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Abstract. This paper presents measurements of organic
aerosols above subtropical West Africa during the wet season
using data from the UK Facility for Airborne Atmospheric
Measurements (FAAM) aircraft. Measurements of biogenic
volatile organic compounds (BVOC) at low altitudes over
these subtropical forests were made during the African Mon-
soon Multidisciplinary Analysis (AMMA) field experiment
during July and August 2006 mainly above Benin, Nige-
ria and Niger. Data from an Aerodyne Quadrupole Aerosol
Mass Spectrometer show a median organic aerosol loading
of 1.07µg m−3 over tropical West Africa, which represents
the first regionally averaged assessment of organic aerosol
mass (OM) in this region during the wet season. This is
broadly in agreement with global model predictions based
on partitioning schemes, although there are large uncertain-
ties associated with such estimates. In contrast our own cal-
culations based on aerosol yields from isoprene and monoter-
penes during chamber studies under represent the OM mea-
sured in this region on a comparable scale to the under repre-
sentations of OM by predictive models in the mid latitudes.
As global models rely on similar yield calculations in their
global estimates, as our calculations this points to further
systematic differences between global model estimates and
measurements of SOA, most likely caused by use of incor-
rect BVOC emission rates. The under predictions of OM by
our calculations and those in the mid latitudes employ yields
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extrapolated from chamber data obtained at higher mass con-
centrations – more recent yield data forα-pinene obtained at
ambient concentrations in a flow through chamber (Shilling
et al., 2008) show considerably better agreement with our
data.

1 Introduction

Atmospheric aerosols play a key role in climate and atmo-
spheric chemistry. The composition of atmospheric aerosols
worldwide is often dominated by the organic fraction (Zhang
et al., 2007; Andreae and Crutzen, 1997) and in many cases,
the organic aerosol mass is dominated by secondary material
(Kanakidou et al., 2005; Volkamer et al., 2006). Measure-
ments of organic aerosol from anthropogenic pollution are
widespread in the Northern Hemisphere, whereas measure-
ments in pristine tropical environments and in particular large
areas of Africa remain less well represented in the literature.

Current models based on gas/aerosol partitioning schemes
systematically underestimate the measured organic aerosol
mass loading in continental northern mid-latitudes (Chung
and Seinfeld, 2002; Heald et al., 2005; Johnson et al., 2006;
De Gouw et al., 2005) and the discrepancy between mod-
elled and measured values increases with photochemical age
(Volkamer et al., 2006); this underestimation highlights our
limited understanding of secondary organic aerosol (SOA)
formation (and loss) processes. Biogenic volatile organic
compounds (BVOCs) are thought to be emitted in greater
quantities than anthropogenic VOC emissions on a global
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basis (Guenther et al., 2000, 1995), so the formation potential
for biogenic secondary organic aerosol (BSOA) is substantial
(Kavouras et al., 1998), particularly in the tropics where bio-
genic emissions (Guenther et al., 1995) and concentrations
of hydroxyl radicals (OH) (Spivakovsky et al., 1990) are at
a maximum. Organic aerosols can exert a direct radiative
effect by scattering and absorbing solar and terrestrial radi-
ation but also indirect radiative effects, through their role as
cloud condensation nuclei (CCN). Furthermore, predicting
human influence on aerosol radiative effects is dependent on
quantifying the natural particle system; therefore an inabil-
ity to predict the quantity and spatial distribution of naturally
produced organic particulate matter has important climatic
implications.

The UK BAe-146 research aircraft, operated by the Facil-
ity for Airborne Atmospheric Measurements (FAAM), was
based at Niamey airport in Niger (2.17◦ E, 13.48◦ N) between
17 July 2006 and 17 August 2006 to coincide with the onset
of the wet season as part of the African Monsoon Multidisci-
plinary Analysis (AMMA) programme. We show here data
from 17 of the 24 sorties flown which give good coverage
along a north-south transect between the semi-arid Niamey
region of southern Niger and large areas of tropical forest in
Benin at low altitudes. Not all instruments were operating on
all flights; hence we only consider here those flights where
all relevant data is available. During the monsoon season, the
prevailing low level (925 hPa) wind direction was south west-
erly (Janicot et al., 2008), blowing from the Gulf of Guinea
over the forested regions of Benin towards Niamey in the
north of the operating region. A very clean aerosol back-
ground was observed across the region and organic aerosols
were detected over forested regions. It should be noted that
most of the region is quite rural and there are no major an-
thropogenic fossil fuel pollution sources. This study com-
pares the regional mass loading with modelling estimates and
measured yields from chamber experiments. We present here
a regionally averaged mass loading for organic aerosol over
West Africa during the 2006 wet season; to our knowledge
this is the first time such a measurement has been performed.

