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Abstract. We investigated the influence of meteorological
variability on the interannual variation of springtime bound-
ary layer ozone over Japan during 1981–2005 by multiyear
simulations with the Models-3 Community Multiscale Air
Quality (CMAQ) modeling system and the Regional Emis-
sion Inventory in Asia (REAS). CMAQ/REAS generally re-
produced the observed interannual variability of springtime
ozone over Japan, showing year-to-year variations larger
than the annual rate of increase of the long-term trend. We
then analyzed the influence of the interannual variation of
meteorology in simulated results by using the fixed emis-
sions for 2000 and meteorological fields for each year. As
a reference parameter, we calculated the area-weighted sur-
face pressure anomaly over the Pacific Ocean east of Japan.
When the anomaly has a large negative value, polluted air
masses from continental Asia tend to be transported directly
to Japan by westerly winds. In contrast, when the anomaly
has a large positive value, influence of the outflow from con-
tinental Asia tends to be small because the westerly compo-
nents of wind fields around Japan are comparatively weak.
Instead, southerly winds are relatively strong and transport
clean air masses from the Pacific Ocean to Japan. Con-
sequently, springtime ozone over Japan is higher (lower)
than in ordinary years when the anomaly has a large nega-
tive (positive) value. In general, the interannual variation of
springtime ozone over Japan is sensitive to the outflow from
continental Asia. We also found some correlation between
springtime ozone over Japan and the El Niño-Southern Os-
cillation, indicating that higher and lower springtime ozone
over Japan are related to La Niña and El Nĩno, respectively.

Correspondence to:J. Kurokawa
(kurokawa.junichi@nies.go.jp)

Differences in the meridional displacement and diversity of
cyclone tracks near Japan between El Niño and La Nĩna years
may be responsible for interannual variations in the spring-
time boundary layer ozone over Japan.

1 Introduction

Tropospheric ozone (O3) is a key species in atmospheric
chemistry. O3 and its photochemical derivative OH are major
oxidants of most natural and anthropogenic compounds and
play controlling roles in the oxidation capacity of the atmo-
sphere. In addition, tropospheric O3 influences the Earth’s
climate as a greenhouse gas (Intergovernmental Panel on Cli-
mate Change, 2007), and negatively affects human health,
agricultural crops, and natural vegetation (Wang and Mauzer-
all, 2004; Mauzerall et al., 2005). Therefore, understand-
ing the spatial distribution, long-term trends, and interannual
variation (IAV) of tropospheric O3 is very important.

In Japan, surface and boundary layer (BL) O3 has in-
creased continuously since the 1980s despite reductions in
the concentrations of nitrogen oxides (NOx=NO+NO2) and
non-methane volatile organic compounds (NMVOC), which
are precursors of O3 (Ohara et al., 2008). Many studies have
reported that trans-boundary transport of O3 and its precur-
sors, especially from East Asia, has greatly influenced the re-
cent increase of O3 over Japan (Pochanart et al., 1999; Naja
and Akimoto, 2004; Tanimoto et al., 2005; Tanimoto, 2009;
Yamaji et al., 2006, 2008). Tanimoto et al. (2005) estimated
that the regional build-up of O3 due to anthropogenic emis-
sions in eastern China and Korea accounts for about 10 ppbv
in March and April and about 20 ppbv in May over Japan.
Ohara et al. (2007) reported that emissions of O3 precursors
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Table 1. Abbreviations used in the text.

Abbreviation Definition

ASPA Area-weighted surface pressure anomaly (see Sect. 3.4)
BL Boundary layer
CEC Central eastern China (see Fig. 1)
EyyMyy The simulation using emission data sets and meteorological fields for

each year
E00Myy The simulation using the fixed emissions for 2000 and meteorological

fields for each year
FASC Flux anomalies of springtime BL O3 along LSC
FASJ Flux anomalies of springtime BL O3 along LSJ
FAWJ Flux anomalies of springtime BL O3 along LWJ
IAV Interannual variation
LSC Southern boundary of CEC (see Fig. 1)
LSJ Southern boundary of WCJ (see Fig. 1)
LWJ Western boundary of WCJ (see Fig. 1)
NINO3 The Nĩno3 index
WCJ Western and central Japan (see Fig. 1)

in Asia, particularly in China, have been growing rapidly dur-
ing the past two decades. Thus, it is probable that the impacts
of trans-boundary pollution are becoming correspondingly
larger.

Although O3 concentrations over Japan show a long-term
increasing trend, they also show large year-to-year variations
(Ohara et al., 2008). The main factors causing these varia-
tions are the IAV of O3 precursor emissions, biomass burn-
ing, stratospheric O3, and meteorology. Although anthro-
pogenic emissions from Japan and other Asian countries such
as China and Korea have a large impact on the O3 concen-
tration over Japan, we have been unable to identify year-to-
year variations (in contrast to a long-term trend) in these an-
thropogenic emissions similar to those in O3 concentrations
over Japan (Ohara et al., 2007, 2008). Several studies have
reported that the IAV of wildfire emissions and of the O3
produced by them is an important factor affecting the IAV
of tropospheric O3 (Doherty et al., 2006; Koumoutsaris et
al., 2008). Recently, the influences of lower stratospheric
O3 and stratosphere-troposphere exchange on the IAV of
tropospheric O3 have been analyzed (Ordóñez et al., 2007;
Koumoutsaris et al., 2008; Terao et al., 2008). Terao et
al. (2008) indicated that in the northern extratropics such
as over Canada and Europe, tropospheric O3 is highly influ-
enced by O3 in the lower stratosphere but that stratospheric
influences are small in other regions, especially those influ-
enced by large export events from East Asia. With respect to
meteorology, several studies have reported the influence of
IAV of continental-Asian outflow on tropospheric O3 and its
relations to El Nĩno-Southern Oscillation (ENSO) (Liu et al.,
2003; Liu et al., 2005; Koumoutsaris et al., 2008). However,
influence of meteorology on the IAV of O3 over the north-
western Pacific region, including Japan, where the impacts
of continental-Asian outflow are significantly high, has not
been studied.

The purpose of this study is to investigate the effects of
meteorological variability on the IAV of O3 over Japan. It
is expected that the concentration of pollutants within air
masses exported from continental Asia will continue to in-
crease and these air masses are known to have their greatest
effect on the springtime BL. Trans-boundary O3 seems to
have a large impact on the maximum O3 concentration and
exceedances of air quality standards in Japan, especially in
the springtime (Akimoto, 2003; Zhang et al., 2004; Tanimoto
et al., 2005; Tanimoto, 2009; Yamaji et al., 2006, 2008).
Thus, we focused on the influences of the IAV of continental-
Asian outflow on the springtime BL O3 over Japan. In this
study, we did not focus on the effects of year-to-year varia-
tions in biomass burning emissions. We conducted two sets
of multiyear springtime simulations for 1981–2005 using
the Models-3 Community Multiscale Air Quality (CMAQ)
modeling system (Byun and Schere, 2006) and the Regional
Emission Inventory in Asia (REAS) (Ohara et al., 2007).
Here, we evaluate the general model performance for O3
over East Asia and the reproducibility of the observed IAV of
O3 over Japan by simulated results using emission data sets
and meteorological fields for each year. Then, we examine
the influences of the IAV of the meteorology and the pro-
cesses causing the relatively higher and lower springtime BL
O3 over Japan by simulated results using fixed emissions for
2000. Finally, we discuss the relationships between ENSO
events and the IAV of O3 over Japan. We define several ab-
breviations in this paper, and provide a list of them in Table 1
for the reader’s convenience.
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Figure 1. Model domain of CMAQ showing the horizontal distribution of REAS NOx 877 

emissions for 2000. The box labeled WCJ denotes western and central Japan, the focal 878 

area of our analysis of the IAV of springtime BL O3. The lines LWJ and LSJ are 879 

respectively defined as the western and southern boundaries of WCJ, along which we 880 

calculated the BL O3 fluxes. The box labeled CEC denotes central eastern China, and 881 

line LSC is defined as the southern boundary of CEC for the calculation of BL O3 fluxes. 882 

The locations of O3 monitoring sites used for model validation in section 3.1 are also 883 

shown as orange circles. 884 

885 

Fig. 1. Model domain of CMAQ showing the horizontal distribution of REAS NOx emissions for 2000. The box labeled WCJ denotes
western and central Japan, the focal area of our analysis of the IAV of springtime BL O3. The lines LWJ and LSJ are respectively defined
as the western and southern boundaries of WCJ, along which we calculated the BL O3 fluxes. The box labeled CEC denotes central eastern
China, and line LSC is defined as the southern boundary of CEC for the calculation of BL O3 fluxes. The locations of O3 monitoring sites
used for model validation in Sect. 3.1 are also shown as orange circles.

