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Abstract. In this paper we investigate some basic properties
of the multi-model ensemble systems, which can be deduced
from a general characteristic of statistical distributions of the
ensemble members with the help of mathematical tools. In
particular we show how to find optimal linear combination of
model results, which minimizes the mean square error both
in the case of uncorrelated and correlated models. By prov-
ing basic estimations we try to deduce general properties de-
scribing multi-model ensemble systems. We show also how
mathematical formalism can be used for investigation of the
characteristics of such systems.

1 Introduction

The use of ensemble techniques in atmospheric dispersion is
becoming more and more a popular research topic as well
as application. A large number of modeling communities opt
for joining forces in a common multi-model effort to improve
their results, thus moving from the “deterministic” approach
typical of the 80ies and 90ies to the statistically based en-
semble approach of the last decade.

As described by Galmarini et al., 2004a there are several
ways in which an ensemble can be constructed either as a
group of model runs produced by different modeling sys-
tems, or with one model and different input data or model
settings. In this work we will mainly focus on multi-model
ensembles in which models in principle have “nothing more”
in common than the modeled case. Examples of these kind
can be found in Stull et al. (1997), Krishnamurti et al. (2000),
Dabbert and Miller (2000), Ziehmann (2000), Galmarini
et al. (2001, 2004a, 2004b, 2008), Delle Monache and
Stull (2003), Killip et al. (2003), Vijaya Kumar et al. (2003),
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Williford et al. (2003), McKeen et al. (2004), Mutemi et
al. (2004), Yun et al. (2005), Delle Monache et al. (2006a),
Mallet and Sportisse (2006), Van Loon et al. (2007), Vautard
et al. (2009), Wang et al. (2009), Potempski et al. (2008). The
multi-model ensemble technique constitutes yet the extreme
application case of the ensemble technique and therefore it
is worth attention. Ensemble weather prediction systems
should serve as an example of techniques build out of a ro-
bust theory that relates to predictability and uncertainty. Ap-
proaches based on either singular vector or bred vectors, have
been developed from that theoretical framework and are used
in operational activities such as ECMWF and NCEP (Atger,
1997; Buizza and Palmer, 1995; Buizza, 1997; Buizza et al.,
1999; Buizza et al., 1999; Molteni, 1996; Toth and Kalnay,
1993; 1997; Kalnay, 2004 for more bibliography).

Regardless of the methodology selected it is rather indis-
putably recognized that the treatment of several model results
produces an overall improvement of the quality of the model
simulations when compared with measurements. It is our
opinion, however, that the technique deserves a yet renewed
attention by the scientific community that should attempt
to define its boundaries of applicability by formal methods
other than through examples and applications. An attempt in
this direction has been made, recently, in Riccio et al. (2007)
where the ensemble results of Galmarini et al. (2004b) were
reproduced in a Bayesian context and a formal explanation
was presented.

To date, several questions remain unanswered. Among
them one that is constantly present in the case of ensemble
dispersion modeling relates to the way in which the ensem-
ble should be set up. In other words, which criteria should be
adopted to guarantee that the ensemble results will always be
superior to those of any individual member? Moreover, how
should the members be selected?

It is extremely interesting to note that all the multi-model
ensembles presented in the last decade or so in the literature,
found their reasons of existence in the opportunity of joining
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forces rather than in the analysis of the model characteris-
tics, the specificity and peculiarity of their results, and the
way that might have affected the ensemble. This interesting
aspect of science sociology can be easily verified. The en-
sembles are made out of existing groups of scientists that get
together offering their model results and having in return the
added value of the ensemble. It feels good to be on one side
or the other of the ensemble mean since it does not make a
difference as long as the latter compares well with the mea-
surements and no one is neither too near nor too far from it1.
No a priori investigation is known to have been conducted on
the degree of kinship each model has had in the constituted
community, the models independence and complementarity.
Models are not selected for a specific common or exclusive
characteristic they show, their results are just assumed to be
appropriate for that specific application. In this context, the
ensemble practice relies on what we could definephenotyp-
ical model distinction. Models differ for a limited number
of modules, characteristics, or simply for the data used. The
differentiation of a common model genotype occurs when-
ever the model is adopted or used in a specific modeling
environment (modeling group or modeling application). In
most of the cases the ensemble practice brings together mod-
els that show no substantial differences and that are available
since they survived thenatural selectionof individual model
evaluation. Another important element motivating ensemble
model practices and, in particular the multi-model ensemble,
is the relationship between multi-model ensemble result and
scientific consensus. Examples in this sense are the last IPCC
reports or to a much smaller scale and different contest, the
ENSEMBLE activity (Galmarini et al., 2004a). The concur-
rence of different results, originating from different sources,
to the determination of an ensemble is an optimal method
to represent all available scientific evidences (including their
variability) and a way to facilitate agreement around a syn-
thetic and relatively comprehensive result.

Whatever motivates the choice of ensemble modeling in
atmospheric dispersion and air quality, we feel like pointing
out that no investigation has ever been published on the fun-
damental elements that define an ensemble of atmospheric
transport and dispersion model results and on the theoretical
requirements that define it.

This paper is a humble attempt to give formulas and ways
to identify a priori the ensemble characteristics and to try
to give a formal definition to a number of aspects that have
never been discussed in the context of atmospheric dispersion
modeling. The main aim of this paper is to introduce some
basic properties of multi-model ensemble systems, which
can be deduced from general characteristics of statistical dis-
tributions of the ensemble members with the help of math-

1We take the liberty to be so critical since we have been respon-
sible for setting up one of these communities and we have the in-
sider’s perspective.

ematical analysis. We have identified a precise number of
questions that we wish to address in this work, namely:

1. Is the ensemble average result always superior to that of
individual members?

2. If one of the models has essentially a higher variance,
should we remove it from the ensemble while calcu-
lating the ensemble average to minimize the ensemble
variance? Under which conditions?

3. How should an average of the ensemble be modified in
order to extract an optimal representation from all its
members?

4. Is there a condition which guarantees that the variance
of the ensemble mean is less than that of any individual
model?

The paper is structured as follows: in the second section we
present basic assumptions, and then the analysis for uncor-
related multi-model ensemble follows. In the fourth section
we generalize the results to the case where the models should
be considered as correlated ones. In Sect. 5 we summarize
multi-dimensional case. The last section contains the conclu-
sions. In the Appendix we include some technicalities related
to multi-dimensional case.

An explanation is probably due on the title of this paper.
The expression: “Est modus in rebus” is a verse from the
Satire (1, 1, 106–107) by the Latin poet Quintus Horatius
Flaccus (aka Horace). The sentence should be translated as:
“There is an optimal condition in all things” which in the
original text is followed by the sentence: “There are there-
fore precise boundaries beyond which one cannot find the
right thing” (sunt certi denique fines| quos ultra citraque
nequit consistere rectum). We think that these expressions
summarize quite well the central topic of this paper and we
hope it will result clearly in the proceedings.

2 The starting point

Our work starts from the article of Van Loon et al., 2007
(VL2007) in which a simple formula was presented to ex-
plain the advantage of the multi-model ensemble system for
long-term ozone simulations in comparison with a single
model approach. The formula proposed was obtained un-
der the assumption that statistical distributions of model re-
sults and observations were identical and independent. More
precisely, they considered daily ozone maxima in summer-
time determined by seven models and observations made in
a number of stations. After bias corrections, the Talagrand
diagram2 created from model results became flatter, which

2In a Talagrand diagram regular bins are created extending from
the minimum to the maximum value predicted by the ensemble of
model results. A normalized-frequency distribution is then obtained
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allowed them to conclude that the actual ozone concentration
has similar statistical properties as the ensemble members.
This justified the assumption that both simulated and ob-
served concentrations could be sampled randomly from iden-
tical distributions (i.e. their variances are all equal), which in
turn led to the following formula for the mean square error
(msqe):

msqe= (1+
1

m
)σ 2

+b2 (1)

In Eq. (1) σ 2 and b stand for the variance and ensemble
bias respectively, whilem represents the number of ensem-
ble members. Expression Eq. (1) shows the advantage of
ensemble approach as it demonstrates that the msqe for the
ensemble (after bias correction) is always less than that of
any individual model (m =1).

In general the assumption on identical statistical distribu-
tion is obviously a simplification as the models differ in terms
of used parameterizations or numerical concept not mention-
ing application of distinct meteorological data. Also in the
case considered in VL2007, the Talagrand diagram although
improved after bias correction still was not perfect. An anal-
ysis we conducted on 204 different realizations produced by
four atmospheric dispersion models applied to the ETEX-1
case (Girardi et al., 1998), using ECMWF-Ensemble Pre-
diction System (EPS) weather fields, demonstrates that the
spreads of the results sometimes can be significantly differ-
ent among the models (see Fig. 1), and as a consequence also
the variances.

