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Abstract. The oxidation capacity of the highly polluted ur-
ban area of Santiago, Chile has been evaluated during a sum-
mer measurement campaign carried out from 8–20 March
2005. The hydroxyl (OH) radical budget was evaluated em-
ploying a simple quasi-photostationary-state model (PSS)
constrained with simultaneous measurements of HONO,
HCHO, O3, NO, NO2, j (O1D), j (NO2), 13 alkenes and me-
teorological parameters. In addition, a zero dimensional pho-
tochemical box model based on the Master Chemical Mecha-
nism (MCMv3.1) has been used to estimate production rates
and total free radical budgets, including OH, HO2 and RO2.
Besides the above parameters, the MCM model has been
constrained by the measured CO and volatile organic com-
pounds (VOCs) including alkanes and aromatics. Both mod-
els simulate the same OH concentration during daytime indi-
cating that the primary OH sources and sinks included in the
simple PSS model predominate. Mixing ratios of the main
OH radical precursors were found to be in the range 0.8–
7 ppbv (HONO), 0.9–11 ppbv (HCHO) and 0–125 ppbv (O3).
The alkenes average mixing ratio was∼58 ppbC accounting
for ∼12% of the total identified non-methane hydrocarbons
(NMHCs). During the daytime (08:00 h–19:00 h), HONO
photolysis was shown to be the most important primary OH
radical source comprising alone∼55% of the total initial
production rate, followed by alkene ozonolysis (∼24%) and
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photolysis of HCHO (∼16%) and O3 (∼5%). The calcu-
lated average and maximum daytime OH production rates
from HONO photolysis was 1.7 ppbv h−1 and 3.1 ppbv h−1,
respectively. Based on the experimental results a strong pho-
tochemical daytime source of HONO is proposed. A detailed
analysis of the sources of OH radical precursors has also been
carried out.

1 Introduction

The physical and chemical properties of the atmosphere are
influenced by the presence of trace gases like nitrogen oxides
(NOx) and volatile organic compounds (VOCs). The oxidis-
ing capacity of the atmosphere determines the rate of their
removal (Prinn, 2003), and hence controls the abundance of
these trace gases. Understanding the processes and rates by
which species are oxidized in the atmosphere is thus crucial
to our knowledge of the atmospheric composition of harmful
and climate forcing species. The term “oxidation capacity”,
OC is defined in the current study as the sum of the respec-
tive oxidation rates of the molecules Yi (VOCs, CO, CH4)
by the oxidant X (X=OH, O3, NO3) (Geyer et al., 2001):

OC=

∑
kYi [Y i][X],

wherekYi is the bi-molecular rate constant for the reaction of
Y i with X.

In addition, the concentrations of the oxidant species (O3,
OH, NO3) was also used as important indicators and key

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


2258 Y. F. Elshorbany et al.: Oxidation capacity of Santiago

measure of the atmospheric oxidation capacity (Liu et al.,
1988). However, since the life time of the trace gases is
controlled not only by the oxidant concentration but also by
its second-order rate constant (kYi ), the method of Geyer et
al. (2001) is most suitable to calculate the relative importance
of each oxidant in the current study. Otherwise, O3 (of the
highest concentration among the oxidizing species) would be
always the most important oxidant. Recently, a comparable
method based on the reciprocal of the life time (1/τ ) of the
oxidized species (Yi) was also used to express the total oxi-
dation capacity (Cheng et al., 2008).

The hydroxyl radical (OH) is the primary oxidant in the at-
mosphere, responsible for the oxidation and removal of most
natural and anthropogenic trace gases. In addition, initiat-
ing oxidation by reaction with the OH radical leads to the
formation of harmful oxidants, such as ozone (O3) and per-
oxyacetylnitrate (PAN). Thus, the identification and quantifi-
cation of the different atmospheric OH radical sources and
sinks is of paramount importance. Primary sources of the OH
radical include the photolysis of ozone followed by the sub-
sequent reaction of the excited O1D atom with water, pho-
tolysis of formaldehyde (HCHO) in the presence of nitrogen
oxide (NO), direct photolysis of nitrous acid (HONO) and
the reactions of unsaturated hydrocarbons with O3. Ren et
al. (2003) recently calculated the relative importance of the
above sources of OH in New York and estimated HONO pho-
tolysis contributed up to∼60%. In other field work studies,
unexpected high daytime values of HONO were observed
(e.g. Zhou et al., 2002; Kleffmann et al., 2002, 2005; Acker
et al., 2006 a, b) and new photochemical HONO sources have
been proposed (Kleffmann, 2007), some of which have re-
cently been identified in the laboratory (Zhou et al., 2003;
George et al., 2005; Stemmler et al., 2006, 2007; Bejan et
al., 2006; Li et al., 2008).