2 Model description

2.1 Chemical transport model

The three-dimensional regional-scale chemical transport
model used in this work was developed jointly by Kyushu
University and the National Institute for Environmental Stud-
ies (NIES) (Uno et al., 2005), based on the Models-3 CMAQ
version 4.4 modeling system released by the US Environ-
mental Protection Agency (Byun and Schere, 2006). This
model is driven by meteorological fields generated by the Re-
gional Atmospheric Modeling System (RAMS) version 4.4
(Pielke et al., 1992). The horizontal model domain for the
CMAQ simulation is 6240×5440 km2 on a rotated polar
stereographic map projection centered at 25◦ N, 115◦ E, with
a grid resolution of 80×80 km2 (Fig. 1). For vertical resolu-
tion, we used 14 layers up to 23 km in the sigma-z coordinate
system. In this study, we defined the BL as from the surface
to an altitude of 1 km; the BL comprises 5 layers in the model
coordinate system. We adopted the Statewide Air Pollution
Research Center (SAPRC)-99 scheme (Carter, 2000) for gas-
phase chemistry (with 72 chemical species and 214 chem-
ical reactions, including 30 photochemical reactions). For
aerosol calculations, we applied the third-generation CMAQ
aerosol module (AERO3), which includes the Secondary Or-
ganic Aerosols Model (SORGAM) (Schell et al., 2001) as

a secondary organic aerosol model, ISORROPIA (Nenes et
al., 1998) as an inorganic aerosol model, and the piecewise
parabolic method (PPM) (Binkowski and Shankar, 1995) as
the regional particulate model. Note that both the gas-phase
chemistry and aerosol schemes are applicable only to the
tropospheric atmosphere. Schemes applicable to the strato-
sphere are not used in the model.

2.2 Outline and setting of the numerical experiments

We conducted two sets of numerical experiments. First, we
performed a 25-year springtime simulation for 1981–2005
using emission data sets and meteorological fields for each
year (called “EyyMyy”). Second, we conducted a simulation
for the same period using the fixed emissions for 2000 and
the meteorological fields for each year (called “E00Myy”).
We performed simulations for the period from 1 January to
31 May of each year. In this study, we defined springtime
as April and May, and thus treated the first 3 months as the
spin-up period. The purpose of EyyMyy was to evaluate the
ability of the model to reproduce the observed results. In this
work, we focused on the influence of meteorological vari-
ability on the IAV of springtime BL O3 over Japan. There-
fore, the simulated E00Myy results, which elucidate the sen-
sitivity of springtime BL O3 over Japan to meteorological
factors, are mainly used in the following analysis.

www.atmos-chem-phys.net/9/6287/2009/ Atmos. Chem. Phys., 9, 6287–6304, 2009
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Figure 2. Comparison of the springtime averaged O3 mixing ratios between 888 

observations (gray bars) and model simulations by EyyMyy (black bars). Locations and 889 

general information on monitoring sites are presented in Fig. 1 and Table 2, respectively. 890 

Data from all periods shown in Table 2 were included in the calculation of the 891 

springtime average and standard deviation at each site. The whiskers indicate 1 standard 892 

deviation for both observation and simulation. Several observations without whiskers 893 

were taken from published research papers. 894 

895 

Fig. 2. Comparison of the springtime averaged O3 mixing ratios be-
tween observations (gray bars) and model simulations by EyyMyy

(black bars). Locations and general information on monitoring sites
are presented in Fig. 1 and Table 2, respectively. Data from all peri-
ods shown in Table 2 were included in the calculation of the spring-
time average and standard deviation at each site. The whiskers
indicate 1 standard deviation for both observation and simulation.
Several observations without whiskers were taken from published
research papers.

Both experiments used the same meteorological fields and
initial and boundary conditions for chemical tracers. Me-
teorological fields for each year were generated by RAMS
with initial and boundary conditions defined by the Na-
tional Centers for Environmental Prediction/National Cen-
ter for Atmospheric Research (NCEP/NCAR) Reanalysis 1
data sets (http://www.cdc.noaa.gov/cdc/data.ncep.reanalysis.
html) (Kalnay et al., 1996; Kistler et al., 2001). The reanal-
ysis data sets have a spatial resolution of 2.5◦

×2.5◦ and a
temporal resolution of 6 hours. The meteorological param-
eters, such as temperature, wind speed and direction, rela-
tive humidity, and precipitation, simulated by this system
have been validated by Yoshida et al. (2006) and Uno et
al. (2003, 2005). The initial fields of chemical compounds
were prepared by the initial conditions processor (ICON) of
the CMAQ modeling system (Byun and Schere, 2006). The
influence of the initial condition was eliminated during the
spin-up period (3 months). The monthly averaged lateral
boundary conditions for most chemical tracers were obtained
from the global chemical transport model CHASER (Chem-
ical AGCM for Study of Atmospheric Environment and Ra-
diative Forcing; Sudo et al., 2002). In this study, we did not
examine the influences of the IAV of inflow from outside of
Asia. Thus, we assumed no IAV as the lateral boundary con-
dition. With respect to the upper boundary condition, we did
not explicitly incorporate the O3 inflow across the tropopause
from CHASER. In the model domain, intrusions of O3 from
the upper layers across the lateral boundaries determine the
stratospheric and upper tropospheric O3 concentrations. As
mentioned in Sect. 1, the influence of inflow from the strato-
sphere on the IAV of BL O3 over Japan seems to be relatively
small. Therefore, the IAV of stratospheric O3 was not con-
sidered in this study.

EyyMyy requires the emission inventories for 1981–2005,
and E00Myy needs only the data set from 2000. We pre-
pared data sets for anthropogenic emissions of sulfur dioxide
(SO2), NOx, carbon monoxide (CO), NMVOC, black car-
bon, organic carbon, and ammonia (NH3) using REAS ver-
sion 1.1 (Ohara et al., 2007,http://www.jamstec.go.jp/frcgc/
research/p3/emission.htm). REAS data sets for 1981–2003
include most anthropogenic sources such as fuel combus-
tion and industrial processes. We extended the data sets un-
til 2005 using the same methodology as Ohara et al. (2007)
and with new statistics such as energy consumption and in-
dustrial activities (e.g. International Energy Agency, 2006;
United Nations, 2005, 2006). We took parameters such as
emission factors and removal efficiencies from those for the
year 2003. Springtime emission is exactly the same as an-
nual average flux in this study, because seasonal variation is
not considered in the REAS database. According to Streets
et al. (2003), springtime fractions of annual emissions in
China are similar to the annual mean values. We took bio-
genic emissions of isoprene and monoterpenes from monthly
estimations for the 1990s by Guenther et al. (1995). We
did not include NOx emissions from soil or lightning in the
model. With respect to biomass burning emissions, Tanimoto
et al. (2008) reported the impact of boreal biomass burning
on O3 at Rishiri, the northern island of Japan, in 1998, 2002,
and 2003. According to their study, two episodes observed
in 2002 and 2003 suggested that at Rishiri, O3 in wildfire-
polluted plumes was comparable to the magnitude typically
observed in industrially-polluted air masses from the Asian
continent. However, our focus was not on the effects of year-
to-year changes in wildfire emissions, and, in Asia, their re-
cent long-term increasing trend is smaller than that of anthro-
pogenic emissions. Thus, we used climatological inventories
for the late 1990s from Streets et al. (2003) in this work. The
IAV of O3 over Japan might be affected by the IAV of wild-
fire emissions. We plan to examine the relative influence of
biomass burning in a future study.

3 Results and discussion

3.1 Validation of simulated O3 over East Asia by
observations

The modeling system described in Sect. 2 has previously
been used for analyzing tropospheric O3 over East Asia, in-
cluding Japan (see Uno et al., 2005; Tanimoto et al., 2005;
Yamaji et al., 2006, 2008; He et al., 2008), and, in these
studies, the simulated results showed good agreement with
observations. In this section, we further evaluate the general
performance of our modeling system for springtime O3 over
East Asia.

Figure 2 compares the springtime averaged O3 simulated
by EyyMyy (black bars) with observations (gray bars), taken
at Japanese remote monitoring sites of the Acid Deposition
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Table 2. General information of O3 monitoring sites used for model evaluation in Sect. 3.1.

