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Abstract. Chemistry-Climate Model (CCM) simulations are
commonly used to project the past and future development of
the dynamics and chemistry of the stratosphere, and in par-
ticular the ozone layer. So far, CCMs are usually not interac-
tively coupled to an ocean model, so that sea surface temper-
atures (SSTs) and sea ice coverage are prescribed in the sim-
ulations. While for future integrations SSTs have to be taken
from precalculated climate model projections, for CCM ex-
periments resembling the past either modelled or observed
SSTs can be used. This study addresses the question to which
extent atmospheric climatologies and long-term trends for
the recent past simulated in the CCM E39C-A differ when
choosing either observed or modelled SSTs. Furthermore,
the processes of how the SST signal is communicated to the
atmosphere, and in particular to the stratosphere are exam-
ined. Two simulations that differ only with respect to the
prescribed SSTs and that span years 1960 to 1999 are used.

Significant differences in temperature and ozone clima-
tologies between the model simulations are found. The dif-
ferences in ozone are attributed to differences in the merid-
ional circulation, which are in turn driven by weaker wave
forcing in the simulation with generally lower SSTs. The
long-term trends over 40 years in annual mean temperature
and ozone differ only in the troposphere, where temperatures
are directly influenced by the local SST trends. Differences
in temperature and ozone trends are only found on shorter
time scales. The trends in tropical upwelling, as a measure of
the strength of the Brewer-Dobson circulation (BDC), differ
strongly between the simulations. A reverse from negative
to positive trends is found in the late 1970s in the simulation
using observed SSTs while trends are positive throughout the
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simulation when using modelled SSTs. The increase in the
BDC is a robust feature of the simulations only after about
1980 and is evident mainly in the tropics in the lower strato-
sphere.

1 Introduction

Chemistry-Climate Models (CCMs) were used extensively
in the last decade to study the evolution of the global ozone
layer and to identify processes leading to changes in ozone
in the past and future. For the World Meteorological Or-
ganization’s scientific assessments of ozone depletion (e.g.
WMO, 2007) and as a part of the SPARC CCM Valida-
tion Activity CCMVal (Eyring et al., 2005; Eyring et al.,
2008), common model strategies have been defined includ-
ing transient simulations designed to closely resemble the
past (“REF1”) and to predict possible future developments
of the ozone layer (“REF2” and “SCN2”, without and with
including natural variability, namely the QBO and the 11-
year solar cycle). While in REF1, the boundary conditions
including natural and anthropogenic variability are mainly
deduced from observations, the REF2 or SCN2 scenarios are
subjected to the use of future projections of the development
of the boundary conditions. As lower boundary condition,
sea surface temperatures (SSTs) and sea ice coverage are pre-
scribed to the CCM simulations. For the REF2/SCN2 sce-
narios, these are commonly taken from climate model pro-
jections that include an interactively coupled ocean (i.e. at-
mosphere ocean general circulation models, AOGCM). The
modelled atmosphere-ocean system differs from reality due
to both model deficits and non-deterministic internal vari-
ability (see e.g.Meehl et al., 2007; Newman, 2007). There-
fore, climatologies and the temporal evolution of SSTs from
AOGCMs differ from SSTs deduced from observations. This
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raises the question of how CCM simulations are affected by
the SST differences introduced by using modelled instead of
observed SSTs.

The modelled stratosphere is known to be highly sensi-
tive to the prescribed SSTs. For example,Braesicke and
Pyle (2004) studied the impact of inter-annual variability in
SSTs by comparing a simulation with long-term mean SSTs
to a simulation with transient SSTs. The results showed that
the variability in SSTs can act to induce ozone trends in the
stratosphere due to a modification of the wave activity flux
entering the stratosphere.

Various studies analysed the impact of the El Niño-
Southern Oscillation (ENSO) on the stratosphere (Manzini
et al., 2006; Sassi et al., 2004; Yulaeva and Wallace, 1994;
Clarke and Kim, 2005; Garćıa-Herrera et al., 2006). The re-
sults generally suggest that the ENSO signal is communi-
cated to the stratosphere by planetary wave modulation and
subsequent changes in the mean meridional circulation. For
exampleGarćıa-Herrera et al.(2006) and Hardiman et al.
(2007) show positive correlations between ENSO indices and
tropical upwelling, indicating stronger planetary wave fluxes
and therefore a stronger meridional circulation in ENSO
warm phases and vice versa in ENSO cold phases.

Recently, a connection between SSTs and the lower strato-
sphere was suggested for the tropical regions (Deckert and
Dameris, 2008a,b; Rosenlof and Reid, 2008). In Deckert and
Dameris(2008a), SSTs were linked to tropical upwelling via
wave generation by deep convection, implying that tropical
upwelling is sensitive to changes in SSTs. While this study
is based on CCM simulations, similar evidence of a link-
age between tropical SSTs and the lower stratosphere was
found from radiosonde observational data byRosenlof and
Reid (2008). The issue of predicted changes in tropical up-
welling (as the tropical branch of the Brewer-Dobson Cir-
culation) in a changing climate was addressed frequently in
the recent past (e.g.Butchart et al., 2006), but the reasons
for changes are still largely unknown. If SSTs can act as a
driver of upwelling, predicted changes of the Brewer-Dobson
Circulation (BDC) might be strongly affected by the use of
different SST data.

In this study, two CCM simulations starting in 1960 and
corresponding to the REF1 and SCN2 scenarios, respec-
tively, are compared. For the period 1960 to 1999, both simu-
lations use the same boundary conditions except for the SSTs
(including sea ice coverage; in the following, the term SSTs
always includes sea ice coverage). Consequently the compar-
ison of these simulations can give an estimate of the differ-
ences introduced in the CCM simulation by using different
SST data. Since for future predictions only modelled SSTs
can be used, the issue of how the SST differences between
observed and modelled data sets affect both the climatologi-
cal mean state and trends and variability of the modelled at-
mosphere is highly relevant to assess the uncertainty of future
projections. For example, when comparing a past period of
the REF1 simulation with a future period from REF2/SCN2,

one has to be aware of the fact that the changing pattern is a
superimposition of changes due to changing boundary con-
ditions with time (“climate change”), and differences due to
the use of a different SST data basis. Since the real future de-
velopment of SSTs is unknown, we can refer only to the past
to obtain a rough idea of the quantity of uncertainties due to
model deficits in capturing the real SST development. Apart
from that, the comparison of the two model simulations can
reveal insights in the processes of how SSTs act to influence
the atmosphere, and in particular the stratosphere, which we
focus on in this study.