Regardless of these additional considerations, the simple
formulation given in Eq. (1) illustrates very well and quite
synthetically the basic idea of the multi-model ensemble ap-
proach. Starting from this, we would like to give a slightly
deeper look at the analysis based on statistical characteristics
of the mean square error and present more general mathe-
matical formalism. We will start our consideration with the
simplest one-dimensional case i.e. when the simulation re-
sults can be described by ascalar-valued random variable
for each model (for instance when multi-model ensemble is
applied at a single point in space and time), then we will
provide analogous formulas for the multi-dimensional case
i.e. when the problem is described by avector-valued ran-
dom variable.

First we introduce the notation and some relevant assump-
tions. The model results we want to focus on are those of a
prediction of the concentration levels of an unspecified sub-
stance at a single point in space and time. Let us assume
that by using a set ofm atmospheric dispersion models we
obtainm simulations of the concentration evolution at that
point. We assume that at the same point measurements were

by counting the number of measured values that fall in the corre-
sponding bin. An even distribution of the measurements guarantees
that the ensemble covers the spectrum of measurement values. Any
deviation from that structure is an indication of biased ensemble
behaviour.

Fig. 1. ETEX-1 case: spread for 4 different models using the same
meteo data (ECMWF-EPS).

collected for the same variable. Both model data and ob-
servations are characterized by some estimation of variabil-
ity or the error. For the models this can be done for ex-
ample, by perturbing model parameters and some input data
using Monte Carlo technique or through sensitivity analysis
(e.g. Saltelli et al., 2006). The formal description of this situ-
ation implies that the values predicted by the models are rep-
resented by random variablesxj , j = 1,. . . ,m, wherexj cor-
responds to data produced by modelj ; eachxj has statistical
distributions characterized by probability density functions
(pdf) with bias and variance, which we denote asbj andσ 2

j ,
respectively. Analogously we also assume that the observed
values have some uncertainty characterized by random vari-
abley with a pdf, which is described by the varianceσ 2

o (we
can treat the measurements as not biased). In this context we
do not need to specify any particular form of the pdf neither
for the models nor for the observations. What we need to
know however, are biases and variances.

An important aspect that requires clarification from the be-
ginning is the level of diversity, independence, or correlation
that we expect each of them models of the ensemble to ex-
hibit as a priori condition. These concepts or definitions are
most of the time ignored, or given for granted thus leaving
every reader with his own interpretation and sometime mis-
understanding. To avoid that, we define explicitly the con-
ditions we want the ensemble members to satisfy. The first
condition we could impose on the members is that the indi-
vidual models are independent3. In this sense we will need to
specify whether we intend independence of the systems or of
the results. Two models could be defined independent if they
are structurally different, in other words if they are based on
different modeling approaches or philosophies or if they are
based on different parameterization of physical processes.
At the same time they might be considered independent (or
partially so) because they calculate atmospheric dispersion

3This concept is most of the time confused with model differ-
ence which is just a qualitative and unrealistic definition.
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Fig. 2. Classes of models.

starting from meteorological fields originating from differ-
ent weather models. In this context we will not distinguish
between these two instances and we will refer to both cases
indistinctively as independent models. More formally, the
independence of two systems can be expressed by the in-
dependence ofrandom variablesi.e.: two variablesz1 and
z2 representing two models areindependentwhenever their
joint probability can be calculated as a product of individual
ones i.e.p(z1,z2) = p(z1)p(z2). This condition is reason-
able in the case in whichz1 is the result of a model andz2
is a measurement, but it is not difficult to imagine that it will
not apply necessarily to two models. In fact in this case the
condition applies to all results extracted from the two pdfs
and implies that there is not possibility of a synergic contri-
bution of the two models to the same result. In general this
is a condition that is difficult to satisfy and verify for any at-
mospheric model. We will therefore relax the independence
condition, thus requiring that the members of our ensemble
areun-correlatedin the sense ofun-correlated random vari-
ables. This is a more realistic assumption to the extent that it
applies to the average behavior rather than the intrinsic prop-
erties of each model. The un-correlation is in fact defined as:
E{z1z2} = E{z1}E{z2} whereE{} is the expectation value.
The un-correlation includes the VL(2007) condition of inde-
pendence of identical pdfs but also the condition of different
pdfs or partly overlapping ones, as depicted schematically in
Fig. 2. Hence we have transferred the notion of correlation
(or independency) fromrandom variablesto the models. We
are aware of the fact this is not commonly used term in en-
semble systems but this allows us to use precise mathemati-
cal formulations.

Any consideration that will be derived for un-correlated
models case, will then be extended to the correlated models
case, thus producing as result that whole model space will
be covered. In fact by looking at Fig. 2 it is also clear that
when we cover the correlated and uncorrelated model spaces
we will include automatically also the dependent model class
(dotted area) which is complementary to independent model
class.

3 The case of an ensemble of uncorrelated model results

We assume that the results predicted by them models can
be represented in the ensemble form. We define the ensem-
ble representative as any combination of model results in the
form of an average or a generic linear combination of model
results or median or any other percentile and that we denote
by x. The ensemble value is also supposed to be independent
of measurements as all the members of the ensemble.

Finally we use standard notationE(z) andV (z) for the ex-
pectation operator and variance one respectively of anyran-
dom variable z.

Using the notation from Sect. 2 we can introduce the bias
(b) and mean square error (shortly written asS2) of the en-
semble as:

b = E(x −y)andS2 = E(x −y)2 (2)

Under these assumptions the following formula holds:

S2 = V (x −y)+b2 (3)

Equation (3) is a direct consequence of the definition of bias
and msqe, namely:

S2 = E(x −y)2
= E(x −y)2

−(E(x −y))2
+(E(x −y))2

= V (x −y)+b2 (4)

Using well known properties of the variance and under the
assumed condition of the models independence of observa-
tions, from Eq. (3) we obtain:

S2 = V (x)+V (y)+b2. (5)

At this stage we definex explicitly as a linear combination
of ensemble members i.e.:

x =

∑
j

αjxj . (6)

It is also reasonable to assume that the coefficientsαj are
normalized i.e.∑

j

αj = 1. (7)

Since the models are uncorrelated expression Eq. (5) leads to
the following equation:

S2=
∑
j

α2
jV (xj )+V (y)+b2

=

∑
j

α2
jσ

2
j +σ 2

o +

(∑
j

αjbj

)2

(8)

Please note that Eq. (1) derived in VL2007, is a very spe-
cial case of Eq. (8), as it can be obtained from the latter by
taking the mean (i.e. allαj =1/m) and assuming that all the
variances to be equal, i.e.:σ 2

j = σ 2
o = σ 2.

More in general Eq. (8) offers us the possibility of finding
optimal coefficientsαj so that they minimize msqe. This can
be transformed into the optimization problem.

Atmos. Chem. Phys., 9, 9471–9489, 2009 www.atmos-chem-phys.net/9/9471/2009/
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Findα1,...,αm such that:

S2(α1,...,αm)

= min
α1,...,αm

{∑
j

α2
jσ

2
j +σ 2

o +

(∑
j

αjbj

)
2

}
and

∑
j

αj = 1 (9)

We then proceed by removing the bias from the model re-

sults first (i.e. introducing new variables:
∼
xj = xj −bj ) or by

seeking for the solution of minimization problem in the form:
x′

=
∑
j

αjxj −β = x −β, which introduces a new parameter

β representing the bias of the ensemble. In the second case
we would need an additional equation forβ, which can be
simplyE(x′) = 0 (i.e. we postulate thatx′ is not biased), and
leads to the following solution forβ: β =

∑
j

αjbj . Please

note that the variances of biased and non-biased random vari-
ables are the same:V (x) = V (x′). In one way or the other
the bias can be easily removed. Therefore from now on we
will consider that this operation was done a priori and that the
models are all unbiased. The solution of problem Eq. (8) is
equivalent to minimizing the following Lagrangian function:

L(α1,...,αm,λ) =

∑
j

α2
jσ

2
j +σ 2

o + λ

(
1−

∑
j

αj

)
,

which leads to linear system of equations:

2σ 2
j αj −λ = 0forj = 1,...,m (10)∑

j

αj = 1

Equation (9) can be solved explicitly. By determiningαj

from the firstm equations and applying the normalization
condition Eq. (7) we get:

αk =

1
σ2

k∑
j

1
σ2

j

fork = 1,...,m (11)

As a matter of fact Eq. (10) corresponds to the minimiza-
tion of the varianceV (x), which is widely used in a number
of different applications for a large spectrum of problems,
like the optimal interpolation in meteorology or Kalman fil-
ter (Gandin, 1964; Talagrand, 1997; Kalnay, 2003 and refer-
ences there). Equation (10) allows us to determine the opti-
mal variance of the ensemble as the variance of the optimal
linear combination i.e.:

V (xopt) =

∑
j

α2
jσ

2
j =

1∑
j

1
σ2

j

(12)

From Eq. (12), because of the minimization of the msqe, the
optimal variance is always less than any individual model
variance. In fact for anyk = 1,...,m we have:

1

σ 2
k

<
∑
j

1

σ 2
j

,

which immediately implies that:

1∑
j

1
σ2

j

< σ 2
k .