Monitoring North East Elevation Periods Site Data Sources
Sites Latitude Longitude [m] Characteristics

Rishiri 45.12 141.20 40 1998–2005 Remote EANET
Tappi 41.25 140.35 105 1999–2005 Remote EANET
Sado 38.23 138.40 136 1998–2005 Remote EANET
Oki 36.28 133.18 90 1998–2005 Remote EANET
Ogasawara 27.08 142.22 230 1998–2005 Remote EANET
Hedo 26.87 128.25 60 1999–2005 Remote EANET
Mt. Tai 36.25 117.10 1533 2004–2005 Mountain Li et al. (2007)
Lin’an 30.30 119.73 132 1999–2001 Rural Lin et al. (2009)
Mt. Huang 30.13 118.15 1836 2004–2005 Mountain Li et al. (2007)
Hok Tsui 22.22 114.25 60 1994–1996 Remote WDCGG
Mondy 51.67 101.00 2000 2001–2007 Remote Lin et al. (2009)
Pohang 36.00 129.00 – 1995–2000 Remote Kim et al. (2006)
Wanli 25.18 121.68 – 1994–2005 Remote Chou et al. (2006)

Monitoring Network in East Asia (EANET), at the Hok Tsui
site of the World Data Centre for Greenhouse Gases (WD-
CGG), and from several measurements mainly at remote sites
reported in published research papers (see Table 2 for refer-
ences). Locations and general information on these moni-
toring sites are presented in Fig. 1 and Table 2, respectively.
Data from all periods shown in Table 2 are included in the
calculation of the springtime average at each site. In general,
the simulated results reproduced well the observed spring-
time averaged O3 over Japan (Rishiri, Tappi, Sado, and Oki),
the western Pacific (Ogasawara and Hedo), and continental
Asia (Mt. Tai, Lin’an, Mt. Huang, Hok Tsui, Mondy, Po-
hang, and Wanli). Modeled O3 at Lin’an overestimated the
observations by about 15 ppbv. Lin’an is in a rural area but
is likely affected by polluted air masses from the industrial-
ized Yangtze Delta region. One possible reason for the dis-
crepancy in the Lin’an results is the underestimation of NOx
titration of O3 because of the relatively coarse horizontal and
vertical resolution of the model grid. Similar features are
found at the urban, suburban, and rural monitoring stations
over Japan and are discussed in Sect. 3.3 in detail. At other
monitoring sites over continental Asia, observed surface O3
were well reproduced by modeled results. Figure 3 compares
the hourly mean O3 mixing ratios between the observation
and model simulation results at four Japanese remote sites
(Sado, Oki, Ogasawara, and Hedo) in scatter plots. Hourly
averaged data during springtime of all periods shown in Ta-
ble 2 are plotted at three-hour intervals. At each monitoring
site, model simulations generally reproduced the hourly O3
mixing ratios well. The correlation coefficients between sim-
ulated and observed results ranged from about 0.51 to 0.65.
No systematic underestimation or overestimation was found
at all monitoring sites. Thus, although there are several dis-
crepancies between simulated and observed results, our mod-
eling system generally reproduced the observations and was
validated for the analysis of springtime O3 over East Asia.

3.2 The climatological springtime BL O3 over East Asia

This section describes the general features of the modeled
climatological springtime BL O3 over East Asia (25-year av-
erage during 1981–2005). In this study, we defined the sim-
ulated springtime BL O3 as the O3 concentration averaged
over the lower 5 layers of the model (from the surface to 1 km
of altitude) during April and May. Data from all times of day
are included in the springtime average. The spatial distri-
bution of the climatological BL O3, simulated by EyyMyy ,
is shown in Fig. 4a, overlaid with the climatological spring-
time wind fields in the BL. High O3 of more than 55 ppbv
is widespread over central eastern China (CEC; Fig. 1), the
Korean peninsula, and Japan. The mean wind fields in the
high O3 area are westerly and southwesterly, suggesting that
polluted air masses of continental Asia are likely to be trans-
ported to Japan. O3 mixing ratios over the Pacific Ocean
south of Japan are generally low.

Figure 4b shows the spatial distribution of the climato-
logical springtime BL O3, as in Fig. 4a, but simulated by
E00Myy , along with the standard deviation of the O3 mixing
ratios at each grid cell (contours) calculated from the sim-
ulated results by E00Myy for each year and the climatolog-
ical fields. Although the mixing ratios of O3 simulated by
E00Myy (Fig. 4b) are slightly higher than those simulated by
EyyMyy (Fig. 4a), their spatial distributions are very similar.
The standard deviation maxima are south of Japan, where
the climatological O3 gradient is largest; thus, the sensitiv-
ity to the IAV of O3 can be considered to be high. Over
the Japanese Islands, O3 variability is largest over western
and central Japan (WCJ; defined in Fig. 1), especially in the
western part of this region, where the influence of O3 from
continental Asia is expected to be large. In contrast, the IAV
of O3 is relatively small in northern Japan. Therefore, in the
following sections, we analyze mainly the IAV of the spring-
time O3 over WCJ.

www.atmos-chem-phys.net/9/6287/2009/ Atmos. Chem. Phys., 9, 6287–6304, 2009



6292 J. Kurokawa et al.: Meteorological variability on interannual variations of springtime boundary layer ozone over Japan

pg. 44 
 

140

Oki
r = 0.51

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

O
  (

E
yy

M
yy

) [
pp

bv
]

O  (EANET) [ppbv]

Oki

3

3

120

Hedo
r = 0.65

0

20

40

60

80

100

120

0 20 40 60 80 100 120

O
  (

E
yy

M
yy

) [
pp

bv
]

O  (EANET) [ppbv]

Hedo

3

3

100

Ogasawara
r = 0.65

0

20

40

60

80

100

0 20 40 60 80 100

O
  (

E
yy

M
yy

) [
pp

bv
]

O  (EANET) [ppbv]

Ogasawara

3

3

R = 0.56

0

20

40

60

80

100

120

0 20 40 60 80 100 120

O
  (

E
yy

M
yy

) [
pp

bv
]

O  (EANET) [ppbv]

Sadoi
r = 0.56

0

20

40

60

80

100

120

0 20 40 60 80 100 120

O
  (

E
yy

M
yy

) [
pp

bv
]

O  (EANET) [ppbv]

Sado

3

3

 896 

 897 

Figure 3. Comparison of observed and simulated hourly mean O3 mixing ratios at four 898 

Japanese remote sites (Sado, Oki, Ogasawara, and Hedo). Hourly averaged data during 899 

springtime of all periods shown in Table 2 are plotted at three-hour intervals. The linear 900 

regression lines of hourly averaged O3 values between the observations and simulations 901 

are also shown. The EyyMyy scenario was used for the model simulation. 902 
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lines of hourly averaged O3 values between the observations and simulations are also shown. The EyyMyy scenario was used for the model
simulation.
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Fig. 4. (a) Spatial distributions of simulated springtime BL O3 averaged over 1981–2005 for the EyyMyy scenario, overlaid with the
springtime climatological wind field in the BL.(b) The same as in (a) for the E00Myy scenario, overlaid with the standard deviations of O3
mixing ratios, calculated at each grid point using the simulated fields for each year and the 25-year average.
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3.3 The interannual variation of springtime O3 over
western and central Japan

3.3.1 Observation data

In Japan, continuous measurements of general air pollution
at ground level are conducted at air quality monitoring sta-
tions all around the country. The stations are managed and
operated by the Ministry of the Environment of Japan and
by local governments. At these stations, the concentrations
of photochemical oxidants (Ox) are observed by absorption
spectrophotometry using a neutral potassium iodide solution
(KI method), or by photometric instruments based on absorp-
tion in the ultraviolet region (UV method) (Ministry of the
Environment of Japan, 2007). Ox observed at the stations
is defined as oxidizing substances produced by photochemi-
cal reactions and only those capable of isolating iodine from
neutral potassium iodide (such as O3, peroxyacetyl nitrate,
and peroxypropionyl nitrate), excluding NOx. The majority
(about 60% for the year of 2006) of Ox measurements are
calibrated by the KI method at each station. However, vari-
ability of Ox concentrations obtained from the KI method
seems to be larger than that by the UV method. Recently,
Mukai et al. (2007) has reported the results of experiments in
which measurements of Ox standards by 25 local government
instruments were compared with measurements performed
with a Standard Reference Photometer (SRP) #35, built by
the US National Institute of Standard and Technology (NIST)
and maintained by the Japanese National Institute for Envi-
ronmental Studies (NIES) (Tanimoto et al., 2006). Accord-
ing to this report, the variability (one standard deviation) of
the KI and UV methods was about 5.6% and 1.1%, respec-
tively. Also the KI and UV methods respectively yielded O3
concentrations about 9% and 5% larger than those obtained
by SPR #35. Despite these differences between the KI and
UV methods, there are no other data sets of long-term ob-
servations from all parts of WCJ. In this study, we used the
observation data from 136 air quality monitoring stations in
WCJ, where Ox was measured continuously during 1985–
2005. All of the stations are located at altitudes of less than
1 km above mean sea level.