The paper is structured as follows. After a brief model de-
scription and a discussion on the SSTs in Sect.2, some meth-
ods used in the analyses are given in Sect.3. Section4 com-
pares the climatological mean state of the REF1 and SCN2
model simulation, while in Sect.5 differences in the long-
term evolution are investigated.

2 Model description and SSTs

In this study, the CCM ECHAM4.L39(DLR)/CHEM/
ATTILA (E39C-A) is used. The model is an updated version
of ECHAM4.L39(DLR)/CHEM (E39C) (Hein et al., 2001;
Dameris et al., 2005) with the former semi-Lagrangian ad-
vection scheme replaced by the fully Lagrangian advection
scheme ATTILA (Reithmeier and Sausen, 2002). The use of
the fully Lagrangian advection scheme ATTILA for tracer-
transport improved the model performance substantially
(Stenke et al., 2008; Stenke et al., 2009). E39C is based on
the spectral general circulation model ECHAM4.L39(DLR)
(Land et al., 2002) and the chemistry-module CHEM (Steil
et al., 1998). The spectral horizontal resolution of the model
is T30, corresponding to approximately 3.75◦

×3.75◦ on
the transformed latitude-longitude grid. In the vertical, the
model consists of 39 layers, extending from the surface to
the uppermost layer which is centred at 10 hPa. The cho-
sen time step is 24 min. The chemistry module CHEM is
based on a generalised family concept and includes homoge-
neous and stratospheric heterogeneous ozone chemistry and
the most relevant chemical processes for describing the tro-
pospheric background chemistry. For more details on E39C-
A, seeStenke et al.(2009).

The experimental set-up of the two transient simulations
used in this study correspond to the REF-B1 and SCN-B2d
scenarios as defined for the next WMO ozone assessment
(Eyring et al., 2008). The REF1 simulation used here is the
same as described in detail inStenke et al.(2009). Briefly,
the external forcings defined as boundary conditions are the
11-year solar cycle, the quasi-biennial oscillation, sulphate
aerosol loadings and radiative effects of major volcanic erup-
tions (namely Agung, El Chich́on and Mount Pinatubo), the
loading of ozone depleting substances, greenhouse gas con-
centrations and natural as well as anthropogenic NOx emis-
sions.
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The SSTs in the REF1 simulation are prescribed as
monthly means following the updated global sea ice cover-
age and sea surface temperature data set HadISST1 provided
by the UK Met Office Hadley Center (Rayner et al., 2003).
Following a 10-year spin-up period, the simulation spans the
time period 1960 to 2004.

The SCN2 experiment, which spans years 1960 to 2049,
is set up in exactly the same way as the REF1 simulation
for years 1960–1999 except for the prescribed SSTs. After
1999, the boundary conditions for the SCN2 simulation fol-
low future scenarios, so that years 2000 to 2004 of REF1
do not correspond to the same years in SCN2 (e.g. in terms
of phase of the solar cycle). Therefore, the paper will focus
on the years 1960 to 1999 only. Instead of the HadISST1
data set, SSTs and sea ice in SCN2 are taken from the
HadGEM1 general circulation model (Martin et al., 2006;
Johns et al., 2006). The SSTs for 1960 to 1999 are from
the HadGEM1 transient simulation with anthropogenic forc-
ing only (Stott et al., 2006, “ANTHRO” in their Table 1),
i.e. excluding volcanic eruptions and the solar cycle. The
future SST projections used for SCN2 (years 2000 to 2049)
are from the SRES A1B run of HadGEM1, which is initiated
from ANTHRO so that a consistent SST data set is obtained.
These HadGEM1 simulations are part of the World Climate
Research Programme’s (WCRP’s) Coupled Chemistry Cli-
mate Intercomparison Project phase 3 (CMIP-3) multimodel
dataset used for the 4th Intergovernmental Panel on Climate
Change (IPCC) Assessment Report and were provided by the
Program for Climate Model Diagnosis and Intercomparison
(PCMDI, available at:http://www-pcmdi.llnl.gov).

After the initial spin-up period of 10 years in both simula-
tions the equilibrium state is reached sufficiently well so that
all variability and trends after 1960 are either forced by the
prescribed boundary conditions or are due to internal vari-
ability of the atmospheric system. This is verified with water
vapour at the uppermost model level (10 hPa), which shows
an adjustment time to the underlying SSTs of about 6–7 years
(not shown).

A comparison of the HadGEM1 and HadISST SST clima-
tologies is shown in Fig.1 (see alsoJohns et al., 2006). The
difference pattern is dominated by lower SSTs in HadGEM1
in the tropics, the subtropics and northern mid-latitudes,
where the differences are up to 3 K. Smaller regions of higher
SSTs in HadGEM1 are found on the west coasts of South
America and Africa, as well as on the east coasts of North
America and Asia in northern winter (i.e. the storm track re-
gions). There are also large differences in sea ice extent, with
generally more sea ice in HadGEM1. Time series of anoma-
lies of global and hemispheric mean SSTs from HadISST and
HadGEM1 are compared in Fig.2. Both the global mean and
Southern Hemisphere mean SSTs show generally rather con-
stant values in the 1960s, and rising SSTs since about the
mid-1970s. However, in the Northern Hemisphere the SST
data set deduced from observations show generally higher
SSTs in the 1960s, a strong decrease in the 1970s and rising
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Fig. 1. Difference of 1960 to 1999 annual mean sea surface temper-
atures [in K] from HadGEM minus HadISST. Differences in sea ice
extend are shown in grey, where light grey areas correspond to more
sea ice in HadGEM compared to HadISST, and dark grey regions to
less sea ice in HadGEM.

temperatures only after the late 1970s. The modelled time se-
ries does not reproduce this behaviour, here SST anomalies
are negative throughout the 1960s. In terms of variability,
the interannual variance due to the El Niño-Southern Oscil-
lation (ENSO) is underestimated and the ENSO signal is too
regular in the HadGEM1 model, as shown in Fig.3 (see also
Johns et al., 2006). A detailed study of annual and decadal
variability of SST eigenmodes from both observations and
several GCMs including HadGEM1 revealed large deficits
of the models to capture the variability, and showed that the
patterns are less persistent than in reality (Newman, 2007).

