;) orby
seeking for the solution of minimization problem in the form:
x' =) ajx;—B=Xx—p, which introduces a new parameter

B repjresenting the bias of the ensemble. In the second ca
we would need an additional equation &y which can be
simply E(x") =0 (i.e. we postulate that is not biased), and
leads to the following solution fop: =) «;b;. Please

9475

From Eq. (2), because of the minimization of the msqe, the
optimal variance is always less than any individual model
variance. In fact forang =1,...,m we have:

1 1
=<2
O’k ; O'j
which immediately implies that:
1
<o
oF
For the case where all the individual variances are equal,

Eqg. 12 leads toV (x) = ”2, corresponding to the formula
used in VL2007.

m

S€ In summary Egs. (10) and.?) can be applied to multi-

model ensemble systems to produce optimal linear combina-
tion of model results, which minimizes msge. This answers
questions (a) and (c) set in the introduction.

j .. . .
note that the variances of biased and non-biased random vari- [N the remaining part of this section we try to demon-

ables are the samé/(x) = V(x’). In one way or the other

strate some generally valid properties of multi-model ensem-

the bias can be easily removed. Therefore from now on wdPle systems based on the formalism we have introduced and

will consider that this operation was done a priori and that the
models are all unbiased. The solution of problem Eq. (8) is

equivalent to minimizing the following Lagrangian function:

L(a1,...,0,,1) = Zajz-ojz+002+k (1—Zoej>,
j j

which leads to linear system of equations:

20]2aj—k=0f0rj=1,...,m
Z(Xj:l
J

Equation (9) can be solved explicitly. By determiniag
from the firstm equations and applying the normalization
condition Eq. {) we get:

(10)

(11)

As a matter of fact Eq. (10) corresponds to the minimiza-
tion of the variancé/ (x), which is widely used in a number
of different applications for a large spectrum of problems,
like the optimal interpolation in meteorology or Kalman fil-
ter (Gandin, 1964; Talagrand, 1997; Kalnhay, 2003 and refer

ences there). Equation (10) allows us to determine the opti
al

mal variance of the ensemble as the variance of the optim
linear combination i.e.:

_ _ 1
V(Xop) = th?ajz =
J

by

- (12)
o2
J

www.atmos-chem-phys.net/9/9471/2009/

derived.

The first question that can be raised is about other than op-
timal linear combinations of ensemble (like ensemble mean)
which would have the property that the variance of the com-
bination is always less than the variance of any individual
models. In other words — if the optimal weights are not cho-
sen, what can be said about the statistical properties of the
ensemble mean? What conditions guarantee that the vari-
ance of the ensemble mean is lower than the lowest model's
variance?

Let us consider the simplest case with two models of vari-
ancesr?,02 such thab? = po? for somep > 1. The com-
bined variance is equal tofe? + (1—a1)?p)oZ, which is
less thenrl2 only if p < i—zi For example fotvg = ap =1/2
(i.e. the mean of ensemble) this produces the condjies3.

This suggests that in case of models with different variances
it would be better if the difference between them is not too
large, otherwise the combination described above would not
produce an ensemble variance smaller than that of the indi-
vidual models.

In general the following implication holds:

{72
If =2 <m+1, then
o1

2
Ops

(13)

V@n) <of<o?<..<

wherex,, represents the ensemble mean and we assume that

we were able to enumerate models in the ascending order of

Tiheir variances i.er? <02 <... <02

L2 2 a2
Proof: Indeed Eq. (12) implies that mlz)”’" < mzl)ol
and thus:
o_m—-1, 1 , 2
(1— ﬁ)al > 70'”! > W(UZ ++Um)

Atmos. Chem. Phys., 9, 94832009
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2
which gives the models in estimating uncertainty, so the r%‘gocan be
1
624 .. 402 used as an indicator of the coherence of the multi-model en-
o> 1—2’” =V(xn).O semble simulations. If this ratio is close to 1 and the model
m

predicted values are also close then there is a very good
A question that follows from Eq. (12) is whether it is pos- agreement within the ensemble.

sible to define a priori limits of variability of the ensem- At the end of this section we would like to add some com-

ble variance. Since? <o? <02 for j=1,...m we have  ments related to the other possible way for obtaining weights

J

1> 0—12 > -1 and therefore the optimal ensemble variance Ed. (10). Namely this can be achieved by using the maximum

\7\/lill raﬁ o ft;zl)m' likelihood principle (see for example Kalnay, 2003; Sasaki,
9 ' 1969; Parrish and Derber, 1992; Lorenc, 1986). Let us as-

(,12 _ Un21 sume thatv represents the truth and that conditional proba-

— =V Gop) = - (14)  bility distributions are given by Gaussian pdfi.e.:

Equations (12) and (13) show that it would be preferable to 1 (x; —x)2

aggregate models whose individual variances are not verys,; (xjlx) = Nz eXp(—T)

different (i.e. their relative ratio is close to 1). If it could 2ro; 9j

be guessed that a model has a variance very large and diffe
ent from the others, than it should be preferable to exclude i
from the ensemble mean. However, when models’ variance
are known, there is no need to exclude any model, since the (x|xq,...,x,) = l_[fgj (xjlx)
optimization constraints, given by Egs. (10) and (11), assure j
that a small weight is assigned to a model with a large vari- (x; —x)2
ance, and the optimal ensemble average variance is always — p(—Z%)
lower than the lowest model variance. \/E) 01...0 J 2‘7,'

Moreover, if a model were excluded, the optimal variance
calculated byn-1 models would be greater than the optimal Hence the most likely value af can be found by maximiza-
variance calculated by models, as shown by the following tion of the likelihood functionx — L(x|x1,...,x,), Which
inequality: after taking logarithm and neglecting constant terms leads to

the minimization of the so called cost function:

for j=1,..,m. Then the likelihood ofr being the truth is
i;iven by the following formula:

_ 1 1 _
Vm(xopt) = < 1 Vm—l(Xopt)~ 1 (x —x1)2 (x _xm)2
L 1 J(x)= +.t
P 2| o g

Then the solution of this problem is given by Eg6) &nd

The latter shows that? can be large but its contribution to (10)
oS — 00). In other words even a model (or models) with

the optimal representation will be very small (g, — 0 as

2 The difference between this approach and preceding one is

a huge variance cannot deteriorate the ensemble result if afat here we assumed explicitly Gaussian distribution, while
optimal combination of model results is taken as ensembld’réviously we did not take any particular assumption on pdf.
representative. To corroborate this conclusion we can se&" the other hand the minimization of the cost function is

that by combining inequality Eq16) with the fact that the ~ With respect tax not to parametera;, hence it shows that
optimal variance is always less than any individual modelfor Gaussian pdf appropriate linear combination produces an
variance we get finally the following estimation: optimal solution. It can be also mentioned that the same cost

function can be obtained using Bayesian interpretation (Ed-
o? o2 wards, 1972; Kalnay, 2003).

—L <V (Top) <minfof, ).

This shows that adding “a bad model” (i.e. the model with big 4  What if the models are correlated?

variance) does not necessarily makes the estimation worse as

msge is bounded by the smallest individual variance anywaywhile the formulas of the optimal combination for indepen-

— hence it answers question (b) in the introduction. By thedent models correspond to the optimal interpolation in me-

way Eq. (4) is also valid for the variance of the ensemble teorology and therefore are generally well known, and have

mean, but as shown above there is no guarantee that the indbeen already applied in a number of completely different ar-

vidual model does not produce smaller msge than the meapas (anywhere where independent measurements are consid-

of the ensemble. ered), in this section we intend to extend the results to a more
On the other hand a big difference between highest andomplicated situation, where the models cannot be no longer

lowest variances indicates that there is no agreement amontgeated as uncorrelated ones. In particular we would like to

Atmos. Chem. Phys., 9, 9473489 2009 www.atmos-chem-phys.net/9/9471/2009/
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derive analogous formulas for the optimal linear combinationi.e. || - || = (-,-) = 1; the same is true for the rows) aSds

of multi-model results and variance. While this case mighta diagonal matrix containing eigenvalues of the malrixit

be perceived as an academic exercise, it is however a morghould be added that the columnd.bére eigenvectors of the

realistic representation of the behavior of atmospheric dissmatrix K andU~1 = U*. The asterisk usually denotes gener-

persion models ensembles. We want to verify if propertiesally adjoint operator i.e. complex conjugate and transposition

analogous to those derived for the uncorrelated multi-modebefined by the following relation(Uu, v) = (u, U*v) — since

ensemble can be also obtained for the correlated case. our case is real)* = U”T. The unitary matrix preserves also
Let us consider the problem of minimizing msge under thedot product i.e(Uu,Uv) = (u, v).

assumption that the statistical distributions of model results Equation (15) can be also solved explicitly — we can repeat

are not necessarily uncorrelated. If the ensemble is reprea similar procedure as used before to find that:

sented by a linear combination of the models results (accord-

ing to the Eqs6-7) then the formula for the ensemble vari- 4 — &K‘ll = £US‘1U*I,

ance is as follows: 2 2

V@ =Y oo+ Y aa;Covx.x)) and
- e 3 5 5
i i,Ji#] 1:(“,1)2—(K_ll,l)Z—(US_lU*l,l)Z—(S_lu*l,u*l),
= ZaiajCOv(xi,xj), 2 2 2
ij hence
where Covg;, x;) stands for the covariance of random vari- _ us-lu# K11
ablesx; andx;; we use the notation thaﬂ;.2 = Cov(x;, x;), = (S-1U*L, U*D) = (K-11.1) (17)

where indices, j correspond to model numbers. ) )
Then the minimization problem Eq. (8) can be reformu- where we have assumed that there is no zero eigenvalue of

lated as follows where, as in the previous case, we consideil® matrixK. Itis known that the covariance matri« is
the unbiased case: nonnegative (Feller, 1968), so this also implies that all eigen-
Find@y....,a@,, such that: values must be positive. In fact the case of zero eigenvalue
would correspond to the situation where the model has zero
variance, which means that the non-biased model is ideal

_ _ ) 2 (i.e. it does not produce errors).
S2(a1, ... 0m) = n Z“io‘fcov(xi’xi)Jrav If we denote the eigenvalues &f by s1, ..., s, then
" obviously the diagonal matris~! contains their inverses
and) "o =1 (15)  i.e. Ys1, ..., 1k, (i.e. St =diag(1k1, ..., 1kn)). By
J (u,v)s-1 We denote dot product generated by the operator

S~1, which corresponds to the appropriate notm ¢)g-1 =
(S u,v), ||u||§_1 = (u,u)g-1; analogously foK ~1).
Then using Eg. (16) we can calculate the optimal variance:

[ZK _1][“]— [0] (KK ~1.K~1) 1 1
10 ||2]|7]1 ke e : _ _

This leads to the system of linear equations that can be writ
ten in a block form as:

whereK is the covariance matrix of dimensienm (itsij-th
element is Cow;, x;)) ande is a vector of coefficientsx). or
If we use notatior(-,-) for a dot product and define vectbr _ _
0 . \%4 = (USU*a,
asl =[1,...,1]7 this gives the equations: (xc’pt)l ( o)
—(USU*US'U*1,Us U

2Ka — 1l =0 (a,)=1 (6 = —”U*’”s—l
Actually this system solves the minimization problem for _ 1 (U*1,s71U%D)
the quadratic formK «, &) with the normalization condition (O] pa ' '

Eq. (7) — in fact V() = (Ke,&). This is also true for un-

correlated models case, in which the matfixcontains only ~ Which reduces to:

variances as diagonal elements ike = diag(olz, s O2). _ 1 1
To facilitate the treatment of the equations we take advan-Y (op) = UL 2 = 112

tage of the fact that the covariance matrix is symmetric thus - K-

allowing us to apply the spectral theorem to write it in the If the matrixK is diagonal (i.e. the models are uncorrelated)

following form: K = USU* (Strang, 2003), wheré is a uni- Eqg. (18) becomes Eq.12) (as well as Egs. (10) andT) be-

tary matrix (i.e. the columns are orthonormal vectors, whichcome identical). Please note that the denominator is simply

means that they are mutually orthogonal and have norm the sum over the all elements of the matx?.