At all selected stations, Ox was measured by the
KI method before 1997. Subsequently, the UV method was
gradually introduced; and about 18%, 51%, and 62% of the
stations were using the UV method in 2000, 2003, and 2005,
respectively. In order to determine the extent to which the
use of different monitoring instruments influenced the obser-
vation values, measurements by both methods at the same
time and place are required. However, we did not have such
data sets. Thus, we selected 10 pairs of neighboring stations
at which (1) the correlation coefficient of springtime Ox be-
tween pairs of stations, measured by the KI method simul-
taneously at both stations of each pair, was larger than 0.8,
and (2) the UV method was introduced at only one station of
each pair or at both stations but in different years. Then, the

relationship between Ox observations made at the same time
at neighboring station by the two methods was obtained as
follows:

Ox UV=0.99× Ox KI+1.8, (r=0.79), (1)

where Ox UV and Ox KI are springtime Ox mixing ratios
[ppbv] observed by UV and KI methods, respectively. Al-
though this comparison does not use measurements made
at exactly the same place, the difference between Ox mix-
ing ratios observed by the KI method and those observed by
the UV method seems to be small. Furthermore, Maeda et
al. (1997) reported that the concentration of peroxyacetyl ni-
trate obtained by the KI method is about one-fifteenth the ac-
tual concentration; thus, the sensitivity of this method to Ox
other than O3 is relatively small. In accordance with these
findings, we consider the difference in observation methods
to not be a critical problem for our analysis of IAV of spring-
time O3 over Japan.

Note that the horizontal and vertical resolution of our
model is 80×80 km2 and 150 m at the lowest layer, respec-
tively. NOx titration of O3 at ground level can be underes-
timated in such a relatively coarse grid because of excessive
dilution of NOx emissions, especially in urban and suburban
areas. Therefore, monitoring stations should be classified
as urban, suburban, or rural. Unfortunately, no information
about site characteristics is available from the stations. In this
study, we therefore used NOx mixing ratios observed at each
station to classify the site. All selected stations observed NO,
NO2, and NOx by the colorimetry using Saltzman reagent
(with Saltzman’s coefficient being 0.84) or by the chemilu-
minescent method using O3 (Ministry of the Environment
of Japan, 2007). Using the 21-year average (during 1985–
2005) of springtime NOx mixing ratios, we classified the
stations as follows: urban (NOx>30 ppbv; 17%), subur-
ban (15 ppbv<NOx<30 ppbv; 65%, or rural (NOx<15 ppbv;
18%). This classification is used in the next section.

3.3.2 Observed and simulated interannual variation

Figure 5a compares the time series of daytime springtime
surface mixing ratios of observed Ox averaged over urban,
suburban, and rural areas with those of simulated O3 over
WCJ for the EyyMyy scenario during 1985–2005. To calcu-
late the springtime means of observed Ox over urban, sub-
urban, and rural areas, we first calculated the springtime-
averaged mixing ratios at each station using daytime data
(between 09:00 and 15:00 h). Then, we calculate mean val-
ues from the station averages in each area with equal weight.
As expected, observed Ox values were smallest over urban
areas and largest over rural areas. On average, Ox mixing ra-
tios over suburban and rural areas were respectively about
5 and 10 ppbv larger than those over urban areas. How-
ever, simulated O3 mixing ratios over WCJ were still about
5–10 ppbv larger than observed Ox values over rural areas,
which suggests that even stations at sites defined as rural
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Figure 5. (a) Time series of the daytime springtime surface mixing ratios of observed Ox 914 

and simulated O3 for the EyyMyy scenario during 1985–2005. Simulated O3 mixing 915 

ratios are averaged over WCJ (black line), and observed Ox values are the average of 916 

measurements over urban (blue dotted line), suburban (blue dashed line), and rural (blue 917 

solid line) areas. The time series of daytime springtime surface Ox’ over WCJ calculated 918 

Fig. 5. (a)Time series of the daytime springtime surface mixing ratios of observed Ox and simulated O3 for the EyyMyy scenario during
1985–2005. Simulated O3 mixing ratios are averaged over WCJ (black line), and observed Ox values are the average of measurements over
urban (blue dotted line), suburban (blue dashed line), and rural (blue solid line) areas. The time series of daytime springtime surface Ox’
over WCJ calculated with observed (green line) and simulated (red line) results are also plotted.(b) Time series of anomalies of springtime
observed surface Ox (blue points) and simulated BL O3 for the EyyMyy (black line) and E00Myy (red line) scenarios averaged over WCJ
during 1981–2005. Anomalies are defined as deviations from the values averaged over 1985–2005. The blue regression line and correlation
coefficient (r) are for observations, and the black ones are for simulations by EyyMyy . Emissions of NOx and NMVOC over WCJ and those
over CEC are also shown. Note that the whiskers denote 1 standard deviation. Standard deviation of observations was calculated from the
springtime-averaged values at each station. That of simulations was based on the values of springtime mean at each grid point over WCJ.

might be influenced by air masses from neighboring urban
or suburban areas.

In order to further investigate the cause of differences be-
tween observed and simulated results, we defined Ox’ after
Sadanaga et al. (2008) as follows:

[O′
x]=[O3]+[NO2]−0.1 × [NOx]. (2)

For [O3], mixing ratios of observed Ox or simulated O3 were
used. The third term on the right side of Eq. (2) accounts for
primary emissions of NO2, which means that Ox’ is the sum
of O3 and NO2 generated secondarily by the oxidation of NO
in the atmosphere. The time series of daytime springtime
surface Ox’ over WCJ calculated from model simulations
and observations at all stations are also compared in Fig. 5a.
As with Ox, we first calculated the springtime-averaged Ox’
at each station using daytime data. Then, we calculated the
mean and standard deviation from the station averages with

equal weight. Absolute values of simulated Ox’ agreed well
with the observed values although the observed results for
several years were higher. Differences between simulated
Ox’ and O3 were very small. On the other hand, observed
mixing ratios of Ox’ were much larger than those of Ox by
about 15 ppbv on average. These results indicate that differ-
ences between observed Ox and simulated O3 over WCJ are
caused mainly by the dilution of NOx emissions in the coarse
model grid of this study.

Note that there was no large systematic overestimate of
simulated O3 at the remote or rural stations over East Asia
in Fig. 2. In contrast, Ox observations at air quality monitor-
ing stations of Japan used in this section were overestimated
even in the rural areas (Fig. 5a). As mentioned above, moni-
toring sites defined as rural in this section might be affected
by neighboring urban or suburban air masses. We found that
average NOx mixing ratios during 1985–2005 were greater
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than 10 ppbv at the majority of rural stations. At Japanese re-
mote monitoring sites of EANET in Fig. 2, springtime NOx
mixing ratios were about 0.5–2.0 ppbv and thus, the effects of
NOx titration were considered to be small. We did not have
NOx observation data at other stations in Fig. 2. With respect
to Lin’an site, large model overestimation of observed O3
might be attributed to the underestimation of NOx titration
of O3 in the coarse model grid of this study, as described in
Sect. 3.1. Simulated O3 at Hok Tsui, Pohang, and Wanli sites
slightly overestimated observations. These sites also might
be influenced by polluted air masses from the neighboring
industrialized regions although they were located in remote
areas. However we suspect that springtime NOx concentra-
tions at these sites were smaller than those at rural monitor-
ing stations of Japan used in Fig. 5a and thus, influences of
excessive dilution of NOx emissions on NOx titration of O3
in the model were relatively small.

With respect to the IAV of observations, it is interesting
that all observation types, namely, Ox in urban, suburban,
and rural areas and O′x over WCJ show very similar trends.
This result suggests that the IAV of O3 over WCJ is affected
more by large-scale factors than by local ones. Both observed
and simulated results show larger year-to-year variations than
the annual rate of increase of the long-term trend. Simu-
lated results reproduced the observed local minima in 1986,
1995, and 1998 and the local maxima in 1996 and 1999–
2000. Observed mixing ratios decreased from 1996 to 1998
and from 2000 to 2002, in contrast to the long-term trend,
and these features are also well reproduced by model sim-
ulations. The amplitude of the IAV during 1987 and 1991
was relatively small in both observed and simulated results.
Simulated mixing ratios show a large increase from 1991 to
1992 and a decrease from 2002 to 2003, neither of which is
found in the observation data. However, CMAQ generally
reproduced well the observed IAV of springtime surface Ox
mixing ratios over WCJ.

Figure 5b compares the time series of observed spring-
time surface Ox anomalies averaged over WCJ with those of
the springtime BL O3 simulated by EyyMyy for 1985–2005.
Data from all hours of the day were used for the calculation
of the springtime mean and standard deviation. The anoma-
lies used in this section for comparing observed and simu-
lated results are defined as deviations from the values aver-
aged over 1985–2005. The IAV of anomalies of observed
surface Ox and BL O3 simulated by EyyMyy is very simi-
lar with that of daytime mixing ratios shown in Fig. 5a. We
also compared the simulated springtime surface and BL O3
(not shown) and found that their anomalies were almost the
same over WCJ. In addition, the horizontal distribution of BL
O3 was very similar to that of surface O3, although absolute
BL O3 mixing ratios over WCJ were larger than the surface
values by about 2.5 ppbv on average. Hereafter, we analyze
the simulated results of springtime BL O3 calculated using
data from all times of day. We also compared the IAV of
springtime BL O3 anomalies simulated by EyyMyy (Fig. 5b,

black line) with that simulated by E00Myy (red line). In
both scenarios, the IAV of O3 anomalies shows clearly sim-
ilar patterns, especially the large year-to-year variations. As
described in Sect. 2.2, the E00Myy scenario uses the fixed
emissions for 2000 and the meteorological fields for each
year. Therefore, these results suggest that the short-term IAV
of springtime surface and BL O3 over WCJ is determined
mainly by the meteorological variability. Note that anoma-
lies of both observation and simulation by EyyMyy show
clear increasing trends, with respective rates of increase of
about 0.37 and 0.42 [ppbv/year]. Both trends were calcu-
lated by least-squares linear fitting and considered statisti-
cally significant at p-values less than 0.01. Emissions of NOx
and NMVOC over WCJ and CEC were calculated from in-
put emissions for EyyMyy and are presented in Fig. 5b. No
long-term increasing trend of O3 is found in either the re-
sults simulated by E00Myy or the calculated emissions over
WCJ, whereas both NOx and NMVOC emissions over CEC
clearly increased during 1985–2005. These results suggest
that the increase in the observed Ox anomalies was caused by
the recent increase in anthropogenic emissions in East Asia,
especially in China (Ohara et al., 2008).