3 Methods of data analyses

3.1 Trend calculations and tests on significance

In the following, both differences between climatologies (i.e.
mean values) and long-term changes are analysed. The sta-
tistical significance of differences is tested with the Student-
T-test (see e.g.von Storch and Zwiers, 2002). To quantify
long-term changes, trends are calculated by applying a lin-
ear least squares fit of the time seriesy(t) to a linear func-
tion (i.e. ŷ(t)=a+bt (t=1...N), whereN is the number of
timesteps). The uncertainty in the trend (i.e. the slope of the

linear functionb) is then given byσ 2
=

χ2

N−2
1

St t
whereχ2 is

the sum of the squared residuals (χ2
=
∑N

t=1 [y(t)−ŷ(t)]2)
andSt t=

∑N
t=1 t2

−N(N+1
2 )2. The trend is statistical signif-

icant if the null-hypothesisb=0 can be rejected, which is
tested by comparing the T-test valuet=b/σ against the criti-
cal value of the T-distribution withN−2 degrees of freedom.

3.2 Eliassen-Palm fluxes

As a measure of wave activity, Eliassen-Palm (EP)
fluxes were calculated using the full ageostrophic form
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Fig. 2. SST time series with the 1960–1999 mean annual cycle
subtracted for REF1 (red) and SCN2 (blue) for global (top), South-
ern (middle) and Northern (bottom) Hemisphere means. The thick
solid lines are smoothed time series (by applying a 1-2-1 filter 20
times).

(e.g. Andrews et al., 1987). The fluxes were scaled by the
mass of an annular ring of a certain latitude band and pres-
sure interval (seeEdmon et al., 1980, their Eq. 3.12). Using
pressure coordinates, the EP fluxF at latitudeφ and pressure
levelp is then given by:

F (φ, p) =2πre cos(φ)/g×[
re cos(φ)

(
−u′v′ +

v′2′

2p

up

)
,

r2
e cos(φ)

(
(f − uφ)

v′2′

2p

− u′ω′

)] (1)

wherere is the Earth’s radius,g the gravitational constant,
2 the potential temperature andf =2� sin(φ) the Corio-
lis parameter (� is the Earth’s angular speed of rotation).
Subscripts denote the partial derivative of the variable. The
EP divergence is then∇ · F=∂Fφ/∂φ+∂Fp/∂p. Due to the
mass scaling, the EP flux is in units [m3,m3 Pa] and the di-
vergence in [m3], which equalsNm/Pa, i.e. energy/pressure
(Edmon et al., 1980). Both stationary and transient waves are
accounted for in the calculation.

3.3 Tropical upwelling and downward control

The meridional residual circulation (v∗, ω∗) as intro-
duced in the transformed Eulerian mean (TEM) equations
(e.g. Holton, 2004) is used here for quantifying the large-
scale circulation in the stratosphere. As a measure of the
strength of the upwelling branch of the circulation, mean
tropical upwelling is calculated by integrating over all lat-

1960 1965 1970 1975 1980 1985 1990 1995
−3

−2

−1

0

1

2

3

N
in

o3
.4

 in
de

x

year

HadGEM
HadISST

Fig. 3. Timeseries of the nino3.4 index from HadISST (red lines)
and HadGEM (blue lines). The heavy lines are running averages of
the monthly timeseries, and dashed lines show the standard devia-
tion (±1σ ).

itudes within 60◦ N/S where the residual vertical velocity
points upward (i.e. negativeω∗ sinceω=

∂p
∂t

):

Utropics =

∫
φω∗<0

2π cos(φ)r2
e

g
ω∗dφ (2)

In addition to this direct calculation from the residual vertical
velocity, tropical upwelling was calculated using the down-
ward control (DC) principle (Haynes et al., 1991). The DC
principle states that the residual circulation at a certain level
is driven by the forcing on the mean flow above this level. By
using the EP divergence as forcing, the contribution of plan-
etary wave activity in driving the BDC can be quantified.

The DC calculations were performed as follows. From the
continuity equation for (v∗, ω∗), the residual streamfunction
χ∗ can be introduced:

(v∗, ω∗) =
1

cos(φ)

(
−

∂χ∗

∂p
,

1

re

∂χ∗

∂φ

)
(3)

Using the TEM momentum equation and assuming a non-
zero meridional gradient of the zonal mean angular momen-
tum m=re cos(φ)(u+re� cos(φ)) and stationary conditions,
the residual streamfuncionχ∗ can be expressed as (for de-
tails seeHaynes et al., 1991):

χ∗
m0

(p) =

0∫
p

[
r2
e cos(φ)2G

∂m/∂φ

]
φ=φ(m0)

dp′ (4)

HereG is assumed to be the EP divergence (appropriately
rescaled to units of m/s2), and the subscriptφ=φ(m0) de-
notes integration along lines of constant angular momentum.
The conditiondm/dφ 6=0 limits the latitude region of the cal-
culation to outside the inner tropics. In practice, the inte-
gration along constant angular momentum can only be per-
formed whenm0 is a real function of pressure, i.e. them0
contour is not closed in the domain of calculation.
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For estimating tropical upwelling as given in Eq. (2), it is
used thatω∗=1/(re cosφ)χ∗

φ so that upwelling between lat-
itudesφ1 andφ2 is given by 2πre/g[χ∗(φ2)−χ∗(φ1)] (Ran-
del et al., 2002). In order to capture the same latitude band
as for the direct tropical upwelling calculation (Eq.2), the
turnaround latitudes (whereω∗ changes sign) are deduced
from the residual vertical velocity for each month and the
streamfunction is then calculated at these latitudes. In a few
cases, the turnaround latitudes were too deep in the tropics,
so that the integration alongm0 was not possible. In these
cases, tropical upwelling was set to zero. The mean loca-
tion of the turnaround latitudes did not differ between the
REF1 and the SCN2 simulation in a statistical significant
way. Also, trend analyses of the turnaround latitudes showed
that there are no significant changes in the location and the
width of the upwelling region in both simulations. Therefore
changes in total upwelling can not be attributed to changes
in the width of the upwelling region. However, due to the
relatively coarse horizontal resolution of the model (T30),
changes of the width of the tropical belt in the order of one
to two degrees per decade, as reported bySeidel and Randel
(2007), might not be detectable here.

4 Climatological differences

4.1 Temperature and ozone

To address the question to which extent CCM simulations us-
ing observed and modelled SSTs, respectively, differ in their
climatological mean state, the 40-year climatologies (1960–
1999) of temperature and ozone mixing ratios are compared
(Fig. 4).