For the case where all the individual variances are equal,

Eq. (12) leads toV (x) =
σ2

m
, corresponding to the formula

used in VL2007.
In summary Eqs. (10) and (12) can be applied to multi-

model ensemble systems to produce optimal linear combina-
tion of model results, which minimizes msqe. This answers
questions (a) and (c) set in the introduction.

In the remaining part of this section we try to demon-
strate some generally valid properties of multi-model ensem-
ble systems based on the formalism we have introduced and
derived.

The first question that can be raised is about other than op-
timal linear combinations of ensemble (like ensemble mean)
which would have the property that the variance of the com-
bination is always less than the variance of any individual
models. In other words – if the optimal weights are not cho-
sen, what can be said about the statistical properties of the
ensemble mean? What conditions guarantee that the vari-
ance of the ensemble mean is lower than the lowest model’s
variance?

Let us consider the simplest case with two models of vari-
ancesσ 2

1 ,σ 2
2 such thatσ 2

2 = pσ 2
1 for somep > 1. The com-

bined variance is equal to:
(
α2

1 +(1−α1)
2p
)
σ 2

1 , which is

less thenσ 2
1 only if p <

1+α1
1−α1

. For example forα1 = α2 =1/2
(i.e. the mean of ensemble) this produces the conditionp <3.
This suggests that in case of models with different variances
it would be better if the difference between them is not too
large, otherwise the combination described above would not
produce an ensemble variance smaller than that of the indi-
vidual models.

In general the following implication holds:

If σ2
m

σ2
1

≤ m+1, then

V (xm) ≤ σ 2
1 ≤ σ 2

2 ≤ ... ≤ σ 2
m, (13)

wherexm represents the ensemble mean and we assume that
we were able to enumerate models in the ascending order of
their variances i.e.σ 2

1 ≤ σ 2
2 ≤ ... ≤ σ 2

m.

Proof: Indeed Eq. (12) implies that:(m−1)σ2
m

m2 ≤
(m2

−1)σ2
1

m2

and thus:

(1−
1

m2
)σ 2

1 ≥
m−1

m2
σ 2

m ≥
1

m2
(σ 2

2 + ...+σ 2
m)
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which gives

σ 2
1 ≥

σ 2
1 + ...+σ 2

m

m2
= V (xm).�

A question that follows from Eq. (12) is whether it is pos-
sible to define a priori limits of variability of the ensem-
ble variance. Sinceσ 2

1 ≤ σ 2
j ≤ σ 2

m for j = 1,...,m we have
1
σ2

1
≥

1
σ2

j

≥
1

σ2
m

and therefore the optimal ensemble variance

will range from:

σ 2
1

m
≤ V (xopt) ≤

σ 2
m

m
(14)

Equations (12) and (13) show that it would be preferable to
aggregate models whose individual variances are not very
different (i.e. their relative ratio is close to 1). If it could
be guessed that a model has a variance very large and differ-
ent from the others, than it should be preferable to exclude it
from the ensemble mean. However, when models’ variances
are known, there is no need to exclude any model, since the
optimization constraints, given by Eqs. (10) and (11), assure
that a small weight is assigned to a model with a large vari-
ance, and the optimal ensemble average variance is always
lower than the lowest model variance.

Moreover, if a model were excluded, the optimal variance
calculated bym-1 models would be greater than the optimal
variance calculated bym models, as shown by the following
inequality:

Vm(xopt) =
1

m∑
j

1
σ2

j

<
1

m−1∑
j

1
σ2

j

= Vm−1(xopt).

The latter shows thatσ 2
m can be large but its contribution to

the optimal representation will be very small (i.e.αm → 0 as
σ 2

m → ∞). In other words even a model (or models) with
a huge variance cannot deteriorate the ensemble result if an
optimal combination of model results is taken as ensemble
representative. To corroborate this conclusion we can see
that by combining inequality Eq. (14) with the fact that the
optimal variance is always less than any individual model
variance we get finally the following estimation:

σ 2
1

m
≤ V (xopt) ≤ min{σ 2

1 ,
σ 2

m

m
}.

This shows that adding “a bad model” (i.e. the model with big
variance) does not necessarily makes the estimation worse as
msqe is bounded by the smallest individual variance anyway
– hence it answers question (b) in the introduction. By the
way Eq. (14) is also valid for the variance of the ensemble
mean, but as shown above there is no guarantee that the indi-
vidual model does not produce smaller msqe than the mean
of the ensemble.

On the other hand a big difference between highest and
lowest variances indicates that there is no agreement among

the models in estimating uncertainty, so the ratioσ2
m

σ2
1

can be

used as an indicator of the coherence of the multi-model en-
semble simulations. If this ratio is close to 1 and the model
predicted values are also close then there is a very good
agreement within the ensemble.

At the end of this section we would like to add some com-
ments related to the other possible way for obtaining weights
Eq. (10). Namely this can be achieved by using the maximum
likelihood principle (see for example Kalnay, 2003; Sasaki,
1969; Parrish and Derber, 1992; Lorenc, 1986). Let us as-
sume thatx represents the truth and that conditional proba-
bility distributions are given by Gaussian pdf i.e.:

fσj
(xj |x) =

1
√

2πσj

exp

(
−

(xj −x)2

2σ 2
j

)

for j = 1,..,m. Then the likelihood ofx being the truth is
given by the following formula:

L(x|x1,...,xm) =

∏
j

fσj
(xj |x)

=
1(√

2π
)m

σ1...σm

exp

(
−

∑
j

(xj −x)2

2σ 2
j

)

Hence the most likely value ofx can be found by maximiza-
tion of the likelihood functionx → L(x|x1,...,xm), which
after taking logarithm and neglecting constant terms leads to
the minimization of the so called cost function:

J (x) =
1

2

[
(x −x1)

2

σ 2
1

+ ...+
(x −xm)2

σ 2
m

]
Then the solution of this problem is given by Eqs. (6) and
(10).

The difference between this approach and preceding one is
that here we assumed explicitly Gaussian distribution, while
previously we did not take any particular assumption on pdf.
On the other hand the minimization of the cost function is
with respect tox not to parametersαj , hence it shows that
for Gaussian pdf appropriate linear combination produces an
optimal solution. It can be also mentioned that the same cost
function can be obtained using Bayesian interpretation (Ed-
wards, 1972; Kalnay, 2003).

4 What if the models are correlated?

While the formulas of the optimal combination for indepen-
dent models correspond to the optimal interpolation in me-
teorology and therefore are generally well known, and have
been already applied in a number of completely different ar-
eas (anywhere where independent measurements are consid-
ered), in this section we intend to extend the results to a more
complicated situation, where the models cannot be no longer
treated as uncorrelated ones. In particular we would like to

Atmos. Chem. Phys., 9, 9471–9489, 2009 www.atmos-chem-phys.net/9/9471/2009/



S. Potempski and S. Galmarini: Analytical properties of multi-model ensembles 9477

derive analogous formulas for the optimal linear combination
of multi-model results and variance. While this case might
be perceived as an academic exercise, it is however a more
realistic representation of the behavior of atmospheric dis-
persion models ensembles. We want to verify if properties
analogous to those derived for the uncorrelated multi-model
ensemble can be also obtained for the correlated case.

Let us consider the problem of minimizing msqe under the
assumption that the statistical distributions of model results
are not necessarily uncorrelated. If the ensemble is repre-
sented by a linear combination of the models results (accord-
ing to the Eqs.6–7) then the formula for the ensemble vari-
ance is as follows:

V (x) =

∑
i

α2
i σ

2
i +

∑
i,j,i 6=j

αiαj Cov(xi,xj )

=

∑
i,j

αiαj Cov(xi,xj ),

where Cov(xi,xj ) stands for the covariance of random vari-
ablesxi andxj ; we use the notation thatσ 2

i = Cov(xi,xi),
where indicesi, j correspond to model numbers.

Then the minimization problem Eq. (8) can be reformu-
lated as follows where, as in the previous case, we consider
the unbiased case:

Findα1,...,αm such that:

S2(α1,...,αm) = min
α1,...,αm

{∑
i,j

αiαj Cov(xi,xj )+σ 2
o

}
and

∑
j

αj = 1 (15)

This leads to the system of linear equations that can be writ-
ten in a block form as:[

2K −1
1 0

][
α

λ

]
=

[
0
1

]
whereK is the covariance matrix of dimensionm·m (its ij -th
element is Cov(xi , xj )) andα is a vector of coefficients (αi).
If we use notation(·,·) for a dot product and define vectorl

asl = [1,...,1]
T this gives the equations:

2Kα−λl = 0 (α,l) = 1 (16)

Actually this system solves the minimization problem for
the quadratic form (Kα, α) with the normalization condition
Eq. (7) – in fact V (x) = (Kα,α). This is also true for un-
correlated models case, in which the matrixK contains only
variances as diagonal elements i.e.:K = diag(σ 2

1 ,...,σ 2
m).