3.4 Years of high and low springtime BL O3 over
western and central Japan

In some years, the springtime BL O3 over WCJ simulated
by E00Myy is much higher or lower than in other years, even
though the same emission data set was used (Fig. 5b). To an-
alyze these features, in this section we define “high (low) O3
over WCJ years” as the top (bottom) 5 years between 1981
and 2005 with respect to the springtime BL O3 anomalies
simulated by E00Myy . The high O3 over WCJ years are 1992,
1996, 1999, 2000, and 2005. The low O3 over WCJ years are
1983, 1986, 1991, 1998, and 2003. Figure 6 shows the com-
posite springtime BL O3 fields (a and b), their anomalies (c
and d), and springtime surface pressure anomalies (e and f)
for the high (a, c, and e) and low (b, d, and f) O3 over WCJ
years. The overlaid vectors in Fig. 6a and b are the compos-
ite springtime wind fields in the BL, and those in Fig. 6c, d,
e, and f are the composite wind field anomalies. In this and
the following sections, all analyses are based on the results
simulated by E00Myy and anomalies are redefined as the de-
viations from values averaged over 1981–2005.

First, we describe the general features of the composite
field of high O3 over WCJ years. The area of high O3 over
CEC, the Korean peninsula, and Japan (Fig. 6a) is slightly
larger and shifted southward compared with the climatologi-
cal field (Fig. 4b). Correspondingly, high positive O3 anoma-
lies are widespread over the area south of the high O3 region
from the eastern coast of China to south of the Japanese Is-
lands (Fig. 6c). WCJ is near the center of the high O3 area
and on the edge of the high positive anomaly region. The
mean wind field (Fig. 6a) and mean wind field anomalies
(Fig. 6c and e) over WCJ show that westerly components
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are stronger and southerly components are weaker than the
corresponding components of the climatological wind field.
This suggests that in high O3 over WCJ years, WCJ is
strongly influenced by continental-Asian outflow but less in-
fluenced by maritime air masses from the Pacific Ocean. The
northeastern area, including northern Japan, is outside the
high O3 area, and weak negative anomalies of O3 are found

there. The westerly component of the wind fields in this
area is weaker than the average, which suggests relatively
small influences of continental-Asian air masses. With re-
spect to the surface pressure anomalies, negative values are
widespread around the Japanese Islands and, especially, over
the Pacific Ocean east of Japan (Fig. 6e).
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With respect to the low O3 over WCJ years, the high O3
area is somewhat smaller and shifted northward (Fig. 6b)
compared to the climatology (Fig. 4b). WCJ is not near the
center of the high O3 area. The area of negative O3 anoma-
lies (Fig. 6d) almost coincides with the positive anomaly re-
gion in the high O3 over WCJ years (Fig. 6c). WCJ is on
the edge of the negative anomaly region. The mean wind
field (Fig. 6b) and its anomalies (Fig. 6d and f) display
weaker westerly components and stronger southerly com-
ponents over WCJ compared with the climatological field.
Thus, these results suggest that in low O3 over WCJ years,
the influence of the continental-Asian outflow on WCJ is
smaller and that of maritime air masses from the Pacific
Ocean is larger than during ordinary years. The positive
O3 anomalies over the northeastern region might reflect rel-
atively stronger westerly winds, but the values are small.
In contrast to the high O3 over WCJ years, surface pres-
sure anomalies are positive (Fig. 6f). However, the posi-
tive anomalies appear in almost the same area as the negative
anomalies shown in Fig. 6e.

We also investigated the chemical production, chemi-
cal loss, and net chemical production of simulated O3
over East Asia, and the results are presented in the
supplementary material (http://www.atmos-chem-phys.net/
9/6287/2009/acp-9-6287-2009-supplement.pdf). However,
we found no obvious influences of chemical processes
on the IAV of springtime BL O3 over WCJ. There is
no relationship between O3 anomalies and the net chemi-
cal production of O3 over WCJ. Anomalies of net chem-
ical production of O3 over CEC were positively corre-
lated with O3 anomalies over WCJ. However, the slope of
the regression line was not large (Fig. S2b in the supple-
mentary material:http://www.atmos-chem-phys.net/9/6287/
2009/acp-9-6287-2009-supplement.pdf), and, furthermore,
the correlation coefficient was relatively small (0.37). Thus,
in this study, we did not focus on the effects of chemical pro-
cesses on the springtime BL O3 anomalies over WCJ.

Finally, on the basis of our findings, we identify the
processes controlling the springtime BL O3 concentrations
over WCJ as follows:

(1) High O3 over WCJ years

Polluted air masses from continental Asia tend to be
transported directly to WCJ by the strong westerly com-
ponent of the wind field. Meanwhile, the inflow of clean
maritime air masses from the Pacific Ocean to WCJ is
small because southerly winds around WCJ are weak.
As a result, the springtime BL O3 concentrations over
WCJ are higher than during ordinary years. Large neg-
ative surface pressure anomalies are present over the Pa-
cific Ocean east of Japan.

(2) Low O3 over WCJ years

The influence of the continental-Asian outflow tends to
be small because the westerly component of the wind
fields around WCJ is relatively weak. On the other
hand, southerly winds around WCJ are comparatively
strong, and efficiently transport clean air masses from
the Pacific Ocean to WCJ. Consequently, the springtime
BL O3 concentration over WCJ is lower than that during
an average year. Large positive surface pressure anoma-
lies are present over the Pacific Ocean east of Japan.

It is interesting that large negative and positive surface
pressure anomalies respectively occur in almost the same re-
gion during high and low O3 over WCJ years (Fig. 6e and
f, respectively). Thus, as a reference parameter, we calcu-
lated the area-weighted surface pressure anomaly (ASPA)
in the springtime over the region within the following coor-
dinates (white box in Fig. 6e and f): 141.62◦ E, 29.31◦ N;
149.85◦ E, 27.49◦ N; 146.82◦ E, 44.36◦ N; and 156.02◦ E,
41.76◦ N. Note that the largest springtime surface pressure
anomalies in the NCEP/NCAR Reanalysis 1 data sets are
found in the region 30–45◦ N, 180–150◦ W. Because that re-
gion is outside the model domain of CMAQ designed for
this study, we examined the relationship between the ASPA
and the averaged anomalies in the area of 30–45◦ N, 180–
150◦ W and found a good positive correlation between them
(r=0.83). We hypothesized that when the ASPA value is neg-
ative (positive), O3 over WCJ should be higher (lower) than
during an ordinary year. We examine this hypothesis in the
following sections.

3.5 Relationships among springtime BL O3 over
western and central Japan, continental-Asian
outflow, and surface pressure anomaly

Time series of springtime ASPA and BL O3 anomalies over
WCJ during 1981–2005 are shown in Fig. 7a. In general,
ASPA and BL O3 anomalies are negatively correlated espe-
cially when the absolute value of ASPA is large such as in
1998 and 2000. On the other hand, no clear relation is ob-
served when the value of ASPA is small, such as during the
late 1980s. Figure 7b shows a scatter plot and regression
lines between springtime ASPA and BL O3 anomalies over
WCJ. The regression lines for all data and for large ASPA
data (larger than 1 hPa) have similar negative slopes. How-
ever, as expected, the correlation coefficient (r=−0.85) for
large ASPA data has a larger negative value than that for all
data (r=−0.79). These results suggest that ASPA is a good
reference parameter for springtime BL O3 over WCJ, espe-
cially when the absolute value of ASAP is large.