2 Aircraft instrumentation

Data was collected on a modified BAe-146 aircraft, which
contains a range of instruments to measure aerosol number
and composition, trace gas concentrations, and standard me-
teorological variables.

An Aerodyne Research Inc. Quadrupole Aerosol Mass
Spectrometer (Q-AMS) was used to provide near real
time mass loadings and chemical composition of the non-
refractory components of submicron aerosols. The instru-
ment samples aerosol into a vacuum through an aerodynamic
lens, which focuses the particles at a heated vaporizer, where
they volatilise. The gas plume is ionised using electron ion-
isation at 70 eV and the ion fragments are analysed using

a quadrupole mass filter and electron multiplier. The Q-
AMS has been described thoroughly in previous publications
(Jayne et al., 2000; Jimenez et al., 2003; Allan et al., 2003)
and the particular aircraft installation of the Q-AMS on the
BAe-146 is described in detail by Crosier et al. (2007). The
thermal vaporizer is maintained at∼600◦C, so the Q-AMS
is insensitive to refractory components such as black carbon
and mineral dust, which do not vaporize at this temperature.
The Q-AMS was calibrated for mass quantification (Ionisa-
tion Efficiency, IE) pre- and post-flight using the method of
Jimenez et al. (2003) and error estimates are made following
the procedure of Allan et al. (2003). The particle beam is
blocked every few seconds to measure the signal due to the
background in the instrument and this is subtracted from the
sample signal. Instrument noise can therefore be estimated
by placing a particle filter in the sample inlet. Such estimates
during AMMA show the noise for a 30 s sample to be around
3.3µg m−3 for organics at an altitude of 600 m. All Q-AMS
data (including the above uncertainty estimate) are reported
in mass concentrations at standard temperature and pressure
(273.15 K, 101.325 kPa).

Previous studies (e.g. Canagaratna et al., 2007, and studies
therein) have shown that when particles are solid a significant
number may bounce off the heater, reducing the collection
efficiency (CE) below unity. The CE is often evaluated by
comparison with other instruments such as PILS-IC or filter
measurements and has been shown to be around 0.42 for sul-
phate aerosol (Drewnick et al., 2005). Particle phase plays
a central role in the CE: liquid particles are sampled with a
CE of 1 yet the vast majority of ambient measurements from
a range of different environments are well characterised by
CEs between 40–50% (Matthew et al., 2008). For pure bio-
genic SOA, where the particles tend to be liquid aerosols, the
CE tends to 100% (Alfarra, 2004). However, sulphate mass
loadings over the region were comparable to those of organ-
ics, and in previous locations where the sulphate and organics
loadings were approximately 50:50 the CE has been shown
to be around 0.5 (Zhang et al., 2005). The aerosols during
AMMA were bulk neutralized within the uncertainties of the
measurements (see method of Zhang et al., 2005) and this
tends to be associated with a CE around 0.5 (Allan et al.,
2004). In this study it was not possible to directly evaluate
the true CE by comparison with other instruments, and for
the reasons discussed above a CE of 0.5 has been used for
the data shown.

Measurements of a suite of volatile organic compounds
were made by proton transfer reaction mass spectrometry
(PTR-MS; Ionicon Analytik). Specific masses correspond-
ing to protonated species of interest were measured for one
second every 10–15 s. Zeros were carried out periodically
in-flight by diverting the sample air stream through a custom
built stainless steel tube filled with a platinum-coated quartz
wool catalyst (Shimadzu) heated to 400◦C. The response
of the PTR-MS was calibrated pre- and post-campaign us-
ing a multi-component standard (Apel-Riemer). Due to the
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high absolute humidity encountered during the flights, the
protonation of VOCs by both H3O+ and the water cluster,
H3O+H2O, was taken into account. Isoprene is assumed to
be the major contribution to the signal at mass to charge ra-
tio (m/z) 69, thus the accuracy of this measurement is sim-
ilar to that quoted for the standard (5%). Both methylvinyl
ketone (MVK) and methacrolein (MACR) contribute to the
signal atm/z71, so strictly speaking it would be necessary
to know the sensitivity and relative contribution of each to
calculate the sum of their concentrations. Because we have
no alternate measurement of their individual concentrations,
the accuracy of the reported sum of their concentrations at
m/z71 depends on the similarity of their sensitivities. Indi-
vidual permeation tubes (Eco-scientific) were used to mea-
sure their independent responses, which showed them to be
within 20% of each other, thus a conservative estimate of the
total uncertainty of the reported sum (MVK+MACR) is 25%.