The tropospheric temperatures in the SCN2 simulation are
significantly lower than in REF1, with differences maximis-
ing in the tropical middle troposphere. There the tempera-
ture is up to 1.5 K lower in SCN2. In the stratosphere, the
temperature differences are generally weaker but tempera-
tures are significantly higher in SCN2 in the tropical lower
stratosphere and at high latitudes at around 200 hPa. The
temperature differences in the troposphere between the two
simulations are of the same order of magnitude as changes
over the 40 years of each model simulation (see Fig.7).
The large differences in the climatologies are not unexpected
since differences between the SST climatologies of the two
runs are more than 1 K in the zonal mean for most latitudes
(see Fig.1), and even up to 3 K at about 50◦ N. The differ-
ence pattern in temperature is in close agreement with results
from earlier studies on SST forcing of temperature (see e.g.
Kodama et al., 2007; Hardiman et al., 2007).

The differences in the ozone climatology show signifi-
cantly higher ozone mixing ratios in the tropical lower strato-
sphere and lower ozone mixing ratios at southern middle and
northern high latitudes in SCN2 compared to REF1. Addi-
tionally, there are significant differences in the troposphere

with higher ozone mixing ratios in the tropics and at high
latitudes. The difference pattern in ozone mixing ratio in the
stratosphere is clearly indicative of weaker transport from
the tropics into higher latitudes in SCN2. To examine the
differences more closely, Fig.5 (left panel) shows the an-
nual cycle of zonal mean total column ozone for all latitudes
(from REF1, 1960–1999) and differences between SCN2 and
REF1. The negative ozone differences are strongest in north-
ern winter at high latitudes (maximising in February) and
in southern mid-latitudes in May to October, occurring in
both hemispheres one to two months before total ozone max-
imises.

4.2 Residual circulation

The distribution of total column ozone is determined by both
chemical and dynamical processes. While the photochemi-
cal production of ozone is highest in the tropics, the BDC is
transporting ozone from the tropics towards higher latitudes.

The classical view is that transport by the dominant win-
ter cell of the BDC leads to the ozone maximum in middle
to high latitudes of the winter/spring hemisphere. However,
next to the direct transport of ozone by the BDC, also other
mechanism might play a role, like eddy mixing of tropical
air masses into mid-latitudes or the local ozone chemistry.
Grewe(2006) showed that in the mid-latitudes the contri-
bution of ozone originating in the tropics is about half of
the total amount of ozone, with the other half being pro-
duced locally. Detailed analyses of the processes important
to the redistribution of ozone, and in particular the relation
of changes in theses processes to changes in ozone concen-
trations are not scope of this study and are subject of on-
going work. However, it has been shown in various stud-
ies (Fusco and Salby, 1999; Randel et al., 2002) that ozone
anomalies can be linked to variations in wave fluxes, which
drive the BDC. Also,Jiang et al.(2007) showed recently that
changes of the BDC can be related to changes in the amount
of ozone with reduced ozone concentrations in the tropics
and enhanced ozone concentrations in mid-latitudes.

Figure 5 shows next to the ozone climatology of REF1
(left) the climatology of the streamfunction of the residual
velocity χ∗ at 100 hPa, as measure of the BDC (right). The
100 hPa level is chosen since the differences in the ozone cli-
matologies are largest in this height region (see Fig.4). The
streamfunction clearly shows the dominant winter circulation
cells, with a maximum of the Northern Hemisphere circula-
tion in January and of the Southern Hemisphere circulation
in June. Total column ozone maximises poleward and about
1–2 month after the circulation maxima.

The difference pattern in the residual circulation clearly
shows a weaker circulation in SCN2 in both hemispheres
during autumn and early winter in low latitudes. In the
Northern Hemisphere, weaker transport sets in around Au-
gust and total ozone values start to be significantly lower
around October. The weaker meridional circulation persists
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significant on the 95% level.

throughout autumn until January, and consequently total
ozone does not build up at mid to high latitudes as strongly
in SCN2 as in REF1. In February to March meridional trans-
port becomes stronger in SCN2, leading to the weak positive
difference in total ozone in April at high latitudes.

In the Southern Hemisphere a similar picture emerges,
with a weaker circulation in SCN2 leading to lower ozone
values. Here, the meridional circulation in the (sub-)tropics
is weaker throughout the year, but differences are largest in
February to May. The weaker transport again leads to lower
ozone values in mid-latitudes, lagging about 2 month after
the maximal circulation difference.

4.3 Planetary wave activity

Since the large-scale circulation in the stratosphere is largely
driven by planetary waves, the differences in the meridional
circulation as found in the last section are expected to result
from differences in wave activity. The climatology of EP
fluxes of the REF1 simulation was shown inStenke et al.
(2009), and showed a generally realistic representation of
planetary wave (PW) activity in the model. Annual mean
differences between SCN2 and REF1 in EP divergences and
fluxes are shown in Fig.6. It can be seen that there is less
wave activity entering the stratosphere in the tropics, result-
ing in less wave dissipation and therefore a weaker forcing of
the BDC in the SCN2 simulation. This results in weaker up-
welling around the equator, balanced by weaker downwelling
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around 20◦ N/S. At high latitudes there are indications of a
stronger circulation in SCN2 in both hemispheres.

The difference pattern of EP fluxes in the stratosphere sug-
gests that even though there is a strong positive anomaly in
wave generation equatorward of 50◦ N/S, stronger dissipa-
tion between 400 hPa and 100 hPa lead to less wave activity
reaching the stratosphere. Also, especially in the Northern
Hemisphere there are signs of stronger poleward refraction
of PWs. However, statements about the cause and effect re-
lationship of wave-mean flow interactions that lead to the
observed differences in the residual circulation are not eas-
ily deduced from the data. The discussed differences in EP
fluxes are largely statistically significant, even more so when
considering stationary waves only (not shown).

5 Long-term trends and variability

While in the last section, the climatological differences due
to different SST data sets were studied, the following part of
the paper aims to analyse differences in the temporal evolu-
tion.

5.1 Temperature and ozone

The linear trend in annual mean zonal mean temperature and
ozone mixing ratios over the years 1960 to 1999 was calcu-
lated for each latitude and pressure level, and the resulting
trend patterns are shown in Fig.7. The results show that
the trend patterns calculated for REF1 and SCN2 are simi-
lar both in terms of geographical locations and magnitudes
of trend maxima and minima for temperature as well as for
ozone.