To investigate the relationships among the IAV of O3 over
WCJ, inflow O3 fluxes to WCJ, and ASPA, we calculated
the anomalies of springtime BL O3 fluxes along sections at
the western and southern boundaries of WCJ (LWJ and LSJ,
respectively; see Fig. 1). A large O3 flux anomaly along
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Figure 7. Time series (left) and scatter plot (right) of springtime BL O3 anomalies and 945 

ASPA during 1981–2005. Horizontal dashed lines indicate ±1 hPa of ASPA. Blue and 946 

green points respectively represent absolute values of ASPA larger (large ASPA data; 947 

14 data points) and smaller (11 data points) than 1 hPa. The black regression line is for 948 

all data (25 data points), and the blue one is for large ASPA data. The simulation 949 

scenario and the definition of anomalies are the same as in Fig. 6. 950 

951 

Fig. 7. Time series (left) and scatter plot (right) of springtime BL O3 anomalies and ASPA during 1981–2005. Horizontal dashed lines
indicate±1 hPa of ASPA. Blue and green points respectively represent absolute values of ASPA larger (large ASPA data; 14 data points) and
smaller (11 data points) than 1 hPa. The black regression line is for all data (25 data points), and the blue one is for large ASPA data. The
simulation scenario and the definition of anomalies are the same as in Fig. 6.
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Figure 8. (a) Time series (left) and scatter plot (right) of O3 anomalies over WCJ and O3 954 

flux anomalies across the section along LWJ (FAWJ) in the springtime BL between 1981 955 

and 2005. (b) The same as in (a) but with O3 flux anomalies across the section along LSJ 956 

(FASJ). See Fig. 1 for the definition of LWJ and LSJ. Values of FAWJ and FASJ are 957 

normalized relative to the respective 25-year average. The colors of points and lines are 958 

the same as in Fig. 7. The simulation scenario and the definition of anomalies are the 959 

same as in Fig. 6. 960 

961 

Fig. 8. (a)Time series (left) and scatter plot (right) of O3 anomalies over WCJ and O3 flux anomalies across the section along LWJ (FAWJ)

in the springtime BL between 1981 and 2005.(b) The same as in (a) but with O3 flux anomalies across the section along LSJ (FASJ). See
Fig. 1 for the definition of LWJ and LSJ. Values of FAWJ and FASJ are normalized relative to the respective 25-year average. The colors of
points and lines are the same as in Fig. 7. The simulation scenario and the definition of anomalies are the same as in Fig. 6.

LWJ (FAWJ) means that the influence of the continental-
Asian outflow, which transports high O3 air masses to WCJ,
is large. In contrast, when the O3 flux anomaly along LSJ
(FASJ) is large, the O3 concentration over WCJ is decreased
by clean maritime air transported from the Pacific Ocean.
Figures 8a and b display the time series of O3 anomalies
over WCJ and FAWJ and FASJ, respectively, with the right-

hand panels showing the corresponding scatter diagrams and
regression lines. Values of FAWJ and FASJ are normalized
relative to the respective 25-year average.

FAWJ and O3 anomalies over WCJ are generally positively
correlated (r=0.61); both the correlation coefficient (r=0.78)
and the slope of regression line for large ASPA data are larger
than those for all data. On the other hand, FASJ and O3
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Figure 9. (a) Time series of springtime BL O3 anomalies over CEC and ASPA between 964 

1981 and 2005. (b) The same as in (a) but with springtime BL O3 flux anomalies across 965 

the section along LSC (FASC). See Fig. 1 for the definition of LSC. Values of FASC are 966 

normalized relative to the 25-year average. The simulation scenario and the definition of 967 

anomalies are the same as in Fig. 6. 968 

969 

Fig. 9. (a) Time series of springtime BL O3 anomalies over CEC and ASPA between 1981 and 2005.(b) The same as in (a) but with
springtime BL O3 flux anomalies across the section along LSC (FASC). See Fig. 1 for the definition of LSC. Values of FASC are normalized
relative to the 25-year average. The simulation scenario and the definition of anomalies are the same as in Fig. 6.

anomalies over WCJ are negatively correlated (r=−0.49).
Similar to FAWJ, both the absolute value ofr (−0.58) and
the slope of the regression line are slightly larger for large
ASPA data. We also examined the relations between ASPA
and FAWJ and between ASPA and FASJ. As expected, FAWJ
and FASJ are respectively negatively and positively corre-
lated with ASPA. For FAWJ r (all data, large ASPA data)
is (−0.65,−0.78) and for FASJ r is (0.39, 0.48). These re-
sults indicate that when the transport of O3 from continental
Asia is large, transport from the Pacific Ocean tends to be
small, and vice versa, especially when the absolute value of
ASPA is large. The IAV of O3 over WCJ is affected by trans-
port of both high-O3 air masses from continental Asia and
clean maritime air from the south to WCJ. The correlation
of O3 over WCJ with FAWJ is stronger than that with FASJ,
which suggests that the IAV of springtime BL O3 over WCJ
is more sensitive to the continental-Asian outflow. However,
there have been some years when the maritime air masses
had a larger effect. The O3 anomalies over WCJ in 1997
were smaller than those in 1996 even though FAWJ in 1997
was larger. This is because FASJ in 1996 was much smaller
than in 1997.

We also investigated the IAV of springtime BL O3 over
CEC (region as defined in Fig. 1). Figure 9a shows the IAV
of O3 anomalies over CEC and ASPA between 1981 and
2005. In general, they are negatively correlated (r=−0.65
and−0.71 for all data and large ASPA data, respectively).
The wind field anomalies suggest that when ASPA has a large
positive value (i.e. low O3 over WCJ years; see Sect. 3.4
and Fig. 6d and f), relatively strong southerly winds around
the southern boundary of CEC (LSC, see Fig. 1) transport
lower O3 air from southern China. In contrast, when ASPA
has a large negative value (i.e. high O3 over WCJ years; see
Sect. 3.4 and Fig. 6c and e), O3 over CEC tends to be higher
because the southerly component of winds around LSC is
comparatively weak. We examined these inferences by plot-
ting the time series of O3 anomalies over CEC and O3 flux

anomalies along section LSC (FASC) in the springtime BL
(Fig. 9b). As expected, the O3 anomalies and FASC are neg-
atively correlated (r=−0.57 and−0.61 for all data and large
ASPA data, respectively). These results indicate that O3 over
CEC is also affected by the meteorological IAV, and they are
consistent with the results of He et al. (2008). In addition,
springtime BL O3 over CEC and WCJ are positively cor-
related (r=0.61 and 0.78 for all data and large ASPA data,
respectively). Our examination of the relationship between
FAWJ and springtime westerly winds in the BL averaged over
LWJ showed that the correlation coefficient is almost 1, even
when all data are included. This finding indicates that the
IAV of FA WJ is not controlled by the IAV of O3 over CEC
but mostly by the IAV of westerly winds over LWJ. However,
the recent growth of anthropogenic emissions of O3 precur-
sors in China might strengthen the influence of O3 over CEC
on the IAV of O3 over WCJ. This will be examined in a fu-
ture study. Note that the correlation coefficient between FASJ
and springtime southerly winds in the BL averaged over LSJ
was also almost 1, which indicates that the IAV of FASJ is
also controlled by the IAV of southerly winds over LSJ.

The results discussed above show that the high (low)
springtime BL O3 anomalies over WCJ can be basically ex-
plained by a larger (smaller) influence of the continental-
Asian outflow, which transports polluted air masses to WCJ,
and a smaller (larger) inflow of clean maritime air masses to
WCJ, particularly when the absolute value of ASPA is large.
However, there are exceptions. The O3 anomalies over WCJ
in 1987 and 1997 were almost average (i.e. zero), although
the ASPA value in these years were larger than 1 hPa. In
these years, the region of large O3 anomalies shifted slightly
compared with the composite field (not shown). Moreover,
the O3 anomalies in 1986, 1991, and 1999 were relatively
large although the absolute values of ASPA of these years
were small. The large surface pressure anomalies in these
years were also distributed in a slightly different region from
the area used to define ASPA (not shown). We believe that in
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Figure 10. Time series of springtime BL O3 anomalies over WCJ, ASPA, and the Niño3 972 

index (NINO3) averaged during November and December of the previous year. 973 

Horizontal dashed lines indicate ±1 hPa of ASPA. The simulation scenario and the 974 

definition of anomalies are the same as in Fig. 6. 975 

976 

Fig. 10. Time series of springtime BL O3 anomalies over WCJ,
ASPA, and the Nĩno3 index (NINO3) averaged during November
and December of the previous year. Horizontal dashed lines indi-
cate±1 hPa of ASPA. The simulation scenario and the definition of
anomalies are the same as in Fig. 6.

these years the processes affecting the distribution of O3 and
their relation to the meteorology were more complicated.

3.6 Relationship between springtime BL O3 over
western and central Japan and ENSO

Recently, several studies have reported on the relationship
between the IAV of Asian pollution transport and meteoro-
logical variations caused by ENSO and their influences on
tropospheric O3 (Liu et al., 2003; Liu et al., 2005; Koumout-
saris et al., 2008). However, the impacts of ENSO events on
the IAV of the O3 distribution over the northwest Pacific re-
gion, including Japan, have not been studied. In this section,
we discuss the relationship between the IAV of springtime
BL O3 over WCJ and ENSO.