Whole air samples (WAS) were collected in silica coated
stainless steel canisters (Thames Restek, UK) for off-line
analysis of (C2-C8) Volatile Organic Compounds (VOCs).
Air samples were analysed using a dual channel gas chro-
matograph with flame ionisation detectors (Hopkins et al.,
2003).

A number of higher molecular weight gas phase volatile
organic compounds including monoterpenes were collected
using carbon based adsorbent tubes filled with Carbopack B,
Carbopack C and Carbosieve SIII (Supelco, Bellefonte, PA,
USA). Ambient air was drawn from the portside aircraft air
sample pipe which is located towards the front of the air-
craft extending beyond the skin boundary layer. A stainless
steel metal bellows pump (Metal Bellows, USA) was used to
generate a positive pressure system as this ensures that any
potential leaks in the sampling train do not compromise the
integrity of the sample.

Speciated analysis was accomplished using a GC-TOFMS
system (Gas Chromatography coupled to Time Of Flight
Mass Spectrometry) comprising an HP 6890 (Agilent Tech-
nologies, USA) gas chromatograph and a Pegasus III TOF-
MS (LECO, St. Joseph, MI, USA) which is based in the an-
alytical research laboratory at the University of York. The
analytical column was a non-polar methyl polysiloxane DB5
type (60 m×0.25 mm i.d.×1µm film thickness) from J&W
Scientific (Folsom, CA, USA). A detailed description of the
analytical system and operation parameters can be found
in (Saxton et al., 2007). Quantification was possible for 4
monoterpenes;α-pinene, limonene,β-pinene and camphene.
Several other monoterpenes were observed but without good
standards it was not possible to provide quantitative data for
them and thus they were not reported here. Unsampled tubes
were kept as field blanks to measure contamination during
handling. Backgrounds ranged from less than 20 to 30 pptV
for the instrument to a maximum of 25 to 150 pptV for an
uncapped handling blank. Based on measurements of the gas
standards, the precision was estimated to be 22 to 34% (Co-
efficient of Variation) and accuracy 20%.

Fig. 1. Vertical profiles show isoprene and its degradation products
methyl vinyl ketone (MVK) and methacrolein (MACR) between
7–13◦ N. Grey markers are individual data points. The box and
whiskers show concentrations at 500m intervals, at the mid point of
each 500 m altitude bin. The box centre denotes the median con-
centration; box edges denote the upper and lower quartiles; whisker
extremities denote the 10th and 90th percentile concentrations.

3 Results

The measurements made at low altitude over forested areas
revealed a strong correlation between VOC concentrations
and vegetation density. Isoprene has an atmospheric life-
time of around 1.75 h during the daytime in the mean condi-
tions experienced during AMMA (24 ppb O3, 1.5×106 cm−3

OH), so its spatial distribution on these scales can be used as
an indicator of local vegetative emissions. BVOCs such as
monoterpenes and isoprene are known precursors for SOA
formation (Claeys et al., 2004; Kavouras et al., 2000) and it
is where BVOC concentrations are high that SOA formation
is most likely.

Isoprene is emitted in high concentrations from many
species of vegetation in tropical regions (Kuhn et al., 2002).
During the field project high concentrations of isoprene and
its oxidation products methacrolein (MACR) and methyl
vinyl ketone (MVK) were found at altitudes below 2000 m
over forested regions (e.g. concentrations up to 2 ppb of iso-
prene were recorded at 500 m altitude – see Fig. 1 for vertical
profiles). It is known that different plant types have widely
varying emission rates of isoprene and monoterpenes and
their relative emission rates can also be highly variable from
species to species (Otter et al., 2002; Guenther et al., 1996;
Greenberg et al., 2004). Given that this region has a very
varied range of plant species (Guenther et al., 1996; Sax-
ton et al., 2007; Greenberg et al., 2004) there will inevitably
be a significant amount of spatial averaging of the emission
profiles from individual species when measured from an air-
borne platform. The meanα-pinene concentration at altitude
<2000 m over the forested regions was 38 ppt; the mean for
isoprene was 610 ppt. Theα-pinene concentration will be an
overestimate relative to isoprene because the tube samples
were collected specifically when high VOC concentrations
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Fig. 2. Frequency distribution for particle number concentra-
tion, shown for all data between 7 and 13◦ N excluding periods
of biomass burning and anthropogenic influences and data further
screened according to altitude and isoprene concentrations.