To facilitate the treatment of the equations we take advan-
tage of the fact that the covariance matrix is symmetric thus
allowing us to apply the spectral theorem to write it in the
following form: K = USU∗ (Strang, 2003), whereU is a uni-
tary matrix (i.e. the columns are orthonormal vectors, which
means that they are mutually orthogonal and have norm 1

i.e. || · ||2 = (·,·) = 1; the same is true for the rows) andS is
a diagonal matrix containing eigenvalues of the matrixK . It
should be added that the columns ofU are eigenvectors of the
matrixK andU−1

= U∗. The asterisk usually denotes gener-
ally adjoint operator i.e. complex conjugate and transposition
defined by the following relation:(Uu,v) = (u,U∗v) – since
our case is real,U∗

= UT . The unitary matrix preserves also
dot product i.e.(Uu,Uv) = (u,v).

Equation (15) can be also solved explicitly – we can repeat
a similar procedure as used before to find that:

α =
λ

2
K−1l =

λ

2
US−1U∗l,

and

1= (α,l) =
λ

2
(K−1l,l) =

λ

2
(US−1U∗l,l) =

λ

2
(S−1U∗l,U∗l),

hence

α =
US−1U∗l

(S−1U∗l,U∗l)
=

K−1l

(K−1l,l)
(17)

where we have assumed that there is no zero eigenvalue of
the matrixK . It is known that the covariance matrixK is
nonnegative (Feller, 1968), so this also implies that all eigen-
values must be positive. In fact the case of zero eigenvalue
would correspond to the situation where the model has zero
variance, which means that the non-biased model is ideal
(i.e. it does not produce errors).

If we denote the eigenvalues ofK by s1, . . . , sm, then
obviously the diagonal matrixS−1 contains their inverses
i.e. 1/s1, . . . , 1/sm (i.e. S−1

=diag(1/s1, . . . , 1/sm)). By
(u,v)S−1 we denote dot product generated by the operator
S−1, which corresponds to the appropriate norm ((u,v)S−1 =

(S−1u,v), ||u||
2
S−1 = (u,u)S−1; analogously forK−1).

Then using Eq. (16) we can calculate the optimal variance:

V (xopt) = (Kα,α) =
(KK −1l,K−1l)

(K−1l,l)2
=

1

(K−1l,l)
=

1

||l||2
K−1

or

V (xopt) = (USU∗α,α)

=
1

||U∗l||4
S−1

(USU∗US−1U∗l,US−1U∗l)

=
1

||U∗l||4
S−1

(U∗l,S−1U∗l),

which reduces to:

V (xopt) =
1

||U∗l||2
S−1

=
1

||l||2
K−1

(18)

If the matrixK is diagonal (i.e. the models are uncorrelated)
Eq. (18) becomes Eq. (12) (as well as Eqs. (10) and (17) be-
come identical). Please note that the denominator is simply
the sum over the all elements of the matrixK−1.

www.atmos-chem-phys.net/9/9471/2009/ Atmos. Chem. Phys., 9, 9471–9489, 2009



9478 S. Potempski and S. Galmarini: Analytical properties of multi-model ensembles

Using the fact thatl =
∑
j

ej , whereej is thej -th versor

(ej = [0,...,1,...0]
T with 1 only on thej -th position) the de-

nominator of Eq. (18) can be rewritten in terms of the ele-
ments of the matrixU = (uij ) as follows:

||U∗l||2S−1 =

∑
j

1

sj

(∑
i

uij

)2

=

∑
j

1

sj

∑
i,k

uijukj =

∑
j

1

sj
(1+

∑
i,k

i 6= k

uijukj ).

In comparison with the Eq. (12) an additional term appears
(as an effect of correlation), while eigenvaluessj play the
role of variances. Thus in the remaining part of this section
we investigate properties of multi-model ensemble similarly
as for uncorrelated models case to verify whether already ob-
tained results can be extended by transforming the variance
into the eigenvalues.

First let us assume that all the eigenvalues of the covari-
ance matrix are equal (s1 = ... = sm = s), which for uncor-
related models case corresponds to the situation with all the
variances being the same. From Eq. (18) we can easily con-
clude that:

V (xopt) =
1

1
s
||U∗l||2

=
1

1
s

∑
i

∑
j

(U∗ej ,U∗ei)
=

s∑
i

∑
j

(ej ,ei)
=

s

m
,

which is in accordance with the uncorrelated models case (of
course all the weightsαk will be all equal).

Consider now the case of the ensemble mean (i.e.α =
1
m

l).
The implication analogous to Eq. (12) can be formulated as
follows:

If sm
s1

≤ m, thenV (xm) ≤ s1 ≤ ... ≤ sm, wherex represents
the mean of ensemble (we assume that eigenvalues are or-
dered such thats1 ≤ ... ≤ sm).

Proof. This can be easily verified because of:

V (xm) =
1

m2 (USU∗l,l) =
1

m2 ||U∗l||2S

=
1

m2

∑
j

sj

(∑
i

uij

)2

≤
sm
m2

∑
j

(∑
i

uij

)2

=
sm
m2 ||U∗l||2

=
sm
m2 ||l||2 =

sm
m

≤ s1

as||l||2 = m. �
In comparison with uncorrelated models case we see that

the condition above is slightly more restrictive (sm
s1

≤ m ver-

sus σ2
m

σ2
1

≤ m+1), which is the effect of taking into account

correlation terms. This condition cannot be changed to
sm
s1

≤ m+1 as the following example shows. Consider the
covariance matrix:

K =

[
1 1

2 +ε
1
2 +ε 2

]
,

whereε >0 is a parameter. Then one can calculate that:

V (xm) = 1+
ε

2
> 1> s1 =

3−

√
1+4(1

2 +ε)2

2
,

s2

s1
=

3+

√
1+4(1

2 +ε)2

3−

√
1+4(1

2 +ε)2
.

Forε ≤

√
5−2
4 we have 2< s2

s1
≤ 3 i.e. sm

s1
≤ m+1 but the con-

dition sm
s1

≤ m is not satisfied (by the wayV (xopt) ≤ 1).

Modifying this example by lettingε → −
1
2 and putting

3 as the second variance (instead of 2) one can conclude
that slightly correlated models can have better bound than
m. However, there is no easy way to find a general analyti-
cal expression which would be a continuous relation between
correlated and uncorrelated cases.

Finally also in the correlated case general bounds for the
optimal variance can be obtained. Namely the following es-
timations hold:
s1

m
≤ V (x) ≤

sm

m

Proof.

||U∗l||2S−1 =

∑
j

1

sj

(∑
i

uij

)2

≤
1

s1

∑
j

(∑
i

uij

)2

=
1

s1
||U∗l||2 =

1

s1
||l||2 =

m

s1
,

and analogously:

∑
j

1

sj

(∑
i

uij

)2

≥
1

sm

∑
j

(∑
i

uij

)2

=
m

sm
.�

Hence we get equivalent estimations for the optimal vari-
ance as for uncorrelated models case.

As optimal variance minimizes quadratic form (Kα,α) for
any vectorα satisfying Eq. (7) then by taking versore1 as
vector α we get: V (xopt) ≤ σ 2

1 , whereσ 2
1 is the smallest

model variance.
In such a way we can conclude that the following estima-

tions for the optimal variance are true:

s1

m
≤ V (xopt) ≤ min{σ 2

1 ,
sm

m
}.

In summary we can say that we have obtained similar results
as for uncorrelated models case but the variances of models
have been replaced by the eigenvalues of the covariance ma-
trix K .

An interesting point relates to the fact that taking into ac-
count correlation one may improve msqe. As an example let
us consider the following covariance matrix:

K =

[
1 a

a p2

]
,
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(p > a ≥ 0) thenV corr
opt =

p2
−a2

p2−2a+1
, while for a = 0 (i.e. un-

correlated models case) we have:V uncor
opt =

p2

1+p2 . It can be

easily checked thatV corr
opt < V uncor

opt for a ∈ (
2p2

1+p2 ,p). This
example shows that if we consider two different ensembles:
the first one consisting of two uncorrelated models with vari-
ancesσ 2

1 , σ 2
2 , and the second with two correlated models

with the same variancesσ 2
1 , σ 2

2 , then there are conditions
for which the second system can produce lower mean square
error than the first one.

At the end of this section we want to add that there is an-
other way to obtain the formulas for the solution of the mini-
mization problem Eq. (14), namely, by applying the spectral
decomposition of the matrixK (Strang, 2003). This means
that by consideringK as a linear operator we have:

Kα =

∑
j

sj (ϕj ,α)ϕj ,

whereϕj are eigenvectors of matrixK (henceϕj = Uej )
forming the orthonormal basis. Using the same method as
previously one can obtain the formula equivalent to Eq. (18):

V (xopt) =
1∑

j

(ϕj ,l)2

sj

.