(18)
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Using the fact thal =) e;, wheree; is the j-th versor ~ wheree >0 is a parameter. Then one can calculate that:

J
(e;=I0,...,1, ...0]” with 1 only on thej-th position) the de-

nominator of Eq. 18) can be rewritten in terms of the ele- _ s 3—,/1+4(% +¢)2
ments of the matri}J = (u;;) as follows: V@) =1+z>1>a= 2 :

i

2
1 1 3+,/1+4(5 +¢)2
||U*l||§_1=2;<2u,7) =D wijuky = 2 R,
i j ik 13- /144(5 +¢)2

—(1+ Uiiu ]
XJ:S,( l%: it ForangT‘zwe have 2<§_i§3i-e-i~'_'{ <m+1 but the con-
i’;é k dition i—l <m is not satisfied (by the way (xop) < 1).
. . . Modifying this example by lettingg — —3 and putting
In comparison with the Eq1¢) an additional term appears 3 as the second variance (instead of 2) %ne can conclude

(as an effgct of correlat!on), while _E:l_genvalugsplgy the .__that slightly correlated models can have better bound than
role of variances. Thus in the remaining part of this section . However, there is no easy way to find a general analyti-

weflnvestlgatel rir%pertlssl of mU|tt' mode| e?]sig"nblelgmélarl)écal expression which would be a continuous relation between
as for uncorrelated models case to verify whether already o correlated and uncorrelated cases.

tained results can be extended by transforming the variance Finally also in the correlated case general bounds for the

into the eigenvalues. .optimal variance can be obtained. Namely the following es-
First let us assume that all the eigenvalues of the Cova”t|mat|ons hold

ance matrix are equaky(=... = s, =s), which for uncor- 51
related models case corresponds to the situation with all the— <V@) < < m
variances being the same. From Etf)(we can easily con- n

clude that: Proof.
2 2
Hius 2 [ ”'S-l:Zs_j D) =20\ D
1 s s 1 J L ! J !
= = -, m
15 Y (Ure;,Ute)) LD (ej ei)  m = S |UH P == )P =—,
ij i j S1 §1 s1

which is in accordance with the uncorrelated models case (ofnd analogously:
course all the weights; will be all equal). 2 2

Consider now the case of the ensemble mean(ie 2 1). SZE (Z”"J) > 1 3 (Z”U) "N
The implication analogous to Eq. (12) can be formulated a ; Sm ; Sm
follows:

If S’; <m, thenV (x,;) <s1 <... <s,, Wherex represents
the mean of ensemble (we assume that eigenvalues are of!
dered such that; < ... <s,,).

Proof. This can be easily verified because of:

Hence we get equivalent estimations for the optimal vari-
nce as for uncorrelated models case.

As optimal variance minimizes quadratic foridg, o) for
any vectora satisfying Eq. '() then by taking versoe; as
vectora we get: V(Xopt) < ol, wherea1 is the smallest

V(&) =25 (USULT) = L ||U*1| 13 model variance.

In such a way we can conclude that the following estima-
_ 1 . .. Sm .. — sm *7112 . f .
= 2 ;sl <IZ“U> =2 ; (IZ“U> =z llU tions for the optimal variance are true:

— Sm 2_ Sm S1 _ . S,
P = <51 = <V (Top) <Minfof, ).
m

as||l||2=m. O
In comparison with uncorrelated models case we see th
the condition above is slightly more restrictivgﬂ(< m ver-

ltn summary we can say that we have obtained similar results
as for uncorrelated models case but the variances of models
have been replaced by the eigenvalues of the covariance ma-
sus— <m+1), which is the effect of taking into account trix K.

correlation terms. This condition cannot be changed to An interesting point relates to the fact that taking into ac-
Su < m+1 as the following example shows. Consider the count correlation one may improve msqge. As an example let
covariance matrix: us consider the following covariance matrix:

1 1ie la
K: 2 N =
|:%+82 ] K |:ap2:|’
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2_ .2 . . . .
(p>a=>0) thenVg"= £=%—, while fora=0 (i.e. un-  some area). As previously we assume that the weights

222471’ lrved i
2 are normalized i.e.
correlated models case) we havéi*® = ﬁpz' It can be
i corr ncor 2p? i = .
easily checked thaVgy" < Vg for a € (ﬁ,p). This Z"‘i/ —1foreachi =1,....n (20)

example shows that if we consider two different ensembles:j=1

the first one consisting of two uncorrelated models with vari- ]
anceSle, 022, and the second with two correlated models WWe assume that the models are independent of the observa-

: _ T
with the same variances?, o2, then there are conditions t|ons_(;epreserl1)t_ed t()j;andom vectqu_l_ [yl"“’é’"] . V\f/e

for which the second system can produce lower mean squargl"'SId€r NON-bIaSed case as a simiiar procédure as for one-
error than the first one. dimensional case can be also applied.

At the end of this section we want to add that there is an- The first question is how to extend th_e definition. of the .
other way to obtain the formulas for the solution of the mini- square error. It seems that a natural way is the following one:
mization problem Eq. (14), namely, by applying the spectral n
decomposition of the matriK (Strang, 2003). This means Sy = ZE(JTi—yi)Z (21)
that by considering as a linear operator we have: i=1

The mean square error can be expressed then as the average
Ka=) si(¢;.0)9;, over all points i.e.: msqess” /n.
J First we assume that the models are mutually uncorrelated.
Then the problem of finding optimal coefficients which
whereg; are eigenvectors of matriK (henceg; =Ue;)  minimizes Eq. 21) leads to the minimization of the follow-

forming the orthonormal basis. Using the same method asng Lagrange function (we can omit observation term):
previously one can obtain the formula equivalent to B&):(

L0, Qs vy Oy ooy Oy s ALy ooy Apy)
1

V&op) = —.
o=y D9 VIS AL ¥
= i i j
It can be easily seen that in such a way we ohtaseparated

o ) systems of linear equations of the form Eq. (9) and therefore

5 Summary of multi-dimensional case the Egs. (10) and1Q) can be applied for each point sepa-

) ] ) o ) rately (fori =1,..,n).