were expected, compared to the continuous sampling of the
PTR-MS and Q-AMS.

Typical aerosol number concentrations in the region
were low (particle number concentration greater than 3nm
<500 cm−3) which indicates a very clean background
(Fig. 2). Number concentrations shown have been screened
to remove influence from other sources such as biomass
burning and large urban centres. Biomass burning influence
was identified by enhancement in acetonitrile concentration,
whereas the only major urban plume sampled by the aircraft
(Lagos) was identified geographically and by enhanced CO
concentrations. The data were further screened to investi-
gate the change in number concentration in air sampled with
high or low concentrations of isoprene, using a threshold of
100 ppt (subsequently referred to as theIhigh andIlow sub-
sets). TheIhigh screening criteria used are intended to reveal
the biogenic signature over the forest, whereas theIlow air
represents more aged regional air. Typical number concen-
trations for theIhigh andIlow subsets are very similar – less
than 500 cm−3 in each case.

In forested regions in mid and high latitudes, an or-
der of magnitude enhancement in the number concentration
over background values has been observed during nucleation
events with particle concentrations around 104 cm−3 (Kul-
mala et al., 2001); this was not evident during AMMA as can
be seen in Fig. 2. This lack of new particle formation is in
agreement with that previously observed from a ground sta-
tion in the Amazon (Zhou et al., 2002; Rissler et al., 2004).

Low loadings of aerosol particle mass were observed
throughout the whole region when the data were screened to
remove the occasional influences of biomass burning and ur-
ban pollution. For this reason, mass loadings during AMMA
have been determined on the basis of statistical comparison.
Highest concentrations of BVOCs were observed at altitudes
below 2000 m (see Fig. 1) and the Q-AMS has improved
signal-to-noise when the sample pressure is high (Crosier
et al., 2007), so only data points below 2000 m were se-

lected for this estimate. Further data selection employs the
same criteria as described to investigate the number concen-
tration. Figure 3 shows organic mass frequency distributions
for Ihigh andIlow periods; the mean, lower quartile, median,
upper quartile and standard deviations of these distributions
are summarised in Table 1. This analysis shows an enhance-
ment in OM for the air with elevated isoprene concentrations,
which would tend to indicate BSOA formation, though the
enhancement is small.

Many of the data points in theIhigh subset also exhib-
ited elevated mean benzene concentrations (96 ppt compared
with 76 ppt for theIlow data), which is indicative of anthro-
pogenic pollution sources (e.g. Fenger, 1999). Benzene is
a much longer lived VOC than isoprene and so may have
been transported considerable distance from its source. It is
therefore possible that the observed OM has a contribution
from dilute anthropogenic pollution – cf. benzene concentra-
tions of 1–2 ppb in polluted environments (Rappengluck et
al., 2000; Steinbacher et al., 2005). However, it has been ob-
served that toluene is emitted from some vegetation (White
et al., 2009) and it may be that similar emissions contribute
to the small enhancement in benzene observed. Sulphate
aerosols were observed in theIhigh subset i.e. in the same
region as enhanced OM (see Fig. 4). However, similar con-
centrations of sulphate were present throughout the whole
dataset and moreover the presence of sulphate is inconclu-
sive as an indicator of anthropogenic influence. A major
source of sulphate aerosols is SO2 from anthropogenic ac-
tivity, but there are also biogenic sources, which may be sig-
nificant in this region; the observed mass concentrations are
consistent with aerosol formation from vegetative emissions
of dimethylsulphide (DMS) and H2S (Andreae et al., 1990).