Figure 10 shows the time series of ASPA, O3 anoma-
lies over WCJ, and the Niño3 index (hereafter NINO3) dur-
ing 1981–2005. NINO3, which is the sea surface tempera-
ture averaged across the region 5◦ N–5◦ S, 150–90◦ W and
expressed as monthly anomalies relative to the 1971–2000
means, is one of the commonly used indices in studies of
El Niño. We obtained these data fromhttp://www.cpc.noaa.
gov/data/indices. In this study, we used values averaged
during November and December of the previous year, con-
sidering the response time of continental-Asian outflow to
ENSO events, after Koumoutsaris et al. (2008). In general,
we found positive correlations between NINO3 and ASPA,
and negative correlations between NINO3 and O3 anomalies.
We examined these relationships separately for all data and
large ASPA data, as in Sect. 3.5. The correlation coefficients
for all data (large ASPA data) between NINO3 and ASPA
and between NINO3 and O3 anomalies were 0.52 (0.58) and
−0.40 (−0.57), respectively. Both relationships are rela-
tively strong when absolute values of ASPA are large, as ex-
pected from the results of Sect. 3.5. This result suggests that

the high and low O3 over WCJ years are respectively related
to La Niña (small NINO3) and El Nĩno (large NINO3).

Figure 11 displays mean sea level pressure (MSLP) and
cyclone tracks during April and May 1998 and 2000, ac-
cording to the Japanese 25-year Reanalysis data set (JRA-
25; Onogi et al., 2007) produced by the Japan Meteorologi-
cal Agency and the Central Research Institute of the Electric
Power Industry. The cyclone detection and tracking algo-
rithm is based on that used by Serreze (1995) and Serreze et
al. (1997), except it has been slightly modified for applica-
tion to the JRA-25 data set. The MSLP data set was interpo-
lated from 1.25◦×1.25◦ latitude/longitude grid to the Equal
Area Scalable Earth grid over the Northern Hemisphere with
a 125-km grid interval. A cyclone center is identified by a lo-
cal minimum of the interpolated MSLP value. The threshold
value of MSLP differences is 0.5 hPa.

We chose the years 1998 and 2000 because they were an
El Niño year and a La Niña year, respectively, and because
lower (1998) and higher (2000) springtime BL O3 mixing
ratios over WCJ were seen in both observed and simulated
results (Fig. 5). In 1998, a significantly large-scale high-
MSLP region, centered at 150◦–170◦ W, appeared over the
whole Pacific. In contrast, the corresponding high-MSLP
area in 2000 was smaller than that in 1998 and distributed
mainly over the eastern Pacific. Therefore, in 2000, MSLP
over the western Pacific, including Japan, was much lower
than that in 1998. We expected these differences to ap-
pear as lower and higher ASPA, as defined in this study
(see Sect. 3.4 and white boxes in Fig. 6e and f). The dis-
tribution of cyclone tracks around Japan was clearly differ-
ent between 1998 and 2000. Two major cyclone tracks over
East Asia and the northwestern Pacific in 1998 can be iden-
tified: (1) a southwest-northeast-oriented course, from the
southern coast of the Japanese Islands to the northern Pa-
cific, and (2) a zonally oriented course along 45◦–55◦ N. On
the other hand, cyclone tracks in 2000 show meridional di-
versity near the Japanese Islands. Some cyclones originated
in southeast China or the East China Sea and traveled east-
ward and northward via the Korean Peninsula, Sea of Japan,
and the Japanese Islands. This route reflects the preferred
meteorological conditions for the transport of continental-
Asian air masses to Japan. Consequently, meridional dis-
placement or diversity of cyclone tracks may have caused
low (high) O3 over WCJ in 1998 (2000). Similar features
in MSLP fields and cyclone tracks were also found in 1983
(El Niño) and 1985 and 1996 (La Niña, not shown). In
these years, the relationships among MSLP over the Pacific,
continental-Asian outflow, and O3 concentrations seem to
be consistent with the processes controlling springtime BL
O3 over WCJ as described in Sects. 3.4 and 3.5. Note that
Koumoutsaris et al. (2008) found significant increases in O3
exported from Asia to the western Pacific, including Japan,
in March 1998 (El Nĩno). We examined the results for the
same period simulated by E00Myy and found that similar
positive O3 anomalies appeared over the western Pacific. In
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Figure 11. Spatial distributions of mean sea level pressure overlaid with cyclone tracks 979 

during April and May 1998 (top, El Niño) and 2000 (bottom, La Niña). 980 

Fig. 11. Spatial distributions of mean sea level pressure overlaid with cyclone tracks during April and May 1998 (top, El Niño) and 2000
(bottom, La Nĩna).

our results, O3 anomalies over the central part of Japan were
also positive, although those over the western part were neg-
ative. However, the positive O3 anomalies over the western
Pacific in our model domain almost disappeared in April and
May. Thus, the influences of El Niño in 1998 on BL O3 over
Japan might have differed between March and the subsequent
springtime months of April and May.

The above findings suggest that it is probable that the me-
teorological variability caused by ENSO events is one of the
important factors affecting the IAV of springtime BL O3 over
WCJ. However, the timing, period, and intensity of El Niño
and La Nĩna are uncertain; thus, their influences are expected
to be complicated. For example, a large O3 anomaly region
in 1987 (an El Nĩno year) was slightly shifted compared with
the composite field of low O3 over WCJ years, and ASPA
was relatively small in 1989 (a La Niña year). In 1992, de-
spite being an El Nĩno year, MSLP over the whole Pacific
region was exceptionally low; thus, ASPA had a large nega-
tive value. The reasons for these discrepancies are not clear,
and further studies are needed to understand the relations be-
tween ENSO and the IAV of O3 over WCJ.

4 Conclusions

We investigated the effects of meteorological variability on
the interannual variation (IAV) of springtime BL O3 over
Japan. We conducted multiyear springtime simulations dur-
ing 1981–2005 using the regional scale chemical trans-
port model, CMAQ, and emission inventories, REAS. We
performed two sets of numerical experiments. Simulation

EyyMyy used the emission data sets and meteorological fields
for each year. Another simulation, E00Myy , used the fixed
emissions for 2000 and meteorological fields for each year.
We evaluated the model reproducibility of the observed IAV
of O3 over western and central Japan (WCJ) with the simu-
lated results of EyyMyy . Then, we analyzed the influences of
the IAV of meteorology on springtime BL O3 over WCJ us-
ing the simulated results of E00Myy . We also examined the
relationship between ENSO events and the IAV of O3 over
WCJ.

The main results are summarized as follows:

1. The model simulation reproduced well both the short-
term variability and the long-term trend of the observed
springtime surface O3 over WCJ. Year-to-year varia-
tions were larger than the annual rate of increase of the
long-term trend. The IAV patterns of O3 anomalies over
WCJ in the simulated results of EyyMyy and E00Myy

were clearly similar, suggesting that the IAV of spring-
time BL O3 over WCJ is mainly determined by the me-
teorological variability.

2. The composite O3 field for the high O3 over WCJ
years showed that a high O3 area over CEC, the Ko-
rean peninsula, and Japan was slightly larger and shifted
southward compared with the 25-year-averaged field.
On the other hand, the corresponding area for the low
O3 over WCJ years was somewhat smaller and shifted
northward. As a result, large O3 anomalies appeared
over WCJ.

www.atmos-chem-phys.net/9/6287/2009/ Atmos. Chem. Phys., 9, 6287–6304, 2009
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3. Large negative (positive) surface pressure anomalies ap-
peared over the Pacific Ocean east of Japan in the com-
posite field of the high (low) O3 over WCJ years. The
area-weighted surface pressure anomaly in the spring-
time over that region (ASPA) was calculated as a refer-
ence parameter. When the absolute value of ASPA was
large, ASPA showed good correlation with the IAV of
O3 over WCJ. The IAV of O3 over WCJ and O3 flux
anomalies along the western and southern boundaries
of WCJ also showed good correlation.

4. The processes controlling the IAV of springtime BL O3
over WCJ can be basically explained as follows. When
ASPA has a large negative value, polluted air masses
from continental Asia tend to be transported directly
to WCJ by the strong westerly component of the wind
field. In addition, the inflow of the clean maritime air
masses from the Pacific Ocean to WCJ is small be-
cause southerly winds are weak. When ASPA has a
large positive value, the influence of the continental-
Asian outflow tends to be small because the westerly
component of the wind fields around WCJ is relatively
weak. In contrast, southerly winds around WCJ are rel-
atively strong and transport clean air masses from the
Pacific Ocean to WCJ. Consequently, springtime BL O3
over WCJ is higher (lower) than in ordinary years when
ASPA has a large negative (positive) value. In general,
the IAV of O3 over WCJ is sensitive to the continental-
Asian outflow. The influence of chemical process on the
IAV of O3 over WCJ seems to be small.