In this section we provide a summary on multi-dimensional  qvever, if we want to include also correlations between

case —all the technical details are given in the Appendix.  hoints (i.e. to consider the situation when the distributions

By multi-dimensional (or multivariate in general) case we X1j,....Xn; are correlated for any), it seems that we should
consider the situation when the results of the simulations can

_ _ _ Use the expressiofi{(X — Y)(X —Y)T} representing the
be described by wector-valued random variableTypically  qyariance matrix. This upon the assumptions on indepen-

this is the situation when we have a simulation domain Withdence between models and measurements leaBlSXa ” )
a number of spatial-temporal points and we want to includei_e_n % 1 matrix:

correlation between them. Another possibility can be a mul-
tivariate case when different variables are taken into accountgovX) = E{XX"}

like concentrations of various species. In factthe main differ- > g0, Efxgjx1,} ooooveoen. S o1jonj E{x1jxnj}

ence between one- and multi-dimensional cases lies in taking | / j 22)
into consideration correlation among d|ﬁ§rent poINts or vari- | y~q 41 Efxyixaj) oo 3" it E s}

ables. We are therefore adding an additional level of com- L j

plexity to the cases analysed so far. Then as a generalization of EQ1) we use the following
Analogously to the one-dimensional case we t@®om  f5rmula:

vector X as the representative of the ensemble defined as o
a linear combination ofandom vectorsX ; = [x1;,...,xni 1 2
j =l o) S=) > D ewje; Exnj)

representing multi-dimensional distribution for the moglel Py

_ m m +Y_Elpy=VX)+V(¥), (23)
Xz[x_la'-'aE]T:[Zalj-xljv'“azanj-xnj]T7 (19) k’l
j=1 j=1

which corresponds to taking into account all the elements

wherem is the number of models anddenotes the dimen- of the matrix Eq. 22). By msge we put the average over
sion of therandom vectorgfor example number of points in  all points i.e.: msquéz)/n. We split the formula into

www.atmos-chem-phys.net/9/9471/2009/ Atmos. Chem. Phys., 9, 94892009
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two terms: the first one related to the covariance matrix for
the models ¥ (X)) and the second one to the observations
(V(Y)). It can be easily noticed that the previous E2fL)(

corresponds to taking into account only diagonal elements

of the matrix Eq. 22). The matrix Eqg. 22) should be dis-
tinguished from the covariance matrix introduced in Sect. 4.

S. Potempski and S. Galmarini: Analytical properties of multi-model ensembles

mino (K) - V (X opt) _ maxo (K)

)

m n m
where by ming(K) and maxo(K) we denote mini-
mal and maximal elements of the spectrafiK) of the
covariance matriX, respectively i.e. the minimal and
maximal eigenvalues.

The latter one describes correlation between different models

at one point while Eq.22) defines the correlation between
number of points for a linear combination of model results.

It should be also added that due to well known property of
covariance (Feller, 1968):

Em)) = ERDERD) < 5 (16 + ED)),

saying that off-diagonal elements are bounded by diago-

nal ones, Eq.41) can be used to estimate upper bound of
Eq. 23).

V(X (G : ;
5. Y Xopd <minsy” =minmaxs”’,
n j i
Wheresl.(j), i=1, ...,n; j=1, ..., m are the eigenval-
ues ofK according to the block notation and put in the
increasing order i.es,.(’) < sl.(_fl for anyi, j.
3. If mﬁ(ﬁ; <m, then@ <mino (K), whereo (K) is

the spectrum of the matriX andX,, is the ensemble
mean.

An extension to the correlated case is straightforward — we

generalize Eq.Z3) by including also terms related to the cor-
relations between the models apart from already considere
the correlations between the points. Then by the general
ized mean square error we put msﬁ%/n, whereSéz) is
expressed as follows:

n n m m

Séz) = ZZZZ“kiWIjE{xkixlj}

k=11=1j=1i=1

+V(¥)=V(X)+V(Y) (24)

We can see that we have analogous a priori estimations as
i one dimensional case — optimal msge is always bounded
by minimal and maximal eigenvalues divided by the number
of models. Similarly optimal msge is always bounded by the
maximal eigenvalue of the best individual model. And finally
the ratio between highest and lowest eigenvalues can be used
to find the condition when msqe for the ensemble mean is
less than the one produced by any individual model.

6 Conclusions

It can be observed that in both cases Egs. (22) and (23)

the first term of the formulas can be expressedagX) =
(Ko, ), where:

— for uncorrelated cad¢ is a block diagonal matrixk =

diag(Cy,...,C,;), where
E{x1jxaj}...... E{x1jxn;}

Ci=| i ,
E{xpjxij}...... E{xujxnj}

Clloeeeeriinnnn. Cun
K= i,
Cilereeeeennnnn. Coum
where
E{x1ix1j}...... E{x1ix,;}
Cij = e s
E{xnixyj}...... E{xpixXnj}

ande = [ee1, ..., ], &) = [0, ... 0017 .
Using this notation we can obtain the formulas for optimal
weights and covariance matrix shown in Table 1.

For both cases we can obtain similar as in one-dimensional

case ensemble properties, namely:

Atmos. Chem. Phys., 9, 9473489 2009

In this study, by means of analytical formulation we have
tried to fix some aspects never presented before, regarding
the relationship between statistical behaviour of ensemble
members and related expectations of the ensemble. The con-
siderations presented here have been deduced having in mind
the well known and extensively applied practice of ensemble
dispersion modeling.