In terms of temperature, both simulations show a warm-
ing of approximately 1 K over 40 years in the troposphere
and a cooling pattern in the stratosphere with strongest cool-
ing of up to 4.5 K near the south pole and a local cooling
maximum in the tropics. The temperature trends are sig-
nificantly different (on the 95% level) only in the Northern
Hemisphere mid-latitudes in the troposphere, consistent with
weaker SST trends in the mean over the Northern Hemi-
sphere of the HadISST data than of HadGEM1 (see Fig.2).

The ozone trend pattern shows a strong decrease of ozone
mixing ratios in the stratosphere, especially in high southern
latitudes and an increase in the troposphere. The differences
between the two simulations in the 40-year zonal mean ozone
trends are not statistically significant for all latitudes and lev-
els.

To study the temporal evolution of temperature and ozone
more closely, time series of total column ozone and 30 hPa
temperatures (as representative for the lower stratosphere)
for certain latitude bands are shown in Figs.8 and9. Only
winter/spring months are shown since the stratospheric vari-
ability is highest in this time of the year. Also, SSTs are
expected to influence the stratosphere mainly through dif-
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Fig. 6. Differences (SCN2-REF1) of 40-year climatologies of an-
nual mean EP fluxes (black arrows) and EP divergences (coloured)
for three different height regions. The scaling of the EP fluxes
and divergences is indicated by the scale arrow and the colorbar
in each panel. Light grey contours in the upper panel show dif-
ferences (SCN2-REF1) in the residual meridional circulation, with
solid lines denoting positive values and dashed lines denoting neg-
ative values (contour interval is 5×107 kg/s). Differences in the
residual circulation are statistically significant within black con-
tours.

ferences in planetary wave activity, which is communicated
to the stratosphere mainly in winter when wave propagation
is not inhibited by easterly winds (Randel and Held, 1991;
Charney and Drazin, 1961).

Much of the interannual variability in ozone can be ex-
plained by external forcings like the QBO and the solar cycle
(e.g.Steinbrecht et al., 2006). The co-variability of the time
series of the two simulations, as measured by the correlation
coefficient, gives a measure of how deterministic the system
is, i.e. how strong the common external forcings (like the
QBO or the solar cycle) act to determine the anomalies in
individual years. Low correlation coefficients can be caused
by either internal variability or by forcing that is different in
the two simulations, i.e. the SSTs. The ENSO is excepted
to cause anomalies in ozone and temperature by modifying
planetary wave activity and its impact will be discussed in
Sect.5.3. The correlation of the detrended time series of total
column ozone (left panels of Fig.8) is significant for the trop-
ics and for the Southern Hemisphere (with correlation coef-
ficients of approximately 0.5), while in the Northern Hemi-
sphere the high dynamic variability causes the correlation to
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Fig. 7. Linear trends over years 1960 to 1999 of temperature (upper panels) and ozone mixing ratio (lower panels) for REF1 (left) and SCN2
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be insignificant. Since both model runs are driven by the
same boundary conditions (apart from the SSTs), anomalies
that are driven by e.g. the QBO or the solar cycle should be
apparent in both simulations. For example, the very low total
column ozone value over southern mid-latitudes in 1985 is
reproduced by both model runs. The negative anomaly was a
combined effect of the QBO, the solar cycle and their timing
in the year (Bodeker et al., 2007).

The detrended temperature time series of the SCN2 and
REF1 runs as shown in Fig.9 correlate significantly in the
tropics and in the mid-latitudes of both hemispheres. The
correlation coefficients are 0.58, 0.47 and 0.35 in the north-
ern mid-latitudes, the tropics and the southern mid-latitudes,
respectively. Especially in the tropics, the variability seems
to be largely dominated by the QBO, which is apparent par-
ticularly in the last decade of the time series.

The essential question when comparing the REF1 and
SCN2 simulations is on the reproduction of the temporal evo-
lution of the atmosphere. Above, it was shown that the 40-
year trend pattern in ozone and temperature are not signifi-
cantly different from each other. But is this still true when the
length of the time series is shortened? To answer this ques-
tion, the linear trend in total column ozone and temperature

was calculated for periods of increasing length, starting with
1960 to 1974 and extending the period in steps of one year
until 1999 (see right panels of Figs.8 and9). If the trend
would be strictly linear, it would be constant for all periods.
Otherwise, if for example total ozone was increasing during
the first 20 years and decreasing with the same rate during
the second half of the total period, the trend would be posi-
tive during the first 20 years, then decrease and equal out to
zero at the end.

The results for total column ozone (Fig.8) show good
agreement in trends calculated from the two simulations in
southern high latitudes, where the strongest negative trend
appears due to rapid ozone depletion. The trend increases for
longer periods since the rapid ozone depletion only started in
the 1980s, so that the trend is close to zero for a short period
and increases afterwards. In the mid-latitudes and tropics,
the absolute values of the ozone trends are very similar when
including more than about 25 years of model simulation. In
the tropics, the trend estimated for a period spanning from
1960 to around 1980 is positive in the REF1 run but close
to zero or negative for the SCN2 run. In turn, the trends
at middle and high northern latitudes in the same period are
strongly negative in REF1 in the late 1970s, but close to zero
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in SCN2. This leads to the trend calculated over the whole
period being weaker in REF1 as in SCN2.

The trend calculations in the same manner for the temper-
ature time series give similar results (see Fig.9 right panels).
The linear trend calculated over time periods including more
than 25 years agree well between the model runs. Trends
over shorter periods differ in magnitude at northern high lat-
itudes. As for ozone, the trends in northern high latitudes are
strongly negative for periods 1960 to around 1979 for REF1
and close to zero for SCN2. The behaviour is reversed in
the tropics (with positive trends in REF1 and small (nega-
tive) trends in SCN2), but the differences in trends are not
significant here.