With the notable exception of isoprene, the WAS data
show low VOC concentrations in both theIhigh and Ilow
air, compared with regions containing large anthropogenic
sources e.g. typical rural UK values are a factor of 2–10
higher (Fowler et al., 1997); species such as ethane and
propane dominate the VOC signature over West Africa which
indicates very aged air. This is consistent with the very low
NOx concentrations over the region (median 0.21 ppb, inter-
quartile range 0.31 ppb forIhigh). Hence, while it is most
likely that the OM in this study is dominated by the biogenic
contribution, some contribution from anthropogenic sources
cannot be entirely ruled out. These data therefore represent
an upper limit to the biogenically produced SOA loading.

4 Theoretical SOA estimates for West Africa

Isoprene, monoterpenes and sequiterpenes are thought to
be the major SOA precursors globally (Kroll et al., 2006;
Kanakidou et al., 2005) so an estimate for SOA formation
should be based on these compound classes. Isoprene and
monoterpenes have been shown to be emitted from forested
regions of the African Sahel in high concentrations during
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Table 1. Organic mass loadings (µg m−3) for data screened for various criteria.Ihigh andIlow indicate data below 2000 m (excluding urban
centres, biomass burning influences and data outside the latitude range 7–13◦ N), selected for isoprene above and below 2000 m. Q1 and Q3
are the lower and upper quartiles. The mean is quoted± standard error.

Criteria Mean±std err Median Q1 Q3 Standard deviation

All data 0.216±0.096 0.0310 −1.786 1.564 6.36
All <2000 m 1.18±0.16 0.614 −0.642 1.90 8.06
Ilow 0.520±0.112 0.480 −0.696 1.626 1.804
Ihigh 1.164±0.062 1.072 0.125 2.14 1.762

Fig. 3. Frequency distributions for organic aerosol mass. The
screened data is below 2000 m and excludes urban centres and
biomass burning influences and data outside the latitude range 7–
13◦ N.

the wet season (Saxton et al., 2007), but no quantitative mea-
surements for sesquiterpenes are available. Our estimate
is therefore based on isoprene and monoterpenes only and
hence is likely to be an under prediction. However, neglect
of lower volatility, high-yield SOA precursors when predict-
ing SOA formation is a general issue and is not unique to
biogenically-influenced areas. For example the oxidation of
large (C15 and higher) alkanes is not included in most mod-
els but these reactions form SOA very efficiently (Robinson
et al., 2007; Lim and Ziemann, 2005). A simple approach
to estimating the SOA formation from the observed isoprene
and monoterpenes is presented using data from the regions
defined by theIhigh screening criteria outlined for Fig. 3.
This subset is used for the calculation, in order that a di-
rect comparison can be made with the SOA measurements.
Isoprene,α-pinene,β-pinene and limonene were the precur-
sor species measured for which relevant emission ratios were
readily available.

Chamber estimates of isoprene derived SOA suggest mass
yields around 1% (Kroll et al., 2006), and molar yields
of MVK and MACR from isoprene oxidation have been
shown to be 15% and 18%, respectively, in low NOx con-
ditions (Ruppert and Becker, 2000). Assuming that the only
source of MVK and MACR is isoprene degradation, and that

Fig. 4. Frequency distributions for inorganic aerosol mass.
“Screened” data refers to data below 2000 m with isoprene
>100 ppt, excluding urban centres, biomass burning influences and
data outside the latitude range 7–13◦ N.

MVK+MACR are not themselves oxidised appreciably on
the timescales relevant to this analysis, the measured MVK
and MACR concentrations indicate the total amount of iso-
prene oxidised (Eq. 1), which can then be used to predict the
concentration of SOA formed (Eq. 2).

[Iso] =
[MVK +MACR]

YMVK +YMACR
(1)

SOAIso=[Iso]×YSOA=
[MVK +MACR]

YMVK +YMACR
×YSOA (2)

Converting the units in Eq. (2) from molar to mass yields
and mixing ratios to mass concentrations yields an estimate
for SOA mass concentration given by Eq. (3).