The results obtained show the importance of the knowl-
edge of bias and variance of the statistical distributions for
the models used in multi-model ensemble systems and how
useful this information can be in the definition of the ensem-
ble characteristics and in guaranteeing that the behaviour of
the ensemble will fulfill the expectations. The results apply
to both categories of correlated and uncorrelated models (or
model results) filling a whole model space and can be sum-
marized as follows:

— By choosing appropriate combination of model results
we can find an optimal representative of the ensemble
that after bias correction minimizes the mean square
error. This is equivalent to the minimization of the
quadratic form defined by the covariance matrix with
normalization condition. In fact the mean square error
is expressed in terms of quadratic form determined by
the covariance matrix.

www.atmos-chem-phys.net/9/9471/2009/
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Table 1. Formulas in multi-dimensional case.

9481

Uncorrelated case

Correlated case

_ ) 1 1 -1
Optimal weights o0 =C | X C]f l
j=1

wherel =[1,...11T  k=1,....m

-1
m
Optimal covariance C= ( > le>
j=1

-1
Optimal V (X) V(Xopt = (CL,I) = (( )3 Cj1> 1,1)
j=1

a=K UpBK=t g~

where g = [,...117,

I1=[1,...17

-1

(ng—ll R) -
m m (_1) _1

> > C;

k=1j=1
whereCl%_l) are sub-matrices of

(=1 (=1
Ciq v Cin

C =

G
-1 -1
cl b Chn

VXopp = (CLI) =

(T e R)

— Some general a priori estimations for the optimal vari-
ance and msge have been obtained, which show that
multi-model ensemble has clear advantages in compar-
ison to one model approach. This is expressed by the
analytical formula demonstrating that msqe is bounded
by the maximal variance or eigenvalue of the covari-
ance matrix divided by the number of models. Similarly
the lower bound of msqe is determined by the minimal
variance or eigenvalue also divided by the number of
models. If we assume that all the variances or eigen-
values of the appropriate covariance matrices are uni-
formly bounded for all the models then a priori estima-
tions show that asymptotic behavior of optimal msqge
is O(1/m) whenm — oo. It can be also seen that
putting the models in ascending order (with respect to
variances or eigenvalues of covariance matrix) deter-
mines the lowest possible location of the starting point
of asymptotic curve. This curve is “idealized” as in real-
ity no precise information is provided on model biases
and variances and adding new ensemble member can
also increase the smaller or higher variance. Hence a
real curve will be shifted up accordingly to the E§) (
and slightly deformed. However, a priori estimations re-
main true regardless of our knowledge of models’ vari-
ances and biases. For any other than optimal ensem-
ble representation we can expect some deviation from
the “ideal curve” and this also shows, to some extent of
course, how far we are from optimal combination. In
fact we can simply say that other linear representations
cannot behave better than the optimal one.

www.atmos-chem-phys.net/9/9471/2009/

— We have devised the condition under which the mean

of the ensemble still gives more accurate results in the
sense of the minimization of msge, than any individ-
ual model. This condition is expressed in the terms of
the ratio between highest and lowest variances or eigen-
values of the appropriate covariance matrix. When the
condition is not fulfilled, one can consider removing the
responsible member from the ensemble. However in the
sense of msge, the ensemble results in principle cannot
be deteriorated even by a model with a big variance if
the optimal combination of models results is taken as
a representative of the ensemble. It should be consid-
ered that eliminating a result from an ensemble is not as
easy practice (especially for predictions) since there is
no way to recognize when a single model is wrong or
the ensemble is wrong or the case has a low predictabil-

ity.

If there is nothing wrong with any model then the ratio
between the highest and lowest variances or eigenvalues
can be considered as an indicator of the coherence of
the multi-model ensemble. The biggest the ratio is, the
highest disagreement among the models in estimating
the uncertainty. In particular when this ratio is greater
than the number of models this indicates that the en-
semble mean may be worse than the best single mod-
els and special attention should be paid to take optimal
representative of the ensemble. In this sense there is a
relation between the coherence of multi-model ensem-
ble and the applicability of the ensemble mean, and this
relation can be expressed simply as the ratio between

Atmos. Chem. Phys., 9, 94832009
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or NCEP. Additionally one can perturb initial data or
model parameters.

3. Ageneral approach based on sensitivity analysis in prin-
ciple can be also applied (e.g. Saltelli, 2002; Hanson
and Hemez, 2004; Saltelli et al., 2006; Campolongo et
al., 2007)

All these approaches may not cover all possibly varying as-
pects of the model. However they are existing and applicable
methods that can be used to produce yet useful information
on the model variance. Of course the estimation of the vari-
ance can make simulation times much longer, in particular if
it is to be based on EPS data. Bias correction methods have
been already applied, in particular in air quality problems
where there is enough amount of measurement data (Delle

Fig. 3. “The parable of the blind leading the blind”, by Peter Brue- ponache et al.. 2006: Delle Monache et al.. 2008: Wilczak
gle The Elder (1568), courtesy of the Museo e Gallerie Nazionali dlet al., 2006; Zupanski et al., 2007).

Capodimonte, Naples.

The estimation of correlation between the models can be
based on various statistical tests (Lehman, 1986) for exam-

the biggest and smallest eigenvalues of the appropriat@l_e' using Pearson correlation_coefficit_ant (see Rodgers and
covariance matrix. Thus the knowledge of the maximal Nicewander, 1988 for an overview of different approaches).

and minimum eigenvalues has also practical meaning.'t may require however representative statistical material,