5 Summary of multi-dimensional case

In this section we provide a summary on multi-dimensional
case – all the technical details are given in the Appendix.

By multi-dimensional (or multivariate in general) case we
consider the situation when the results of the simulations can
be described by avector-valued random variable. Typically
this is the situation when we have a simulation domain with
a number of spatial-temporal points and we want to include
correlation between them. Another possibility can be a mul-
tivariate case when different variables are taken into account,
like concentrations of various species. In fact the main differ-
ence between one- and multi-dimensional cases lies in taking
into consideration correlation among different points or vari-
ables. We are therefore adding an additional level of com-
plexity to the cases analysed so far.

Analogously to the one-dimensional case we takerandom
vector X as the representative of the ensemble defined as
a linear combination ofrandom vectorsXj = [x1j ,...,xnj ]

T

representing multi-dimensional distribution for the modelj :

X = [x1,...,xn]
T

= [

m∑
j=1

α1jx1j ,...,

m∑
j=1

αnjxnj ]
T , (19)

wherem is the number of models andn denotes the dimen-
sion of therandom vectors(for example number of points in

some area). As previously we assume that the weightsαij

are normalized i.e.

m∑
j=1

αij = 1 for eachi = 1,...,n (20)

We assume that the models are independent of the observa-
tions represented byrandom vectorY = [y1,...,yn]

T . We
consider non-biased case as a similar procedure as for one-
dimensional case can be also applied.

The first question is how to extend the definition of the
square error. It seems that a natural way is the following one:

S
(1)
2 =

n∑
i=1

E(xi −yi)
2 (21)

The mean square error can be expressed then as the average
over all points i.e.: msqe=S(1)

2 /n.
First we assume that the models are mutually uncorrelated.
Then the problem of finding optimal coefficients which

minimizes Eq. (21) leads to the minimization of the follow-
ing Lagrange function (we can omit observation term):

L(α11,...,α1m,...,αn1,...,αnm,λ1,...,λn)

=

∑
i

∑
j

αijσ
2
ij +

∑
i

λi

(
1−

∑
j

αij

)

It can be easily seen that in such a way we obtainn separated
systems of linear equations of the form Eq. (9) and therefore
the Eqs. (10) and (12) can be applied for each point sepa-
rately (fori = 1,..,n).

However, if we want to include also correlations between
points (i.e. to consider the situation when the distributions
x1j ,...,xnj are correlated for anyj), it seems that we should
use the expressionE{(X − Y )(X − Y )T } representing the
covariance matrix. This upon the assumptions on indepen-
dence between models and measurements leads toE{XXT

}

i.e.n×n matrix:

Cov(X) = E{XXT
}

=


∑
j

α1jα1jE{x1jx1j } ..........
∑
j

α1jαnjE{x1jxnj }

...........................................................................................∑
j

αnjα1jE{xnjx1j } ..........
∑
j

αnjαnjE{xnjxnj }

 (22)

Then as a generalization of Eq. (21) we use the following
formula:

S
(2)
2 =

n∑
k=1

n∑
l=1

m∑
j=1

αkjαljE{xkjxlj }

+

∑
k,l

E{ykyl}=V (X)+V (Y ), (23)

which corresponds to taking into account all the elements
of the matrix Eq. (22). By msqe we put the average over
all points i.e.: msqe=S(2)

2 /n. We split the formula into
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two terms: the first one related to the covariance matrix for
the models (V (X)) and the second one to the observations
(V (Y )). It can be easily noticed that the previous Eq. (21)
corresponds to taking into account only diagonal elements
of the matrix Eq. (22). The matrix Eq. (22) should be dis-
tinguished from the covariance matrix introduced in Sect. 4.
The latter one describes correlation between different models
at one point while Eq. (22) defines the correlation between
number of points for a linear combination of model results.

It should be also added that due to well known property of
covariance (Feller, 1968):

E{xixj} ≤

√
E{x2

i }E{x2
j } ≤

1

2

(
{E{x2

i }+E{x2
j }

)
,

saying that off-diagonal elements are bounded by diago-
nal ones, Eq. (21) can be used to estimate upper bound of
Eq. (23).

An extension to the correlated case is straightforward – we
generalize Eq. (23) by including also terms related to the cor-
relations between the models apart from already considered
the correlations between the points. Then by the general-
ized mean square error we put msqe=S

(2)
2 /n, whereS

(2)
2 is

expressed as follows:

S
(2)
2 =

n∑
k=1

n∑
l=1

m∑
j=1

m∑
i=1

αkiαljE{xkixlj }

+V (Y ) = V (X)+V (Y ) (24)

It can be observed that in both cases Eqs. (22) and (23)
the first term of the formulas can be expressed as:V (X) =

(Kα,α), where:

– for uncorrelated caseK is a block diagonal matrix:K =

diag(C1,...,Cm), where

Cj =

E{x1jx1j }......E{x1jxnj }

.....................................

E{xnjx1j }......E{xnjxnj }

,

– for correlated case

K =

C11.............C1m

..........................

Cm1.............Cmm


where

Cij =

E{x1ix1j }......E{x1ixnj }

.....................................

E{xnix1j }......E{xnixnj }

,


andα = [α1,...,αm]

T , αj = [α1j ,...,αnj ]
T .

Using this notation we can obtain the formulas for optimal
weights and covariance matrix shown in Table 1.

For both cases we can obtain similar as in one-dimensional
case ensemble properties, namely:

1.
minσ(K)

m
≤

V (Xopt)

n
≤

maxσ(K)

m
,

where by minσ (K ) and maxσ (K ) we denote mini-
mal and maximal elements of the spectrumσ (K ) of the
covariance matrixK , respectively i.e. the minimal and
maximal eigenvalues.

2.
V (Xopt)

n
≤ min

j
s
(j)
n = min

j
max

i
s
(j)
i ,

wheres
(j)
i , i=1, . . . , n; j=1, . . . , m are the eigenval-

ues ofK according to the block notation and put in the
increasing order i.e.:s(j)

i ≤ s
(j)

i+1 for anyi, j .

3. If maxσ(K)
minσ(K)

≤ m, thenV (Xm)
n

≤ minσ(K), whereσ (K ) is

the spectrum of the matrixK andXm is the ensemble
mean.

We can see that we have analogous a priori estimations as
in one dimensional case – optimal msqe is always bounded
by minimal and maximal eigenvalues divided by the number
of models. Similarly optimal msqe is always bounded by the
maximal eigenvalue of the best individual model. And finally
the ratio between highest and lowest eigenvalues can be used
to find the condition when msqe for the ensemble mean is
less than the one produced by any individual model.

6 Conclusions

In this study, by means of analytical formulation we have
tried to fix some aspects never presented before, regarding
the relationship between statistical behaviour of ensemble
members and related expectations of the ensemble. The con-
siderations presented here have been deduced having in mind
the well known and extensively applied practice of ensemble
dispersion modeling.

The results obtained show the importance of the knowl-
edge of bias and variance of the statistical distributions for
the models used in multi-model ensemble systems and how
useful this information can be in the definition of the ensem-
ble characteristics and in guaranteeing that the behaviour of
the ensemble will fulfill the expectations. The results apply
to both categories of correlated and uncorrelated models (or
model results) filling a whole model space and can be sum-
marized as follows:

– By choosing appropriate combination of model results
we can find an optimal representative of the ensemble
that after bias correction minimizes the mean square
error. This is equivalent to the minimization of the
quadratic form defined by the covariance matrix with
normalization condition. In fact the mean square error
is expressed in terms of quadratic form determined by
the covariance matrix.
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Table 1. Formulas in multi-dimensional case.

Uncorrelated case Correlated case

Optimal weights αk = C−1
k

(
m∑

j=1
C−1

j

)−1

l α = K−1IR(IT
R

K−1IR)−1l

wherel = [1,...,1]
T , k = 1,...,m where IR = [I ,...,I ]T ,

l = [1,...,1]
T

Optimal covariance C =

(
m∑

j=1
C−1

j

)−1

C =

(
IT
R

K−1IR
)−1

=(
m∑

k=1

m∑
j=1

C(−1)
kj

)−1

whereC(−1)
ij

are sub-matrices of

K−1
=

C(−1)
11 .......C(−1)

1m
.........................