This difference in trends during the period 1960 to the late
1970s in both total column ozone and temperature might ei-
ther be (i) of non-deterministic nature, caused by internal
model variability or (ii) forced externally and therefore due
to differences in the forcings of the two simulations. If it
was a process forced by an external boundary condition, the
only possible boundary condition to cause this modulation
in trends are the prescribed SSTs, since this is the only dif-
ference in the external forcing of the REF1 and SCN2 sim-
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Fig. 9. As in Fig.8 but for temperature in [K] at 30 hPa.

ulations. As shown in Fig.2, the time series of SSTs differ
in particular in the Northern Hemisphere in the 1960/1970s.
Therefore, we suspect that changes of SSTs alter the tem-
poral evolution of stratospheric ozone and temperature in a
way similar to the climatological differences found in Sect.4.
The mechanism of how SSTs are expected to act on strato-
spheric temperature and ozone distributions are dynamical
processes, i.e. the modulation of PW activity. Indeed, the
fact that positive trends in the 1960/1970s (in both tempera-
ture and ozone) in the tropics seem to be balanced by strong
negative trends in middle and high latitudes in the winter
hemisphere suggest that the underlying mechanism is related
to changes in the large-scale circulation (which is in turn
driven by PW activity). In order to investigate the hypothesis
of SST-induced dynamical changes, the temporal evolution
of the BDC and PW activity for the two simulations with dif-
ferent underlying SSTs will be investigated in the next sec-
tion.

5.2 Brewer-Dobson circulation and planetary
wave activity

To quantify changes in the large-scale circulation of the
stratosphere, time series of mean tropical upwelling for De-
cember to February (DJF) are shown in Fig.10 for REF1
and SCN2. Significant changes in tropical upwelling with
time were found only for DJF, so that in the following only
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the upper right corner, the correlation coefficient between the time
series of tropical upwelling calculated directly and via DC is given.

northern winter months are considered. As Fig.10shows, the
temporal evolution of tropical upwelling is fairly different in
the two simulations. While in SCN2, tropical upwelling in-
creases throughout the period 1960 to 1999, in REF1 a clear
reverse in the trend is seen in the late 1970s. As mentioned
above, the temperature and ozone time series are indicative
of a weakening of the BDC in the REF1 simulation during
the 1960s and 1970s, and the tropical upwelling time se-
ries strongly supports this suggestion. As discussed above,
the fact that the reverse in trends only occurs in the simu-
lation with observed SSTs strongly suggests that differences
in the temporal evolution of the SSTs drive these changes in
the large-scale circulation. However, the most likely mecha-
nism for SSTs affecting the BDC is via changes in planetary
wave generation or propagation as the main drivers of the
BDC. Therefore, in the following the contribution of plan-
etary wave activity in forcing upwelling and changes in the
wave activity are analysed.

The contribution of planetary wave activity to forcing
changes in upwelling can be quantified by calculating trop-
ical upwelling via the downward control principle (see
Sect.3). Using this method, the trends in upwelling can be
reproduced, especially the strong negative trend in DJF in
the first 20 years in REF1. This shows that the changes in
the BDC can be linked to changes in the dissipation of plane-
tary wave activity in the stratosphere. PWs are largely gener-
ated in the troposphere, propagate upward and dissipate due
to respective background conditions (see e.g.Charney and
Drazin, 1961). Therefore, changes in wave activity diver-
gence can be caused by either changes in the generation, the
propagation and/or the region of dissipation of waves.

Figure11 shows the linear trend in EP fluxes and diver-
gence and in the streamfunction of the residual circulation for
the REF1 simulation over the period 1960 to 1978 in January,
where tropical upwelling decreases. For SCN2, trends over

the period 1960 to 1999, where tropical upwelling increases,
are shown. For REF1, the period 1978 to 1999 also shows
an increase in tropical upwelling and the trend pattern in the
residual circulation and EP fluxes are qualitatively similar to
the SCN2 1960–1999 period, even though the shorter time
period makes it more difficult to obtain significant trends.

The REF1 1960–1978 trend pattern of the residual velocity
shows a strong significant hemisphere-wide decrease in the
circulation strength of the Northern Hemisphere (Fig.11 left
panel). This weakening in the residual circulation is clearly
linked to a negative trend in EP divergence in the extrat-
ropical stratosphere above 60 hPa. The trend in EP fluxes
suggests that the origin of the EP divergence change lies in
the tropospheric production of wave activity. The decrease
in tropospheric wave generation is found in northern mid-
latitudes, in particular between 35◦ N and 60◦ N.

For the period 1960 to 1999 in SCN2 a clear increase in
the residual streamfunction and therefore in the strength of
the BDC is seen in both hemispheres (Fig.11 right panel).
The trends in the residual streamfunction are significant in
the (sub-)tropics below 80 hPa, with rising motion around
the equator and downwelling equatorward of about 20◦ N/S.
Also in the Southern Hemisphere at middle and high lati-
tudes, the trend towards a stronger BDC is significant. The
(sub-)tropical circulation changes can be associated with in-
creases in EP convergence in the same region.

In the mid-latitudes, both hemispheres show enhanced EP
flux entering the stratosphere and therefore enhanced EP con-
vergence at higher levels, but the changes are statistically
significant only in the Southern Hemisphere. The changes
in EP flux entering into the stratosphere in southern mid-
latitudes can not be attributed to stronger wave generation
but the trend pattern indicates reduced dissipation in the up-
per troposphere.

5.3 Influence of ENSO on tropical upwelling

As pointed out in the introduction, the ENSO has been shown
to modulate planetary wave activity and the meridional circu-
lation in earlier studies. Since the SSTs, and therefore ENSO,
are the only external forcing that differs in the two simula-
tions examined here, it might be a cause for the differences
found in the temporal evolution of tropical upwelling. The
signal of the ENSO forcing can also be expected to be found
in temperature and ozone (i.e. Figs.8 and9), but since these
signals are driven by changes in tropical upwelling, we focus
on analysing the impact of ENSO on the latter.

To this end, correlation coefficients between tropical up-
welling and the ENSO time series over 40 years are calcu-
lated and given in Table1 for both model simulations used in
this study. The correlations are not significant for JJA and in
the annual mean for both model runs, but in DJF the corre-
lation is significant on the 95% level in REF1. The stronger
correlation in DJF in REF1 compared to SCN2 is reflective
of the weaker ENSO signal, and therefore weaker forcing, in
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Fig. 11. As in Fig.6, but showing the linear trend in EP fluxes and divergence and in the residual circulation for REF1, years 1960 to 1979
(left panels) and SCN2, years 1960 to 1999 (right panels). Contour intervals for the residual streamfunction is 2.5×107 kg/s/a in the left
panel and 0.7×107 kg/s/a in the right panel.

the HadGEM SST data set (see Fig.3). The positive corre-
lation between ENSO and tropical upwelling is in agreement
with the studies byGarćıa-Herrera et al.(2006) andHardi-
man et al.(2007), that state stronger wave activity and sub-
sequent forcing of the BDC in positive phases of the ENSO.