When there is no big difference between them one canWhiCh can be acquired from Iong f[err_n_studies.
guarantee good coherence among models. It should be also added that if individual models pdfs are

known we can combine them using optimal weights to cal-
— We have also demonstrated that the same properties afulate ensemble pdf. This is in accordance with the gen-
multi-model ensemble are valid in the most general caseeral concept of applying the ensemble approach (Dabbert and
in which both correlations between the models and be-Miller, 2000; Galmarini et al., 2004; Stull et al., 1997; Riccio
tween the points or variables are taken into account.  etal., 2007; Potempski et al., 2009) to perform predictions in
order to rely on stochastic paradigm rather than deterministic
Although it is out of the scope of the paper, we would like to one.
add that it can be easily proved that the same formulas for the Although mathematical framework used in the paper is
optimal covariance can also be applied in Kalman filter pro-not very sophisticated it shows how some basic results can
cedure to find optimal solution both for the gain matrix and be obtained. We wanted also to demonstrate that a formal
ensemble representation at a time. This means that insteaslathematical approach can be useful to obtain general prop-
of using ensemble mean it is better to take optimal combinaerties of the multi-model ensemble systems. It should be also
tion of models results accordingly to formulas shown in the added that a similar kind of analysis can be made for other
paper. than msqge metrics like the maximum norm. Obviously the
The analysis produced points quite clearly toward the factestimations we presented can be applied to any multi-model
that one should acquire both the bias and variance of each eensemble system, not necessarily related to atmospheric dis-
semble member (e.g. Delle Monache and Stuhl, 2003; Malpersion models.
let and Sportisse, 2006; McKeen et al., 2005; Pagowski et The real open issue still remains however, namely the con-
al., 2005). To estimate the variance three approaches can beection between ensemble coherence or agreement among
used: the models which as we have seen can be predicted quite
nicely with the analysis above, and uncertainty dealing with
1. Some of the models have built-in features to calcu-the relationship between the ensemble and observational
late Va”abl“ty of their results (eg Dabbert and Mi”er, data. The two are not Coinciding Conceptsl and they are ex-
2000; Draxler, 2001; Stohl, 2005). It can be done by in- tremely relevant especially in the case of atmospheric dis-
corporating a kind of Monte Carlo simulations into the persion ensemble forecast. In some cases the confusion be-
models for example by perturbing some crucial param-tween the two and an excessive confidence in the ensemble
eters. coherence as proxy of good result can lead to unwanted con-
sequences, nicely summarized already in 1568 by P. Bruegel
%he Elder in the painting presented in Fig. 3. We will try to
address also this aspect in the formal way in the future.

2. More advanced approaches could be based by usin
meteorological data from Ensemble Prediction Sys-
tems (EPS), for example the ones available at ECMWF

Atmos. Chem. Phys., 9, 9473489 2009 www.atmos-chem-phys.net/9/9471/2009/
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Theoretical framing of practices is what we feel mostly In fact the system Eq. (A3) solves the minimization problem
needed at this stage of development of the ensemble dispefer the quadratic formK e, «) with the condition Eq. (19)
sion technique and activities. (analogous to Eq7), whereK is a block diagonal matrix:

K =diagCy,...,C,,) andea = [a1,...,a,,]7. One can note
that V(X) = (Ka, &), and this relation justifies the general-

Appendix A ized formula of msqge Eq2Q) as it is natural extension of
. . , one-dimensional case.
Details on multi-dimensional case From Eq. (A3) we can observe that the equations are cou-

pled only via Lagrangian multipliers and normalization equa-
tion. Then again we can find explicit formulas for the optimal
weights — namely as:

Al Uncorrelated case

First we consider the problem of finding coefficients
which minimize expression Eq28) similarly as in one- 1 .4 )
dimensional case. This leads to the minimization of the fol-%/ = Ecj Aforj=1,..m,

lowing Lagrange function (observation term can be omitted): )
from the last equation of Eq. (A3) we havé =

-1
m
-1
L(“ll?-'~7a1ﬂ’la'-'aanla"'aanma)"l"'-a)"n) 2<ZC] ) l, hence

j=1
ZZCOV]‘[(Y)—FZ)\" <1—Zaij), (AL)
k.l i J

-1
m
ok :c,f(Zcﬁ) I, fork=1,...m (A5)
— =1
where Coy; (X) denotesk, /) element of the covariance ma- !
trix Eq. (22) i.e.: This formula is a natural extension of Eq. (10) for multi-
dimensional case.
74 - In order to obtain the optimal formula for the first term of
Covy(X) = Zakjolle{xijlj} S X :
= the square error we rewrite it in the following form:
Then after differentiating Eq. (A1) with respect to all coeffi- |, — < o
cientsi; ando,; we get the normalization Eqg. (19) and: VX)= ;(C-’a-”a-’) (A6)

Then by applying Eg. (A5) we get:

oL !
5 :22aksE{x,.sxks}—k, forr=1,..,nand
Urs k=1 m m
-1 -1
s=1..m (A2) Zl(c,-a,-,aj)zzg(cjcj cr.cy'er)
Jj= j=
where the first index shows point number and the second one m
model number. = (Cl, chlCl>, (A7)
This system is not separable for each point but it can j=1
be written in a more convenient way, namely by grouping h
Eq. (A2) for each model we get: where
-1
m
2C1a1—A=0 c:( cﬂ) (A8)
2Co05—A =0 ; ’
2C, ey —A—0 (A3) which leads finally to the following formula:
i 1 m -1
2. %= 54 -1
j=1 V(Xopy = (CL 1) = ((Zlcj ) N (A9)
]:
where «; = [a1),....a;17 for j =1, ..., m, A= . o _
[A,.dn]?, I=1[1,....1]" andC; is the covariance matrix ~Hence we have obtained similar expression as for correlated
of n x n dimension for the modei: models case Eq16), however with different covariance ma-
trix. The matrixC defined by Eq. (A7) can be considered as

Ef{x1jx1j}oer E{x1j X0} the optimal covariance matrix.
Ci= v (A4) Before starting examination of the properties of the op-

E{xjX1j} oo E (X0 Xnj } timal msge we would like to add that Eq. (A7) has also

www.atmos-chem-phys.net/9/9471/2009/ Atmos. Chem. Phys., 9, 94892009
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Bayesian interpretation. Namely, if we consider for exam-and finally we get the following estimation:

ple casen=2 and assume tha;, X, have Gaussian pdfs )
J

provided thatX; is the truth (i.e.X1|X; ~ N(X,,C1) and - maxsy,’

X2|X; ~ N(X,,Cyp)), then the pdf ofX,|X1, X> is also V(Xop) _ (CLD < [Cnn < 11 <!