C(−1)
m1 ........C(−1)

mm


OptimalV (X) V (Xopt) = (Cl,l) =

( m∑
j=1

C−1
j

)−1

l,l

 V (Xopt) = (Cl,l) =

((IT
R

K−1IR)−1l,l)

– Some general a priori estimations for the optimal vari-
ance and msqe have been obtained, which show that
multi-model ensemble has clear advantages in compar-
ison to one model approach. This is expressed by the
analytical formula demonstrating that msqe is bounded
by the maximal variance or eigenvalue of the covari-
ance matrix divided by the number of models. Similarly
the lower bound of msqe is determined by the minimal
variance or eigenvalue also divided by the number of
models. If we assume that all the variances or eigen-
values of the appropriate covariance matrices are uni-
formly bounded for all the models then a priori estima-
tions show that asymptotic behavior of optimal msqe
is O(1/m) when m → ∞. It can be also seen that
putting the models in ascending order (with respect to
variances or eigenvalues of covariance matrix) deter-
mines the lowest possible location of the starting point
of asymptotic curve. This curve is “idealized” as in real-
ity no precise information is provided on model biases
and variances and adding new ensemble member can
also increase the smaller or higher variance. Hence a
real curve will be shifted up accordingly to the Eq. (5)
and slightly deformed. However, a priori estimations re-
main true regardless of our knowledge of models’ vari-
ances and biases. For any other than optimal ensem-
ble representation we can expect some deviation from
the “ideal curve” and this also shows, to some extent of
course, how far we are from optimal combination. In
fact we can simply say that other linear representations
cannot behave better than the optimal one.

– We have devised the condition under which the mean
of the ensemble still gives more accurate results in the
sense of the minimization of msqe, than any individ-
ual model. This condition is expressed in the terms of
the ratio between highest and lowest variances or eigen-
values of the appropriate covariance matrix. When the
condition is not fulfilled, one can consider removing the
responsible member from the ensemble. However in the
sense of msqe, the ensemble results in principle cannot
be deteriorated even by a model with a big variance if
the optimal combination of models results is taken as
a representative of the ensemble. It should be consid-
ered that eliminating a result from an ensemble is not as
easy practice (especially for predictions) since there is
no way to recognize when a single model is wrong or
the ensemble is wrong or the case has a low predictabil-
ity.

– If there is nothing wrong with any model then the ratio
between the highest and lowest variances or eigenvalues
can be considered as an indicator of the coherence of
the multi-model ensemble. The biggest the ratio is, the
highest disagreement among the models in estimating
the uncertainty. In particular when this ratio is greater
than the number of models this indicates that the en-
semble mean may be worse than the best single mod-
els and special attention should be paid to take optimal
representative of the ensemble. In this sense there is a
relation between the coherence of multi-model ensem-
ble and the applicability of the ensemble mean, and this
relation can be expressed simply as the ratio between
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Fig. 3. “The parable of the blind leading the blind”, by Peter Brue-
gle The Elder (1568), courtesy of the Museo e Gallerie Nazionali di
Capodimonte, Naples.

the biggest and smallest eigenvalues of the appropriate
covariance matrix. Thus the knowledge of the maximal
and minimum eigenvalues has also practical meaning.
When there is no big difference between them one can
guarantee good coherence among models.

– We have also demonstrated that the same properties of
multi-model ensemble are valid in the most general case
in which both correlations between the models and be-
tween the points or variables are taken into account.

Although it is out of the scope of the paper, we would like to
add that it can be easily proved that the same formulas for the
optimal covariance can also be applied in Kalman filter pro-
cedure to find optimal solution both for the gain matrix and
ensemble representation at a time. This means that instead
of using ensemble mean it is better to take optimal combina-
tion of models results accordingly to formulas shown in the
paper.

The analysis produced points quite clearly toward the fact
that one should acquire both the bias and variance of each en-
semble member (e.g. Delle Monache and Stuhl, 2003; Mal-
let and Sportisse, 2006; McKeen et al., 2005; Pagowski et
al., 2005). To estimate the variance three approaches can be
used:

1. Some of the models have built-in features to calcu-
late variability of their results (e.g. Dabbert and Miller,
2000; Draxler, 2001; Stohl, 2005). It can be done by in-
corporating a kind of Monte Carlo simulations into the
models for example by perturbing some crucial param-
eters.

2. More advanced approaches could be based by using
meteorological data from Ensemble Prediction Sys-
tems (EPS), for example the ones available at ECMWF

or NCEP. Additionally one can perturb initial data or
model parameters.

3. A general approach based on sensitivity analysis in prin-
ciple can be also applied (e.g. Saltelli, 2002; Hanson
and Hemez, 2004; Saltelli et al., 2006; Campolongo et
al., 2007)

All these approaches may not cover all possibly varying as-
pects of the model. However they are existing and applicable
methods that can be used to produce yet useful information
on the model variance. Of course the estimation of the vari-
ance can make simulation times much longer, in particular if
it is to be based on EPS data. Bias correction methods have
been already applied, in particular in air quality problems
where there is enough amount of measurement data (Delle
Monache et al., 2006; Delle Monache et al., 2008; Wilczak
et al., 2006; Zupanski et al., 2007).

The estimation of correlation between the models can be
based on various statistical tests (Lehman, 1986) for exam-
ple, using Pearson correlation coefficient (see Rodgers and
Nicewander, 1988 for an overview of different approaches).
It may require however representative statistical material,
which can be acquired from long term studies.

It should be also added that if individual models pdfs are
known we can combine them using optimal weights to cal-
culate ensemble pdf. This is in accordance with the gen-
eral concept of applying the ensemble approach (Dabbert and
Miller, 2000; Galmarini et al., 2004; Stull et al., 1997; Riccio
et al., 2007; Potempski et al., 2009) to perform predictions in
order to rely on stochastic paradigm rather than deterministic
one.

Although mathematical framework used in the paper is
not very sophisticated it shows how some basic results can
be obtained. We wanted also to demonstrate that a formal
mathematical approach can be useful to obtain general prop-
erties of the multi-model ensemble systems. It should be also
added that a similar kind of analysis can be made for other
than msqe metrics like the maximum norm. Obviously the
estimations we presented can be applied to any multi-model
ensemble system, not necessarily related to atmospheric dis-
persion models.

The real open issue still remains however, namely the con-
nection between ensemble coherence or agreement among
the models which as we have seen can be predicted quite
nicely with the analysis above, and uncertainty dealing with
the relationship between the ensemble and observational
data. The two are not coinciding concepts, and they are ex-
tremely relevant especially in the case of atmospheric dis-
persion ensemble forecast. In some cases the confusion be-
tween the two and an excessive confidence in the ensemble
coherence as proxy of good result can lead to unwanted con-
sequences, nicely summarized already in 1568 by P. Bruegel
The Elder in the painting presented in Fig. 3. We will try to
address also this aspect in the formal way in the future.
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Theoretical framing of practices is what we feel mostly
needed at this stage of development of the ensemble disper-
sion technique and activities.

Appendix A

Details on multi-dimensional case

A1 Uncorrelated case

First we consider the problem of finding coefficientsαij

which minimize expression Eq. (23) similarly as in one-
dimensional case. This leads to the minimization of the fol-
lowing Lagrange function (observation term can be omitted):

L(α11,...,α1m,...,αn1,...,αnm,λ1,...,λn)

=

∑
k,l

Covkl(X)+
∑

i

λi

(
1−

∑
j

αij

)
, (A1)

where Covkl(X) denotes (k,l) element of the covariance ma-
trix Eq. (22) i.e.:

Covkl(X) =

m∑
j=1

αkjαljE{xkjxlj }

Then after differentiating Eq. (A1) with respect to all coeffi-
cientsλi andαrs we get the normalization Eq. (19) and:

∂L

∂αrs

= 2
n∑

k=1

αksE{xrsxks}−λr for r = 1,..,n and,

s = 1,..,m (A2)

where the first index shows point number and the second one
model number.

This system is not separable for each point but it can
be written in a more convenient way, namely by grouping
Eq. (A2) for each model we get:

2C1α1−λ = 0
2C2α2−λ = 0
........................

2Cmαm −λ = 0
m∑

j=1
αj = l

(A3)

where αj = [α1j ,...,αnj ]
T for j = 1, . . . , m, λ =

[λ1,...,λn]
T , l = [1,...,1]

T andCj is the covariance matrix
of n×n dimension for the modelj :

Cj =

E{x1jx1j }......E{x1jxnj }

.....................................

E{xnjx1j }......E{xnjxnj }

 (A4)

In fact the system Eq. (A3) solves the minimization problem
for the quadratic form (Kα,α) with the condition Eq. (19)
(analogous to Eq.7), whereK is a block diagonal matrix:
K = diag(C1,...,Cm) andα = [α1,...,αm]

T . One can note
thatV (X) = (Kα,α), and this relation justifies the general-
ized formula of msqe Eq. (23) as it is natural extension of
one-dimensional case.

From Eq. (A3) we can observe that the equations are cou-
pled only via Lagrangian multipliers and normalization equa-
tion. Then again we can find explicit formulas for the optimal
weights – namely as:

αj =
1

2
C−1

j λ for j = 1,...,m,

from the last equation of Eq. (A3) we haveλ =

2

(
m∑

j=1
C−1

j

)−1

l, hence

αk = C−1
k

(
m∑

j=1

C−1
j

)−1

l, fork = 1,..,m (A5)

This formula is a natural extension of Eq. (10) for multi-
dimensional case.