To investigate how much of the variability in tropical up-
welling can be attributed to ENSO, a linear least square re-
gression model with the ENSO as basis function was applied
to the monthly tropical upwelling time series. Seasonal vari-
ations in the regression coefficients is accounted for by in-
troducing a Fourier expansion of the coefficients (seeGarny
et al., 2007 for details). Due to possible delays in the re-
sponse of tropical upwelling on ENSO, up to 11 month time
lag was allowed, but it proved that the optimal fitting (mea-
sured as the smallest sum of squared residuals) is given for
the instantaneous ENSO values (i.e. a time lag of 0 month).
Due to the weak correlation in SCN2, this analysis is shown
here only for REF1 where an influence of ENSO on tropical
upwelling is evident from the significant correlation.

Figure12 shows the DJF mean time series of tropical up-
welling as in Fig.10 together with the time series as mod-
elled by the regression, i.e. the variability in tropical up-
welling that can be explained by a linear relationship to
ENSO. This suggests that although the ENSO is responsible
for some variability in tropical upwelling, the trends either
in in 1960/1970s or afterwards can not be attributed solely to
ENSO. However, this analysis assumes a linear relationship
between tropical upwelling and ENSO, so nonlinear effects
might amplify the response of ENSO in certain conditions,
which could change the conclusion of this section.

Table 1. Correlation coefficients between tropical upwelling and
ENSO for REF1 and SCN2 in seasons DJF, JJA and for annual mean
values.

Season REF1 SCN2

DJF 0.32 −0.03
JJA −0.20 −0.17
annual −0.09 0.02

6 Summary and conclusions

The comparison of two transient E39C-A simulations using
observed and modelled SSTs, respectively, showed that there
exist large differences in temperature and ozone climatolo-
gies. The differences in ozone are linked to small, but statis-
tically significant differences in the residual meridional cir-
culation, which are in turn driven by differences in PW ac-
tivity fluxes. Detailed trend analyses showed generally good
agreement in long-term trend pattern of zonal mean tempera-
ture and ozone mixing ratios. However, differences in trends
were found when considering shorter time series.

In the comparison of the two simulations that are identical
except for the SST (including sea ice coverage) data sets, it is
straightforward to attribute the climatological differences to
SST differences. The differences in the temporal evolution
in the two simulations, on the other hand, could simply be
due to internal variability of the system. Therefore, the only
conclusion that can be drawn for sure is that in cases where
we find differences in the trends, the trend in the particular
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Fig. 12. Mean tropical upwelling (as measured by mass fluxes) at
76 hPa for December to February for REF1. The black line shows
the full time series of tropical upwelling, the green line the vari-
ability in tropical upwelling that can be explained by ENSO (see
text for more details). Together with the time series, linear trends
are plotted as solid lines when statistically significant (on the 95%
level), otherwise as dashed lines.

quantity is not robust. Whether this is due to the internal
variability or due to the use of different SST data sets can not
be concluded on. It would be desirable to have more than one
realisation of each simulation to test whether the behaviour
is deterministic.

For the inter-simulation comparison, the results suggest
enhancement or reduction in planetary wave generation and
subsequently changes in the large-scale circulation in the
stratosphere as the mechanism of how SST signals are com-
municated to the stratosphere. This can be seen in differ-
ences of ozone climatologies between the two runs, which
show clear signals of changes in transport of ozone from the
tropics to higher latitudes. Also the temperature climatol-
ogy comparison shows significantly higher temperatures in
the tropical lower stratosphere, an indication of weaker ris-
ing of air masses in this region. The difference pattern in the
residual circulation confirms that the BDC is weakened, as a
result of less PW flux propagating into the stratosphere.

As it was mentioned in the introduction, most climate and
chemistry-climate models show an increase of the BDC in a
changing climate. The findings of the study presented here
agree in that an increase of tropical upwelling with time in
the SCN2 simulation and in REF1 after 1980 is diagnosed.
The trend pattern of the residual streamfunction in the sim-
ulations suggest that the changes consist of a strongly en-
hanced circulation constrained to the (sub-)tropics and of sig-
nificant changes in the Southern Hemisphere. The changes in
the Southern Hemisphere are forced by stronger extratropi-
cal planetary wave flux into the stratosphere, which in turn
seems to be caused by changes in wave propagation. The
changes in wave activity in southern summer are most likely

a result of changes in the dynamics due to ozone loss. For ex-
ample,Li et al. (2008) suggested a mechanism of increased
descent in the Antarctic vortex leading to a stronger merid-
ional temperature gradient and therefore a stronger jet which
in turn leads to enhanced upward planetary wave propaga-
tion. The fact that trends in the Southern Hemisphere are
absent in the period 1960 to 1978 confirms this hypothesis.
The changes in the tropics are linked to changes in PW ac-
tivity within the tropics, with enhanced EP fluxes entering
the stratosphere at 100 hPa and subsequently enhanced EP
convergence in the tropical lower stratosphere. The pattern
in the trend of the residual circulation is similar to the dif-
ferences diagnosed between SCN2 and REF1. AlsoDeck-
ert and Dameris(2008a) reported changes in the circulation
in the tropics, and attributed the changes to enhanced wave-
driving by changes in convective activity due to higher SSTs
(see also Introduction). The changes in EP fluxes and the
residual circulation seem to be a robust pattern, and the dif-
ference and trend patterns found in this study are probably
of the same nature as the changes reported on inDeckert and
Dameris(2008a). As discussed above, the differences be-
tween the two simulations can be attributed to differences in
SST forcing, being consistent with the hypothesis ofDeckert
and Dameris(2008a). The positive trend in the BDC as found
in SCN2 and in REF1 after 1980, on the other hand, can not
be concluded on being driven by SSTs from the current find-
ings presented here. Other processes could be responsible,
like changes in the mean zonal winds due to changed GHG
concentrations that lead to increased extratropical PW activ-
ity. However, the fact that the difference in the residual cir-
culation between the simulations appears similar to the trend
pattern provides an indication that the SSTs, and therefore
changes in tropospheric processes, might be the controlling
factor in driving the trends in the BDC. However, to untangle
the exact cause and effect relationships of the processes re-
sponsible more detailed studies with various different model
systems will be necessary.