Gaussian of the distributioV (X, C), whereC~1 = CI1+ n n n me m
] n

C,* (Riccio, Giunta, Galmarini, 2007).
We start investigating the properties of the optimal com-  To prove lower bound for optimal msge we proceed in the

bination of model results from the simple situation where all following way — for anye = [a1, ...,e,,]7 we have:

sub-matrice<C; are the same (i.e. all the models have the

same distributions). Hend@;=C’ for all j, and from spec-

tral representation we get: Z(C joj.o;) = Z(S,Uja.,, Ujaj)

1 —ZZS(])(U*a )2>Zs§j)||otj||2>mlns:(L])||ot||2,
= (Zc]fl) = mC'H~1==C and(CLI)
J X where the vectow fulfils normalization condition Eq. (19).
1 1 U*l inimi
_Yern=tevnon - [lU*L]|5 In order to f|nd lower boend Yve minimize the eerm
m m m ie. ||la|®= Z Zotu Taking into account condition
i=1j=1

If we denote eigenvalues @ ass1 < ... <s, then by apply- g4 (19) this can be done by minimizing inner sum sepa-

ing the same technique as in section 3 (note [H#E = n) rately for each =1, ..,n. It can be easily found that the min-

we get similar estimations? < V(X) <=, imum is reached at point;; = for anyi,j' which leads
Let us consider now the general case and use the spectral o & L _

representation for eadd;: C; = U, S;U%, whereU; ands; o the following inequality:/|e|| >121 21 = true for

are the unitary and dlagonal matnces respectlvely For theany vector satisfying Eq. (19). Hence finally we obtain:
sake of convenience we put eigenvalue€pf(i.e. elements

of S;) in the increasing order i. esm <s(’) forany ;.

The following estimations hold

() )
. min. - maxs
mino(K) ;L Vo _ i " max(K)
m T om - n - m o m
where by mino (K) and maxo (K) we denote minimal and
maximal elements of the spectrum{K) of the covariance
matrix K = diag(C1, ...,C,;,) i.e. the minimal and maximal

eigenvalues.

)

-1
Proof. Let putw =Cl = ZC;l 1, then (denoting by
(v); thei-th element of any \iectar) we have:

(ClLDH=(w, ZC lw)= Z(C w,w)

—Z(S 1U*w Urw)= ZZ <,><U*w)2 ;S’g%nu;fwnz

2__ 2
_Z (])||w|| Z ])“Cl”
j Sn i Sn

J

Hence by Schwarz inequality:

> (])IICIII = (CLD < |[CLI11,

J

SO

jcr< ML

(/)
j Sn

Atmos. Chem. Phys., 9, 9473489 2009

o —mi o) > ming)
(Cl,l)_n}xln(Koc,oc)_n?xln;(C]oc],oc])Zmmjlnsl ,

which gives:
)
- mins
Vo) 71
n m

In such a way we have shown that also for multi-
dimensional case the same estimation is valid as for one-
dimensional case.

The other generally valid estimation is:

V(X : ;
VXop) _ minsy/’ = minmaxs"’’.
n J joi

Proof. This can be proved in the following way: as the
weightsa are chosen to minimize lagrangian function then
for any j the following inequality holds:

(CL.D =min(Ke,@) < (C,1.1)

=Y s Un? < maxs”||1]|? = nmaxs,”,
1 1

i

so taking minimum ovey we get the estimatiori.]

Combining this with previous estimation we have:

maXs,(,’ )

V(Xopy ; (D _J
——n < mln(mlnsn —

), saying that even if one
J
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model produces high eigenvalue msqe is still bounded by thend the vectorso; = [, ...,a,,.,‘]T, for j=1...,m, a=
maximal eigenvalue obtained from the best single model.  [az,...,a,,]7 (of dimensionmn) then for the first term of
Let us finally consider the case where the average is takekq. (24) we get:

as the representative of the ensemble, which means that for m om
anyi, j, k we have:a;; = a;x = =, hencea’ =a; = ... = V(Y)z(Ka,a)zz (Cijetj @) (A12)
o = o )" (SO |2 = 1), j=li=1
Then the foIIowm(%lmpllcatmn holds: The matrixK fully describes two types of correlations: be-
maxo(K) g V(X)) ) tween points and models, so it generalizes previously used
If mino (K) " miny(? <m, then == < mj'nsl , Where covariance matrices — it has all the required properties.
J

¥ isth bl First of all due to the mentioned above properties of ma-
”;D'S feTipsgm gmtlean. ¢ the followi i tricesC;; the matrixK is symmetric.
.rool. IS 1S a simple consequence ot the following esti- Secondly the matrixK is also positive semi-definite
mation: i.e. Kv,v) > 0 for any vectow.
V(X,)= Z(C]’a/,a/) _ Z(SJU?!', Ute) Proof. To prove it, consider auxiliary random variables:

m
Zi=oi1xi1+ ...+ mXim = Z o Xij fori=1,...,n, and

J J
: . —
=Y > s W) <D s U < o am
joi i theirsumZ =73 Z; =) > a;;x;;. Then the variance df
i=1 i=1j=1
<mmaxs [|o||2 = ﬁmax;,(lj).D is equal to the first term of the E4) i.e. V (X). According
J mj to Eq. (A11) for anyx we have: Ke,a)=V(Z) >0 and as

i ) » the variance is always nonnegative, this completes the proof.
Hence as for one-dimensional case the condition that en

semble mean produces lower msge than any single model Thig proof also shows that the first term of generalised
can be expressed by the ratio between highest and lowegfisqe (i.e.v (X)) can be defined as an averaged variance of
eingevalues of the covariance matrix. o the sum of linear combinations of multi-model results, taken
Finally we can add that some other estimations can b&yer i the points (this to some extent justifies also used no-
proved in a similar way like the following one: tation). On the other hand it is represented by the quadratic
If ZS;EJ) < mzZSij), then YXn) < Zs;’), whereX,, is  form (Ke,e), which corresponds to the previously consid-
J ered cases.