In order to obtain the optimal formula for the first term of
the square error we rewrite it in the following form:

V (X) =

m∑
j=1

(
Cjαj ,αj

)
(A6)

Then by applying Eq. (A5) we get:

m∑
j=1

(
Cjαj ,αj

)
=

m∑
j=1

(
Cj C−1

j Cl,C−1
j Cl

)

=

(
Cl,

m∑
j=1

C−1
j Cl

)
, (A7)

where

C =

(
m∑

j=1

C−1
j

)−1

(A8)

which leads finally to the following formula:

V (Xopt) = (Cl,l) =

( m∑
j=1

C−1
j

)−1

l,l

 (A9)

Hence we have obtained similar expression as for correlated
models case Eq. (18), however with different covariance ma-
trix. The matrixC defined by Eq. (A7) can be considered as
the optimal covariance matrix.

Before starting examination of the properties of the op-
timal msqe we would like to add that Eq. (A7) has also
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Bayesian interpretation. Namely, if we consider for exam-
ple casem=2 and assume thatX1, X2 have Gaussian pdfs
provided thatXt is the truth (i.e.X1|Xt ∼ N(Xt ,C1) and
X2|Xt ∼ N(Xt ,C2)), then the pdf ofXt |X1, X2 is also
Gaussian of the distributionN(X,C), whereC−1

= C−1
1 +

C−1
2 (Riccio, Giunta, Galmarini, 2007).
We start investigating the properties of the optimal com-

bination of model results from the simple situation where all
sub-matricesCj are the same (i.e. all the models have the
same distributions). HenceCj =C′ for all j , and from spec-
tral representation we get:

C =

(∑
j

C−1
j

)−1

= (mC′−1)−1
=

1

m
C′ and(Cl,l)

=
1

m
(C′l,l) =

1

m
(SU∗l,U∗l) =

||U∗l||2S
m

If we denote eigenvalues ofC′ ass1 ≤ ... ≤ sn then by apply-
ing the same technique as in section 3 (note that||l||2 = n)

we get similar estimations:s1
m

≤
V (X)

n
≤

sn
m

.
Let us consider now the general case and use the spectral

representation for eachCj : Cj = Uj Sj U∗

j , whereUj andSj

are the unitary and diagonal matrices respectively. For the
sake of convenience we put eigenvalues ofCj (i.e. elements

of Sj ) in the increasing order i.e.:s(j)
i ≤ s

(j)

i+1 for anyj .
The following estimations hold:

minσ(K)

m
=

min
j

s
(j)

1

m
≤

V (Xopt)

n
≤

max
j

s
(j)
n

m
=

maxσ(K)

m
,

where by minσ (K ) and maxσ (K ) we denote minimal and
maximal elements of the spectrumσ (K ) of the covariance
matrix K = diag(C1,...,Cm) i.e. the minimal and maximal
eigenvalues.

Proof. Let putw = Cl =

(∑
j

C−1
j

)−1

l, then (denoting by

(v)i thei-th element of any vectorv) we have:

(Cl,l)=(w,
∑
j

C−1
j w)=

∑
j

(C−1
j w,w)

=
∑
j

(S−1
j U∗

jw,U∗

jw)=
∑
j

∑
i

1
s
(j)
i

(U∗

jw)2
i ≥
∑
j

1
s
(j)
n

||U∗

jw||
2

=
∑
j

1
s
(j)
n

||w||
2
=
∑
j

1
s
(j)
n

||Cl||2

Hence by Schwarz inequality:∑
j

1

s
(j)
n

||Cl||2 ≤ (Cl,l) ≤ ||Cl||||l||,

so

||Cl|| ≤
||l||∑
j

1
s
(j)
n

,

and finally we get the following estimation:

V (Xopt)

n
=

(Cl,l)

n
≤

||Cl||||l||

n
≤

1∑
j

1
s
(j)
n

≤

max
j

s
(j)
n

m
.

To prove lower bound for optimal msqe we proceed in the
following way – for anyα = [α1,...,αm]

T we have:

∑
j

(Cjαj ,αj
) =

∑
j

(Sj U∗

jαj ,U∗

jαj
)

=

∑
j

∑
i

s
(j)
i (U∗

jαj
)2
i ≥

∑
j

s
(j)

1 ||αj ||
2
≥ min

j
s
(j)

1 ||α||
2,

where the vectorα fulfils normalization condition Eq. (19).
In order to find lower bound we minimize the norm

i.e. ||α||
2

=

n∑
i=1

m∑
j=1

α2
ij . Taking into account condition

Eq. (19) this can be done by minimizing inner sum sepa-
rately for eachi = 1,..,n. It can be easily found that the min-
imum is reached at pointαij =

1
m

for any i,j ; which leads

to the following inequality:||α||
2
≥

n∑
i=1

m∑
j=1

1
m2 =

n
m

, true for

any vectorα satisfying Eq. (19). Hence finally we obtain:

(Cl,l) = min
α

(Kα,α) = min
α

∑
j

(Cjαj ,αj ) ≥
n

m
min

j
s
(j)

1 ,

which gives:

V (Xopt)

n
≥

min
j

s
(j)

1

m
.�

In such a way we have shown that also for multi-
dimensional case the same estimation is valid as for one-
dimensional case.

The other generally valid estimation is:

V (Xopt)

n
≤ min

j
s
(j)
n = min

j
max

i
s
(j)
i .

Proof. This can be proved in the following way: as the
weightsα are chosen to minimize lagrangian function then
for anyj the following inequality holds:

(Cl,l) = min
α

(Kα,α) ≤ (Cj l,l)

=

∑
i

s
(j)
i (U∗l)2

i ≤ max
i

s
(j)
i ||l||2 = nmax

i
s
(j)
i ,

so taking minimum overj we get the estimation.�
Combining this with previous estimation we have:

V (Xopt)

n
≤ min

(
min

j
s
(j)
n ,

max
j

s
(j)
n

m

)
, saying that even if one
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model produces high eigenvalue msqe is still bounded by the
maximal eigenvalue obtained from the best single model.

Let us finally consider the case where the average is taken
as the representative of the ensemble, which means that for
any i, j , k we have:αij = αik =

1
m

, henceα′
= α1 = ... =

αm = [
1
m

,...., 1
m

]
T (so||α′

||
2
=

n

m2 ).
Then the following implication holds:

If maxσ(K)
minσ(K)

=

max
j

s
(j)
n

min
j

s
(j)

1

≤ m, then V (Xm)
n

≤ min
j

s
(j)

1 , where

Xm is the ensemble mean.
Proof. This is a simple consequence of the following esti-

mation:

V (Xm) =

∑
j

(Cjα
′,α′) =

∑
j

(Sj U∗

jα
′,U∗

jα
′)

=

∑
j

∑
i

s
(j)
i (U∗

jα
′)2

i ≤

∑
j

s
(j)
n ||U∗

jα
′
||

2
≤

≤ mmax
j

s
(j)
n ||α′

||
2
=

n

m
max

j
s
(j)
n .�

Hence as for one-dimensional case the condition that en-
semble mean produces lower msqe than any single model
can be expressed by the ratio between highest and lowest
eingevalues of the covariance matrix.

Finally we can add that some other estimations can be
proved in a similar way like the following one:

If
∑
j

s
(j)
n ≤ m2∑

j

s
(j)

1 , then V (Xm)
n

≤
∑
j

s
(j)

1 , whereXm is

the ensemble mean.

A2 Correlated case

For correlated case in order to simplify calculations we will
use block matrix notation. LetCij (i,j = 1,...,m) ben×n

matrix expressing dependence between two modelsi andj

at all n points (strictly – how modeli is correlated to model
j):

Cj =

E{x1ix1j }......E{x1ixnj }

.....................................

E{xnix1j }......E{xnixnj }

 (A10)

Obviously we haveCT
ii = Cii andCT

ij = Cji for j 6= i. Please
note that strictly speaking the matrixCij (except ofCii)

should not be treated as the covariance (or correlation) one
(as it is not symmetric). In fact we ought to speak rather
about the pairCij andCji as these both matrices describe
fully mutual correlation between two modelsi andj .

If we introduce the matrixK of the dimensionmn×mn as
a block matrix:

K =

C11............C1m

..........................

Cm1.............Cmm

 (A11)

and the vectors:αj = [α1j ,...,αnj ]
T , for j = 1,...,m, α =

[α1,...,αm]
T (of dimensionmn) then for the first term of

Eq. (24) we get:

V (X) = (Kα,α) =

m∑
j=1

m∑
i=1

(Cijαj ,αi) (A12)

The matrixK fully describes two types of correlations: be-
tween points and models, so it generalizes previously used
covariance matrices – it has all the required properties.

First of all due to the mentioned above properties of ma-
tricesCij the matrixK is symmetric.

Secondly the matrixK is also positive semi-definite
i.e. (Kv,v) ≥ 0 for any vectorv.