SOAIso = [MVK +MACR]

×
YSOA

YMVK

(
MMVK
MIso

)
+YMACR

(
MMACR
MIso

)
×n×

MMVK +MACR

NA

(3)

Where SOAIso = SOA mass concentration from isoprene oxi-
dation,[MVK +MACR] = concentration of the sum of MVK
and MACR (ppt),YSOA = aerosol mass yield = 0.01 (Kroll
et al., 2006),YMVK = molar yield of MVK=0.15 (Ruppert
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and Becker, 2000),YMACR = molar yield of MACR=0.18
(Ruppert and Becker, 2000),n = number of molecules in
1 m3 air = 2.5×1025, NA = Avogadro’s number = 6.02×1023,
MIso = molar mass of isoprene = 68 gmol−1, MMVK = molar
mass of MVK=70 gmol−1, MMACR = molar mass of
MACR=70 gmol−1, MMVK +MACR = molar mass of MVK
and MACR=70 gmol−1. The median MVK+MACR con-
centration for theIhigh subset was observed to be 380 ppt.
Equation (3) gives a prediction of organic mass loading
from isoprene degradation of 0.0597±0.033µg m−3 over
the region. The uncertainty quoted is the standard deviation
and reflects variability in the MVK+MACR concentration;
the choice ofYSOA reflects the low NOx concentrations and
low overall mass concentrations.

This estimate assumes complete oxidation of isoprene
to achieve the final concentration of SOA. Certainly, the
methylvinyl ketone and methacrolein concentrations in Fig. 1
are similar in magnitude to that of isoprene, indicating that
considerable oxidation has taken place, and the mixing time
in the atmosphere is of the order of several hours. The life-
time of MVK + MACR is around 8 h (Atkinson et al., 2006),
so there is decay on the time scale of a day. Chamber mea-
surements indicate that SOA formation is complete 6–10 h
after the start of oxidation (Kroll et al., 2006; Dommen et al.,
2006), so the approach we have taken should give a reason-
able estimate of SOA from isoprene oxidation for the first 8 h
or so before oxidation of MVK+MACR starts to appreciably
reduce their concentrations and lead to an underestimate of
total isoprene emitted (Eq. 1). During the West African Mon-
soon (WAM), the predominant wind direction at the surface
is south-westerly (Parker et al., 2005b) and so air in this re-
gion originates largely from the Gulf of Guinea. Large tropi-
cal storms (termed Mesoscale Convective Systems – MCSs)
passed through the operating region every few days, so there
would have been removal of BVOCs from the region by large
scale convection every 2–4 days. Smaller scale daily con-
vection and associated vertical mixing (Parker et al., 2005a)
means that it is unlikely we sampled air masses of chem-
ical age much longer than one day. If significant loss of
MVK+MACR were to be occurring, this would under rep-
resent the total isoprene emitted and hence underestimate the
SOA predicted. Our prediction may therefore underestimate
formation of SOA to an extent.

An estimate of the contribution of monoterpenes to the
SOA can be derived by extending the approach above.
Monoterpenes, like isoprene are short lived in the atmosphere
whereas aerosols are long lived, and hence their contribu-
tion to the measured SOA is due to the integrated amount
of monoterpene emitted into the air mass and is nearly in-
dependent of the in situ abundance of the BVOC. Hence
we assume that the total quantity of a particular VOC that
has reacted to form products (denoted by the subscript TR)
arises from the total quantity of the VOC emitted (denoted
by the subscript TE) see Eq. (4). Using anα-pinene (AP)/
isoprene (Iso) emission ratio (by mass) of 1.0±0.1 to repre-

sent APT E /IsoT E (derived from ground based measurements
in Benin during the same time period as our measurements –
Saxton et al., 2007), and using a suitable aerosol yield from
α-pinene,YAP =0.01 (extrapolated from Griffin et al., 1999a),
we arrive at an estimate for SOA fromα-pinene expressed by
Eq. (5), SOAAP =0.0608±0.0406µg m−3.

APT R = IsoT R ×
APT E

IsoT E

(4)

SOAISO=
SOAIso

YIso

APT E

IsoT E

YAP (5)

The same approach was taken forβ-pinene (BP)
and limonene using emission ratios BP/Iso=1.0±0.1,
Limonene/Iso=2±0.2 (Saxton et al., 2007) and yields
YBP =0.034, YLimonene=0.082 (extrapolated from Griffin et
al., 1999a) to give SOABP =0.0202±0.0132µg m−3, and
SOAlimonene=0.098±0.062µg m−3. Uncertainties in these
estimates reflect the uncertainty in the emission ratios used,
in addition to the uncertainty in SOAIso. The total SOA
predicted from this calculation is 0.24±0.15µg m−3.