If we use as previously vectorsA = [A1,...,A,]7 and
1=[1,...,1]7 then the problem of finding coefficients min-
imizing Eq. @4) (or Eq. A11) can be solved by using the

| lagrangian function of the following form:

J J
the ensemble mean.
A2 Correlated case

For correlated case in order to simplify calculations we wil
use block matrix notation. Le€;; (i,j=1,...,m) ben xn L= Z(Cijaj»ai)+()~’l—2“j) (A13)
matrix expressing dependence between two madalsd j i 7

atalln points (strictly — how model is correlated to model Minimization with respect to all the elements of the vectors

7 « andA would lead tonm 4+ n equations. We simplify it by
E{xyxa;}...... E{x1i %) operating on the vectots; andi and by calculatlng Gaetaux
O [ (A10) derivative with respect to all; along some vecta?:

E{x,,,-xlj} ...... E{xmxnj} dL(Ozl/ct+f5) lzo: % -0

Obviously we have!; = C;; andC, =Cj; for j #i. Please (_Z (Cirlox +18),0) + 3 (Cyjerj, otk +18)
note that strictly speaking the matri®;; (except ofC;;) i#k 7k
should not be treated as the covariance (or correlation) onet(Crk (et +18), et +18) —(Xv“k"‘f‘s))
(as it is not symmetric). In fact we ought to speak rather =2(Cirotx,8) + > (Cikd,0;) + D (Cyjexj,8) — (X, 9)
about the pailC;; andC;; as these both matrices describe ik J#k
fully mutual correlation between two modelsnd ;. =23 (Cyjej8)—(2,8) =0

If we introduce the matriX of the dimensiom:n x mn as !

a block matrix: As the above equation is valid for any vectothen we get
the following system of the equations:
Clleeeeinnnns Cin m m
K= oo, (A11) 2 ckjaj_x:oforkzl,_..,mandzaj=l.
(O Cum j=1 j-1

www.atmos-chem-phys.net/9/9471/2009/ Atmos. Chem. Phys., 9, 94892009
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This system can be written in the following form:

2C11...2C1, —17 e 0
2C 1. 2Com —1 | Loy | =10 (A14)
Lo Lo ||a !

which can be rewritten in a more concise form as:
2K —Ig

o =1

wherel¢ =[l,...,1Tandlg =[l,....117 (i.e. 1L =1g) and|
is identity matrix ofn x n dimension. Then the system of
equations can be solved as previouslyeas: %K—ll rA and

$1cK = gr =1, hencer = 2(1cK 1 )11, and finally

a=K Hg(EK g 1=K IzCI (A15)
Please note that the matrb};K‘llR has dimensiom x n
(so the inverse operator has sense), but the mHtrix of
mn x mn dimension. ByC we denotel FK =11 g)~1.

Then we can calculate the optimal first term of E2d)(

V(Xopp as:

(Ko, o) = (KK 1K1 )7L,

K= (1 TK =1 R)—ll) = ((| Tk =171,
IRK M R(RK Y R 7H)

hence

“lp

V(Xopd = (CLI)= (%K (A16)

The formula is similar to the previous ones — if we write the
inverse matrix< 1 in the block form as:

(=1 =D
Cii 7 Cin
K= | o, ,
-1 -1
ClP CO
whereC( D are sub-matrices of x n dimension, then:

-1
(A17)

C=(IR 1|R)_ (sz 1>>

Thus the Eqg. (A15) generalizes previously obtained ex-
pressions for the optimal covariance. In fact the multi-

dimensional case with uncorrelated models corresponds tq_

the situation where all the off-diagonal sub-matri€gg of
the matrixK vanish. Then the inverse of the matxcan
be done block by block for matricé&s;;, which corresponds
to the Eq. (A7).

On the other hand if we consider one-

S. Potempski and S. Galmarini: Analytical properties of multi-model ensembles

of matricesC;; is 1x 1, so they become single elements of the
matrix K ~1 from Sect. 3, and the Eq. (A14) leads to ELg)
The rest of the section will be devoted to prove similar
estimations as previously for simpler cases.
We start with a general estimation fb’r(Yopt). The anal-
ogous estimations as before is valid:

V (Xopt)

n

mino (K) -

m

< maxo (K)

m

)

where o(K) is the spectrum of the matriK defined by
Eq. (33) while mino (K) and maxo (K) represent minimal
and maximal eigenvalues respectively.

Proof. First we write the matriX,ﬁK*ll g Using spectral
decomposition of the matriK=USU*. We apply block no-
tation i.e.

Utz.....Utn Uiy Ui, SN0
U= s U= | s ST :
Upteeee-Upnm Uz, Ul 0......Sn

where all the blocks have dimensiarx n. Due to the prop-
erties of the unitary matrix) we have:U;; = UJT.i. Then we
get:

K-t=ustu*
Zul, U Zu1, S U

Y UpS U DU S U
J J

jm

and
IRK HR=)""> "U;S; Uy
Ik

Letw = CI and denote eigenvalues®&ccording to block

notation and put into the such an order tki,,?{f < s(]) for
j=1,...mandk=1,...,n—1. This leads to the foIIowmg
expressions:

_ 1
(CLI)=(w,I LK 1IRw)=Z§%:(S Ufw,Ujw)

—Z<s—1zu wzu
2 2
—zz‘m(zu w) =Xy (sufe)
(nZ(ZU wZUkjw)_
(;)ZZZ(UTW UT w) =

maXvn

mam

1 T *
~(w, | ,UU*l pw
axs,(,“( R RW)

= Cl||?
maxvmll w|?= ax;,(/)” I

J

dimensional case with correlated models then the dimensiobecause olU* =1 andl fel r=ml.

Atmos. Chem. Phys., 9, 9473489 2009
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Then as previously using Schwarz inequality we can getAcknowledgementsH. “Chip” Levy || (GFDL/NOAA) is thanked
similar estimation: for the interesting discussion had with SG on ensembles and
political consensus.

—m||c1||2<||cu|||l|| ,
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