Proof. To prove it, consider auxiliary random variables:

Zi = αi1xi1+ ...+αimxim =

m∑
j=1

αijxij for i = 1,...,n, and

their sumZ =

n∑
i=1

Zi =

n∑
i=1

m∑
j=1

αijxij . Then the variance ofZ

is equal to the first term of the Eq. (24) i.e.V (X). According
to Eq. (A11) for anyα we have: (Kα,α)= V (Z) ≥0 and as
the variance is always nonnegative, this completes the proof.
�

This proof also shows that the first term of generalised
msqe (i.e.V (X)) can be defined as an averaged variance of
the sum of linear combinations of multi-model results, taken
over all the points (this to some extent justifies also used no-
tation). On the other hand it is represented by the quadratic
form (Kα,α), which corresponds to the previously consid-
ered cases.

If we use as previously vectors:λ = [λ1,...,λn]
T and

l = [1,...,1]
T then the problem of finding coefficients min-

imizing Eq. (24) (or Eq. A11) can be solved by using the
lagrangian function of the following form:

L =

∑
i,j

(Cijαj ,αi)+(λ,l−
∑
j

αj ) (A13)

Minimization with respect to all the elements of the vectors
α andλ would lead tonm+n equations. We simplify it by
operating on the vectorsαj andλ and by calculating Gaetaux
derivative with respect to allαk along some vectorδ:

dL(αk+tδ)
dt

∣∣∣
t=0

=
dL
dt

∣∣
t=0(∑

i 6=k

(Cik(αk + tδ),αi)+
∑
j 6=k

(Ckjαj ,αk + tδ)

+(Ckk(αk + tδ),αk + tδ)−(λ,αk + tδ)
)

= 2(Ckkαk,δ)+
∑
i 6=k

(Cikδ,αi)+
∑
j 6=k

(Ckjαj ,δ)−(λ,δ)

= 2
∑
j

(Ckjαj ,δ)−(λ,δ) = 0

As the above equation is valid for any vectorδ then we get
the following system of the equations:

2
m∑

j=1

Ckjαj −λ = 0 fork = 1,...,m and
m∑

j−1

αj = l.
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This system can be written in the following form:
2C11.....2C1m −I
.......................

2Cm1.....2Cmm −I
I ...............I 0




α1
....

αm

λ

=


0
...

0
l

,

 (A14)

which can be rewritten in a more concise form as:[
2K −IR

IC 0

][
α

λ

]
=

[
0
l

]
,

whereIC = [I ,...,I ] andIR = [I ,...,I ]T (i.e. IT
C = IR) andI

is identity matrix ofn×n dimension. Then the system of
equations can be solved as previously as:α =

1
2K−1IRλ and

1
2ICK−1IRλ = l, henceλ = 2(ICK−1IR)−1l, and finally

α = K−1IR(IT
RK−1IR)−1l = K−1IRCl (A15)

Please note that the matrixIT
RK−1IR has dimensionn×n

(so the inverse operator has sense), but the matrixK is of
mn×mn dimension. ByC we denote(IT

RK−1IR)−1.
Then we can calculate the optimal first term of Eq. (24)

V (Xopt) as:

(Kα,α) =

(
KK −1IR(IT

RK−1IR)−1l,

K−1IR(IT
RK−1IR)−1l

)
=

(
(IT

RK−1IR)−1l,

IT
RK−1IR(IT

RK−1IR)−1l
)

hence

V (Xopt) = (Cl,l) = ((IT
RK−1IR)−1l,l) (A16)

The formula is similar to the previous ones – if we write the
inverse matrixK−1 in the block form as:

K−1
=

C(−1)
11 .......C(−1)

1m

.........................

C(−1)
m1 ........C(−1)

mm

,

whereC(−1)
kj are sub-matrices ofn×n dimension, then:

C =

(
IT
RK−1IR

)−1
=

(
m∑

k=1

m∑
j=1

C(−1)
kj

)−1

(A17)

Thus the Eq. (A15) generalizes previously obtained ex-
pressions for the optimal covariance. In fact the multi-
dimensional case with uncorrelated models corresponds to
the situation where all the off-diagonal sub-matricesCij of
the matrixK vanish. Then the inverse of the matrixK can
be done block by block for matricesCii , which corresponds
to the Eq. (A7). On the other hand if we consider one-
dimensional case with correlated models then the dimension

of matricesCij is 1×1, so they become single elements of the
matrixK−1 from Sect. 3, and the Eq. (A14) leads to Eq. (18).

The rest of the section will be devoted to prove similar
estimations as previously for simpler cases.

We start with a general estimation forV (Xopt). The anal-
ogous estimations as before is valid:

minσ(K)

m
≤

V (Xopt)

n
≤

maxσ(K)

m
,

where σ (K ) is the spectrum of the matrixK defined by
Eq. (33) while minσ (K ) and maxσ (K ) represent minimal
and maximal eigenvalues respectively.

Proof. First we write the matrixIT
RK−1IR using spectral

decomposition of the matrixK=USU∗. We apply block no-
tation i.e.

U =

U11......U1m

..............

Um1.....Umm

U∗
=

U∗

11......U
∗

1m

..............

U∗

1m.....U∗
mm

S=

S1........0
..............

0.......Sm

,

where all the blocks have dimensionn×n. Due to the prop-
erties of the unitary matrixU we have:U∗

ij = UT
ji . Then we

get:

K−1
= US−1U∗

=


∑
j

U1j S−1
j U∗

j1........
∑
j

U1j S−1
j U∗

jm

..............................................................∑
j

Umj S−1
j U∗

j1........
∑
j

Umj S−1
j U∗

jm


and

IT
RK−1IR =

∑
l

∑
k

∑
j

Ulj S−1
j UT

kj .

Letw = Cl and denote eigenvalues ofSaccording to block
notation and put into the such an order thats

(j)
k ≤ s

(j)

k+1 for
j = 1,...,m andk = 1,...,n−1. This leads to the following
expressions:

(Cl,l) = (w,IT
RK−1IRw) =

∑
l

∑
k

∑
j

(S−1
j UT

ljw,UT
kjw)

=
∑
j

(S−1
j

∑
l

UT
ljw,

∑
k

UT
kjw)

=
∑
j

∑
i

1
s
(j)
i

(∑
k

UT
kjw

)2

i

≥
∑
j

1
s
(j)
n

∑
i

(∑
k

UT
kjw

)2

i

≥
1

max
j

s
(j)
n

∑
j

(
∑
l

UT
ljw,

∑
k

UT
kjw) =

=
1

max
j

s
(j)
n

∑
l

∑
k

∑
j

(UT
ljw,UT

kjw) =
1

max
j

s
(j)
n

(w,IT
RUU∗IRw)

=
m

max
j

s
(j)
n

||w||
2
=

m

max
j

s
(j)
n

||Cl||2

because ofUU∗
= I andIT

RIR = mI .
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Then as previously using Schwarz inequality we can get
similar estimation:

m

max
j

s
(j)
n

||Cl||2 ≤ ||Cl||||l||,

hence

||Cl|| ≤ ||l||

max
j

s
(j)
n

m
,

and finally (as||l||2 = n)

V (Xopt)

n
=

(Cl,l)

n
≤

max
j

s
(j)
n

m
.

Similarly as for uncorrelated models case one can also find

the lower bound i.e.:
V (Xopt)

n
≥

min
j

s
(j)

1

m
.

This can be proved in the same way as before since the
following inequality holds for any vectorα:

(Kα,α) = (SU∗α,U∗α) =

∑
j

∑
i

s
(j)
i (U∗α)2

i,j ≥ min
j

s
(j)

1 ||α||
2,

and the rest of the proof is identical.�
Identically as for uncorrelated models case we can

also show that the following inequality holds:
V (Xopt)

n
≤

min

(
min

j
s
(j)
n ,

max
j

s
(j)
n

m

)
, saying that msqe is bounded also by

the maximal eigenvalue obtained from the best single model.
Now let us consider the case where the average is taken

as the representative of the ensemble, which means that we
have:α′

= α1 = ... = αm = [
1
m

,...., 1
m

]
T . Let us assume that

the matrixK has eigenvaluess1 ≤ ... ≤ sN , whereN = mn.
Then we have:

s1

m
≤

V (Xm)

n
≤

sN

m
,

whereXm is the ensemble mean.
Proof. Let us putα′′

= [α′,...,α′
], so ||α′′

||
2
=

n
m

. Then
we get:

V (Xm) = (Kα′′,α′′) = (SU∗α′′,U∗α′′)

=

N∑
i=1

si(U∗α′′)2
i

{
≤ sNn/m

≥ s1n/m
�

From the above inequality the following implication fol-
lows:

If maxσ(K)
minσ(K)

≤ m, then V (Xm)
n

≤ minσ(K), whereσ(K) is
the spectrum of the matrixK defined by Eq. (A10).

In such a way we have obtained analogous results as for
uncorrelated models case.
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