5. Springtime BL O3 over WCJ and ENSO events show
some correlation and suggest that high and low O3 over
WCJ years are respectively related to La Niña and El
Niño. A massive anticyclone centered in the eastern
Pacific appeared in 1998 (El Niño), whereas the max-
imum MSLP in 2000 (La Nĩna) was remarkably weak.
Meridional displacement or diversity of cyclone tracks
near Japan might have influenced the conditions for the
transport of continental-Asian air and caused low (high)
O3 over WCJ in 1998 (2000). Our findings suggest that
the meteorological variability caused by ENSO events is
one of the important factors affecting the IAV of spring-
time BL O3 over WCJ. However, the relation between
ENSO and the IAV of O3 over Japan is complicated and
further study is required.

Acknowledgements.This work was supported by the Global
Environment Research Fund of the Ministry of the Environment,
Japan (C-81). We would like to acknowledge the entire staff of the
EANET, the WDCGG, and the air quality monitoring stations of
the Ministry of the Environmental of Japan and of local govern-
ments for carrying out measurements and providing observation
data sets. We would like to thank K. S. Lam of the Hong Kong
Polytechnic University for observation data at Hok Tsui station.

We are also thankful to H. Mukai of NIES for valuable comments.
The GFD-DENNOU library, GTOOL, and Generic Mapping Tools
(GMT, Wessel and Smith, 1998) were used for drawing the figures.

Edited by: O. Cooper

References

Akimoto, H.: Global air quality and pollution, Science, 302, 1716–
1719, 2003.

Binkowski, F. S. and Shankar, U.: The Regional Particulate Matter
Model 1, Model description and preliminary results, J. Geophys.
Res., 100(D12), 26191–26209, 1995.

Byun, D. W. and Schere, K. L.: Review of the governing equations,
computational algorithms, and other components of the Models-
3 Community Multiscale Air Quality (CMAQ) modeling system,
Appl. Mech. Rev., 59, 51–77, 2006.

Carter, W. P. L.: Documentation of the SAPRAC-99 chemical
mechanism for VOC reactivity assessment, final report to Cal-
ifornia Air Resource Board, Contract 92-329 and 95-308, Cali-
fornia Air Resource Board, Sacramento, 2000.

Chou, C. C.-K., Liu, S. C., Lin, C.-Y., Shiu, C.-J., and Chang, K.-
H.: The trend of surface ozone in Taipei, Taiwan, and its causes:
Implications for ozone control strategies, Atmos. Environ., 40,
3898–3908, 2006.

Doherty, R. M., Stevenson, D. S., Johnson, C. E., Collins, W. J., and
Sanderson, M. G.: Tropospheric ozone and El Niño-Southern
Oscillation: Influence of atmospheric dynamics, biomass burn-
ing emissions, and future climate change, J. Geophys. Res., 111,
D19304, doi:10.1029/2005JD006849, 2006.

Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C.,
Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W. A.,
Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Tay-
lor, J., and Zimmerman, P.: A global model of natural volatile
organic compound emissions, J. Geophys. Res., 100(D5), 8873–
8892, 1995.

He, Y. J., Uno, I., Wang, Z. F., Pochanart, P., Li, J., and Akimoto, H.:
Significant impact of the East Asia monsoon on ozone seasonal
behavior in the boundary layer of Eastern China and the west
Pacific region, Atmos. Chem. Phys., 8, 7543–7555, 2008,
http://www.atmos-chem-phys.net/8/7543/2008/.

Intergovernmental Panel on Climate Change: Climate Change
2007: The Physical Science Basis: Contribution of Working
Group I to the Fourth Assessment Report of the Intergovernmen-
tal Panel on Climate Change, edited by: Solomon, S., Qin, D.,
Manning, M. et al., Cambridge Univ. Press, New York, 2007.

International Energy Agency: Energy Balances of OECD Coun-
tries and Energy Balances of Non-OECD Countries (CD-ROM),
Paris, 2006.

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D.,
Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y.,
Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins,
W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R.,
and Joseph, D.: The NCEP/NCAR 40-year reanalysis project, B.
Am. Meteorol. Soc., 77, 437–471, 1996.

Kim, J. H., Lee, H. J., and Lee, S. H.: The characteristics of tro-
pospheric ozone seasonality observed from ozone soundings at
Pohang, Korea, Environ. Monit. Assess., 118, 1–12, 2006.

Atmos. Chem. Phys., 9, 6287–6304, 2009 www.atmos-chem-phys.net/9/6287/2009/

http://www.atmos-chem-phys.net/8/7543/2008/


J. Kurokawa et al.: Meteorological variability on interannual variations of springtime boundary layer ozone over Japan 6303

Kistler, R., Kalnay, E., Collins, W., Saha, S., White, G., Woollen,
J., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., van
den Dool, H., Jenne, R., and Fiorino, M.: The NCEP-NCAR 50-
year reanalysis: Monthly means CD-ROM and documentation,
B. Am. Meteorol. Soc., 82, 247–267, 2001.

Koumoutsaris, S., Bey, I., Generoso, S., and Thouret, V.: Influence
of El Niño-Southern Oscillation on the interannual variability
of tropospheric ozone in the northern midlatitudes, J. Geophys.
Res., 113, D19301, doi:10.1029/2007JD009753, 2008.

Li, J., Wang, Z., Akimoto, H., Gao, C., Pochanart, P., and
Wang, X.: Modeling study of ozone seasonal cycle in lower
troposphere over east Asia, J. Geophys. Res., 112, D22S25,
doi:10.1029/2006JD008209, 2007.

Lin, M., Holloway, T., Oki, T., Streets, D. G., and Richter, A.:
Multi-scale model analysis of boundary layer ozone over East
Asia, Atmos. Chem. Phys., 9, 3277–3301, 2009,
http://www.atmos-chem-phys.net/9/3277/2009/.

Liu, H., Jacob, D. J., Bey, I., Yantosca, R. M., Duncan, B. N., and
Sachse, G. W.: Transport pathways for Asian pollution outflow
over the Pacific: Interannual and seasonal variations, J. Geophys.
Res., 108(D20), 8786, doi:10.1029/2002JD003102, 2003.

Liu, J., Mauzerall, D. L., and Horowitz, L. W.: Analysis of seasonal
and interannual variability in transpacific transport, J. Geophys.
Res., 110, D04302, doi:10.1029/2004JD005207, 2005.

Maeda, J., Liang, C., Bandow, H., Maeda, Y., and Mizoguchi, T.:
Response of KI oxidant analyzer for peroxyacetyl nitrate, J. Jpn.
Soc. Atmos. Environ., 32, 425–430, 1997.

Mauzerall, D. L., Sultan, B., Kim, N., and Bradford, D. F.: NOx
emissions from large point sources: variability in ozone produc-
tion, resulting health damages and economic costs, Atmos. Env-
iron., 39, 2851–2866, 2005.

Ministry of the Environment of Japan: The Continuous Monitoring
Manual for Ambient Air, 5th edition:http://www.env.go.jp/air/
osen/manual5th/index.html, last access: 27 August 2009, 2007.

Mukai, H., Hashimoto, S., and Tanimoto, H.: Standards for ozone
and green house gases monitoring in Japan, Proceedings of the
48th Annual Meeting of Japan Society for Atmospheric Environ-
ment, 208–211, 2007.

Naja, M. and Akimoto, H.: Contribution of regional pollution
and long-range transport to the Asia-Pacific region: Analysis of
long-term ozonesonde data over Japan, J. Geophys. Res., 109,
D21306, doi:10.1029/2004JD004687, 2004.

Nenes, A., Pandis, S. N., and Pilinis, C.: ISORROPIA: A new ther-
modynamic equilibrium model for multiphase multicomponent
inorganic aerosols, Aquat. Geochem., 4, 123–152, 1998.

Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K.,
Yan, X., and Hayasaka, T.: An Asian emission inventory of an-
thropogenic emission sources for the period 1980-2020, Atmos.
Chem. Phys., 7, 4419–4444, 2007,
http://www.atmos-chem-phys.net/7/4419/2007/.

Ohara, T., Yamaji, K., Uno, I., Tanimoto, H., Sugata, S., Na-
gashima, T., Kurokawa, J., Horii, N., and Akimoto, H.: Long-
term simulations of surface ozone in East Asia during 1980–
2020 with CMAQ and REAS, edited by: Borrego, C. and Mi-
randa, A. I., NATO Science for peace and security series – C:
Environmental Security, Air Pollution Modeling and its Applica-
tion XIX, ISBN:978-1-4020-8452-2, Springer, 136–144, 2008.

Onogi, K., Tsutsui, J., Koide, H., Sakamoto, M., Kobayashi, S., Ha-
tushika, H., Matsumoto, T., Yamazaki, N., Kamahori, H., Taka-

hashi, K., Kadokura, S., Wada, K., Kato, K., Oyama, R., Ose, T.,
Mannoji, N., and Taira, R.: The JRA-25 Reanalysis, J. Meteorol.
Soc. Japan, 85, 369–432, 2007.
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