For comparison, a range of SOA estimates have been gen-
erated in this manner using emissions data from studies in
tropical forests in South America. These reflect the high de-
gree of variability in emission profiles between different lo-
cations with similar biome and are summarized in Table 2.
However, measurements taken in Amazonia may not be rep-
resentative of BVOC in West Africa; indeed there is signifi-
cant variability in emission characteristics even between (the
large variety of) plant species present in West Africa (Guen-
ther et al., 1996; Otter et al., 2002; Saxton et al., 2007).
Given that the 1/e lifetimes ofα-pinene and isoprene under
conditions experienced during AMMA were both around 2 h
(2.08 and 1.75 h, respectively), theα-pinene/isoprene emis-
sion ratio should be similar to the ambient ratio measured
on the aircraft. However, all the monoterpene/isoprene ratios
from the aircraft were an order of magnitude lower than those
from the ground site in Benin (i.e. Saxton et al., 2007), which
cannot be accounted for by differing atmospheric lifetimes
relative to isoprene. It may be that the ground based measure-
ments are not representative of the wider West African region
due to the inhomogeneity of plant species; this discrepancy
could alternatively arise from a sampling bias in either the
aircraft or ground based measurements; or it may simply be
indicative of the inherent uncertainty associated with the rel-
atively small number of data points available from this type
of sampling from an airborne platform. The range of total
SOA predicted by these estimates based on isoprene and the
three monoterpenes is 0.07–0.24µg m−3, which corresponds
to an under prediction of the measured OA by a factor of 4.5–
15.

Our estimate based on four precursor species should ac-
count for a significant fraction of the total SOA formation
potential from BVOC e.g.α-pinene,β-pinene and limonene
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Table 2. SOA estimates (µg m−3) from Eqs. (2) and (5) using a range of emission ratios (ER). AMMA tubes refers to ambient concentrations
from the adsorbent tubes, though isoprene andα-pinene have very similar 1/e lifetimes under the conditions during AMMA (1.75 h and 2.08 h
respectively) and so the ratio of their concentrations should remain approximately constant from source; the other tubes ratios give an order
of magnitude estimate. SOAtotal is the total SOA predicted using each emission ratio/yield combination and includes the contribution from
isoprene, SOAIso=0.0597±0.0328µg m−3.

Saxton et al. (2007) AMMA Tubes Kesselmeier et al. (2000) Greenberg et al. (2004)

ERα-pinene/isoprene 1.0±0.1 0.1008±0.108 1.14±0.56 0.22±0.058
ERβ-pinene/isoprene 1.0±0.1 0.0504±0.124 0.34±0.18 n/a
ERLimonene/isoprene 2.0±0.2 0.0956±0.105 0.22±1.10 n/a

SOAa
α-pinene 0.0607±0.0395 0.00612±0.0065 0.0692±0.0340 0.0134±0.0035

SOAa
β-pinene 0.0201±0.0131 0.00101±0.0025 0.0068±0.0036 n/a

SOAa
Limonene 0.0980±0.0637 0.00468±0.0051 0.0108±0.0539 n/a

SOAa
total 0.239±0.149 0.0715±0.0470 0.147±0.124 0.073±0.036

Measured/predicteda 4.49±2.80 14.97±9.84 7.303±6.20 14.65±7.29

SOAb
α-pinene 0.537±0.349 0.0541±0.0578 0.612±0.30 0.1181±0.0311

SOAb
β-pinene 0.178±0.116 0.0090±0.0221 0.0605±0.032 n/a

SOAb
Limonene 0.866±0.563 0.041±0.0455 0.0120±0.477 n/a

SOAb
total 1.64±1.06 0.164±0.158 0.744±0.842 0.178±0.064

Measured/predictedb 0.65±0.42 6.52±6.28 1.438±1.63 6.02±2.17

a Indicates use of SOA yields extrapolated from Griffin et al. (1999a) i.e.Yα-pinene=0.0102,Yβ-pinene=0.0034,Ylimonene=0.0082
b Indicates use of SOA yields scaled from i.e.Yα-pinene=0.09,Yβ-pinene=0.030,Ylimonene=0.07

represent 81% of monoterpene emissions on a global ba-
sis (Griffin et al., 1999b). Given that the monoterpene
measurements by PTR-MS were mostly below detection
limit, this contribution cannot be more accurately deter-
mined. Our best estimate from the calculations is likely to
be from the Saxton et al. (2007) emissions data for the rea-
sons discussed above; this predicts a total SOA concentra-
tion of 0.24±0.15µg m−3 compared with the median ob-
served value of 1.07±0.06µg m−3. The measured OM will
inevitably contain a small contribution from pre-existing OM
into which the SOA partitions; an unknown contribution
which is therefore not included in the calculation. Our calcu-
lations are likely to also under-represent the BSOA from iso-
prene and the monoterpenes for the reasons discussed above.