The 1960–1979 negative trends in upwelling in REF1 were
shown to originate from EP flux trends indicative of less PW
generation in the extratropical troposphere. The period of de-
creases in EP fluxes in the troposphere coincides with a de-
crease in Northern Hemisphere mean SSTs over the same pe-
riod (see Fig.2). This suggests some evidence that the trend
in upwelling is indeed forced by the SSTs and not an artefact
of this particular realisation. However, one major problem
of trying to attribute the changes to SST trends is the lack of
understanding of how extratropical SST anomalies can affect
the excitation of planetary waves (Kushnir et al., 2002). Peng
et al.(1995) andPeng and Whitaker(1999) showed that the
response to SST anomalies is highly sensitive to the back-
ground state, i.e. the response to the same anomaly might be
of different nature for different month, but also appears dif-
ferent when using different models.

Unlike for the extratropics, the effects of tropical SST
anomalies and namely the ENSO on extratropical waves
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(Ineson and Scaife, 2009), and subsequently modulation of
the PW flux into the stratosphere and the BDC (Hardiman
et al., 2007; Garćıa-Herrera et al., 2006) are well studied.
It is shown that this relationship also holds for the REF1
simulation used here, with positive correlations of tropical
upwelling with the ENSO index in the northern winter sea-
son. In the mid-1970s, two strong negative ENSO events oc-
curred, indicative of weakened wave activity. This may ap-
pear as a possible explanation of the weak BDC in the 1970s
in REF1, but it could not be confirmed that ENSO alone is
responsible for the negative trend in tropical upwelling in the
1960/1970s by a regression analysis. Since this analysis only
takes the linear response of upwelling on ENSO into account,
it might not capture the full response, and more studies will
be necessary to explore the nature of the changes in PW ac-
tivity found in this study and their linkage to SST anomalies.

Another potential indication on whether the 1960/1970s
trend in wave fluxes and the BDC are deterministic or not
could be if we find a similar signal in simulations with other
model systems but with the same underlying SSTs or even
in observational data. InAustin et al.(2007), three ensem-
ble members of a simulation using observed SSTs show lit-
tle changes in age of air form 1960 to 1980, but a rapid de-
crease after 1980 (consistent with an increase in the BDC).
Also, the ensemble members agree reasonably well in the
time evolution of upwelling. The problem in trying to iden-
tify trends in upwelling directly from measurements is the
insufficient data basis for analysing global stratospheric dy-
namics before 1979. Especially direct measures of the merid-
ional circulation (such as tropical upwelling), in which we
find the strongest signal of the trend reversal (Fig.10), are
not easily available. The BDC causes diabatic warming in
high latitudes and cooling in low latitudes, so that changes
in the strength of the BDC are reflected in temperature time
series (apparent in Fig.9). A consistent data set of strato-
spheric temperatures (only for the Northern Hemisphere) that
starts in 1957 and covers the time period to 2001 are the
so-called Berlin analyses (Labitzke and collaborators, 2002,
available at: http://badc.nerc.ac.uk/data/berlinstrat). Lab-
itzke and Kunze(2005) presented trend calculations for tem-
perature at high latitudes (80◦ N) at 50 hPa from the Berlin
data set and two reanalysis data sets, which is comparable to
the temperature trends in our Fig.9. They found trends with
opposite sign for the period 1964–1979 than for 1979–2000,
but the trends are mostly not statistically significant. How-
ever, the high internal variability in northern high latitudes
makes it difficult to find a significant signal in temperature
time series, both in the model and in the observational data.
Another study, based among other on ECMWF and NCEP
reanalysis data, points out a clear reverse of trends around
1980 in the duration of easterlies in the stratosphere during
summer (the so-called summer length) and attributed it to
changes in wave activity (Offermann et al., 2005). However,
direct comparisons of the same diagnostics from these ob-
servational studies did not show the same behaviour in the

model simulation, which could indicate that the model sys-
tem is responding to the observed SST anomalies in a dif-
ferent way than the real atmosphere. Since the SSTs are
prescribed in the model, the interaction between ocean and
atmosphere is an one-way only process, so that feedbacks
of the atmosphere acting to drive the SST anomalies are not
included. So even if the trends in the 1960/1970s are deter-
ministic in the model, the response in the model could well
be of different nature.

The intention of this study was to assess the uncertainty
in the projections of atmospheric quantities introduced by
the uncertainty in the boundary conditions, in particular in
the SSTs. Since current chemistry-climate models are com-
monly not coupled to an interactive ocean, the simulations
are subject to the use of prescribed SST data sets. For future
projections, the only choice is to use projected SSTs from
a Climate Model with an interactively coupled ocean. The
projection of SSTs will never coincide exactly with the real
future development of the SSTs. This is due to our limited
ability to model the climate system and in addition to the
fact that the climate system is chaotic (i.e. a small change in
the initial conditions can lead to different realisation of the
future). So even if the models were able to resemble the cli-
matological state and the variance of the atmosphere-ocean
system of the real world in an exact way, there would still
be differences in the year-to-year variability. It is possible to
assess the differences in climatologies and variance between
the modelled SSTs and the observed SSTs for the past, but
obviously not for the future. However, let us assume that the
understanding of the climate system, and therefore the abil-
ity of modelling it, will apply in the same way to the future
as to the past. In that case the difference between the mod-
elled SSTs and the SSTs emerging in reality will be roughly
similar in the future than in the past, both in terms of clima-
tologies and variability. The term variability includes both
the general variance, and the random year-to-year variabil-
ity. By analysing the dependency of trends in atmospheric
quantities on the prescribed SST data set, an estimate of the
uncertainty in the trends due to uncertainties in the SSTs can
be gained for the past. With the above assumption the uncer-
tainty can be inferred to be similar in the future. As discussed
earlier in the conclusions, the deficit of only having one en-
semble member of each model simulation available inhibits
the contribution of the differences found in the trends to SST
differences. The results can rather be seen as tests of ro-
bustness of the trends both against the SSTs and the internal
variability.

The results of this study show that in spite of the large
differences in climatologies, the long-term trends in temper-
ature and ozone are robust against the use of a different SST
data set. Only on decadal time scales, trends are modulated
by differences in the development of the SSTs. This suggests
that trends in stratospheric temperature and ozone are largely
driven by changes in concentrations of GHGs and ozone de-
pleting substances, and are altered by SSTs only secondarily.
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The SST signal appears to be communicated to the strato-
sphere by modulation of PW activity and therefore the BDC.
This implies that trends in these quantities are particularly
sensitive to changes in SSTs, and the trend in tropical up-
welling is found not to be robust before 1980.
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