A more recent study (Shilling et al., 2008) suggests SOA
yields fromα-pinene at low mass concentrations may be al-
most an order of magnitude higher (0.09 cf. 0.01) than yields
extrapolated down from higher concentrations, as is routinely
the case in modelling studies. It may be the case that yields
from the other monoterpenes are similarly under represented
by traditional extrapolation methods, so SOA estimates for
the other terpenes are also provided by increasing the yields
from Griffin et al. (1999a) in the same ratio as for theα-
pinene yields discussed above. Using these values gives a
much better agreement between measured and predicted val-
ues (see Table 2). However, previous studies which compare
modelled and measured OM (Heald et al., 2005; Johnson et

al., 2006; De Gouw et al., 2005) did not have this recent yield
data available to them.

5 Discussion

Organic aerosol mass loadings measured from an aircraft
during AMMA provide the first regional measurements
of organic particulate mass over clean forested regions of
sub-tropical West Africa during the growing season. A
median concentration of organic submicron aerosol mass
1.07µg m−3 was observed. The measured values are com-
parable to previous measurements taken in tropical envi-
ronments (e.g. 2.04±0.89µg m−3 in Amazonia (Artaxo et
al., 2002)). Although the concentrations measured in the
African Sahel during the wet season reported in this paper
are somewhat lower than those reported from Amazonia, this
is reflected in lower VOC concentrations than are typical
for Amazonia (2–5 ppb isoprene and more than 100 pptα-
pinene have been reported (Karl et al., 2007; Greenberg et
al., 2004)).

Global model estimates of OM in this region of West
Africa derived from bulk yields and partitioning schemes
cover the range 0µg m−3–3µg m−3 (Chung and Seinfeld,
2002; Tsigaridis and Kanakidou, 2003; Lack et al., 2004).
The Q-AMS derived regional organic mass loadings fall
within the range of estimates from these global model
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simulations, and so appear to be in reasonable agreement,
though as pointed out by Tsigaridis and Kanakidou (2003),
SOA formation pathways and partitioning schemes in mod-
els are very uncertain. However, our bulk yield calculations
of between 0.07–0.24µg m−3 using the BAe-146 VOC data
under predict the observed mass concentrations by a factor
of 4.5–15. This result is similar to the analysis of Volkamer
et al. (2006) who observed OA to be between 5–11 times
greater than predicted OA using similar approaches and the
same yield data as this study. These under predictions from
studies in polluted mid-latitude environments correspond to
photochemical ages of a few hours to a day i.e. for the likely
range of ages sampled during AMMA, and although our es-
timates of SOA formation are somewhat uncertain, our range
of estimates seems to under predict the measured OA to an
extent roughly consistent with polluted environments. The
global model results cited use similar approaches to those
used in Volkamer et al. (2006) and this study, yet do not show
such large underestimates. This points to further systematic
differences between global model estimates and measure-
ments of SOA, most likely caused by incorrect BVOC emis-
sion rates in global models. For example the uncertainty in
emission estimates for isoprene and monoterpenes is thought
to be a factor of three or higher (Guenther et al., 1995).

More recent yield data forα-pinene obtained under atmo-
spherically relevant conditions are much higher and show
considerably better agreement between predictions and mea-
surements (Shilling et al., 2008), particularly if the yields of
the other monoterpenes are increased by the same proportion
as the ratio between the new and oldα-pinene results (see Ta-
ble 2). This highlights the large uncertainties associated with
extrapolating yield data obtained at high mass concentrations
and the need for yield data to be obtained under atmospher-
ically relevant conditions for a much wider range of SOA
precursor species.

Under prediction in both clean and polluted environments
suggests that presence or absence of anthropogenic pollu-
tants isn’t the major factor affecting model accuracy, rather
that the extrapolated yield data on which these predictions
are based may be able to explain a significant fraction of the
discrepancy. Inclusion of yields obtained under more atmo-
spherically relevant conditions may be necessary if predictive
models of OM are to be effective over a range of environ-
ments.
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