Summertime urban OH and HO2 radical budgets have
been evaluated in several field campaigns (e.g., George et
al., 1999; Holland et al., 2003; Ren et al., 2003; Heard et
al., 2004; Volkamer et al., 2007; Emmerson et al., 2007;
Kanaya et al., 2007). In most of these studies, the experi-
mental measurements were complemented with model simu-
lations in order to understand the chemical mechanisms that
control tropospheric urban chemistry. Interestingly, the ur-
ban daytime OH and HO2 radical budgets have been shown
to be better simulated during the summer rather than winter,
especially for high NOx environments. Ren et al. (2006) used
a box model incorporating the Regional Atmospheric Chem-
istry Mechanism, (RACM; Stockwell et al., 1997), which
is based on the lumping technique to simulate radical bud-
gets in New York during a winter campaign carried out in
2004 and obtained a median measured to model ratio of 0.98
for OH. However, the RACM model significantly underesti-
mated HO2, both during day and at night, with median mea-
sured to model ratio of 6.0. Similarly, during the IMPACT
campaign in Tokyo the RACM model reproduced wintertime
OH well but underestimated the HO2 by a median factor of 2.

However, during the summer, the RACM model generally re-
produced the daytime OH and HO2 reasonably well (Kanaya
et al., 2007). For Mexico City, Shirley et al. (2006) reported
a median measured to model OH ratio of 1.07 during the
morning and night and 0.77 during the rush hour using the
RACM model. For HO2, median measured to model ratios
of 1.17, 0.79 and 1.27 were determined during the morning
rush hour, midday and night, respectively. Besides lumped
mechanisms, the more explicit Master Chemical Mechanism,
MCM (http://mcm.leeds.ac.uk/MCM/; Jenkin et al., 1997;
Saunders et al., 2003; Bloss et al., 2005) has been used ex-
tensively to interpret field measurements, carried out under
a variety of conditions, including urban environments (e.g.
Mihelcic et al., 2003; Emmerson et al., 2005a, b, 2007). Dur-
ing the BERLIOZ campaign, which took place in Berlin in
August 1998 (Mihelcic et al., 2003), the hydroxyl and per-
oxy radical (RO2) budgets have been measured and com-
pared to those calculated by a photochemical box model con-
taining the MCM. The modelled OH concentrations were
found to be in excellent agreement with the measurements
under high-NOx conditions (NOx>10 ppbv). The measured
RO2/HO2 ratio was also well reproduced by the model. The
MCM modelled radical concentrations during the TORCH
campaign, which took place∼40 km NE of central London
in the summer of 2003 also agreed well with measurements
with only a 24% and 7% over prediction for OH and HO2,
respectively (Emmerson et al., 2007). During the majority
of the summer campaign studies reported in the literature
the daytime peak OH is well simulated, in the range of (3–
10)×106 molecule cm−3 (Kanaya et al., 2007 and references
therein). However, model OH production rate analysis has
suffered from high uncertainties due to the use of estimated
HONO concentrations rather than accurate direct simultane-
ous measurements (e.g. Heard et al., 2004; Emmerson et al.,
2005b, 2007; Kanaya et al., 2007). Using an MCM con-
strained box model with estimated HONO concentrations,
the diurnally averaged OH concentrations during the summer
of 1999 PUMA field campaigns in Birmingham city centre
was underestimated by a factor of∼2 during the day espe-
cially under high NOx conditions (Emmerson et al., 2005a).
This could potentially be due to an underestimation of day-
time HONO concentrations from using only known gas
phase chemistry (Kleffmann et al., 2005). Thus, other photo-
chemical sources have been proposed and recently identified
in the laboratory, e.g. by the photochemical heterogeneous
conversion of NO2 on natural surfaces (George et al., 2005;
Stemmler et al., 2006, 2007). The net HONO photolysis (de-
fined as the HONO photolysis rate minus the radical loss rate
due to the reaction OH+NO) was not a net source of OH rad-
icals in the atmosphere when the reaction of NO+OH was
assumed as the unique HONO source in Birmingham city
centre (Heard et al., 2004). Emmerson et al. (2005a, 2007)
incorporate a parameterization for the heterogeneous conver-
sion of NO2 into HONO on aerosol surfaces in their MCM
model. As a result, an increase in OH concentration by only
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Table 1. Instrumentations used during the Santiago de Chile field campaign.

Species Method Response time Detection limit

HONO LOPAP-technique (Long-Path-Absorption Photometer) 4 min 3 pptv
HCHO Hantzsch reaction based instrument, Aero Laser 3 min 50 pptv

CH2O analyser (Model AL4001)
NO Chemiluminescence based analyzer with <10 s 400 pptv

molybdenum converter (Model TELEDYNE 200 E)
NO2 DOAS-OPSIS optical system 2 min 0.5 ppbv
Oa

3 Short-path UV absorption (λ=254 nm), 10 s 1 ppbv
from Advanced Pollution Instruments Model 400.

Ob
3 UV absorption based monitor (Dasibi Model 1009-Cp) 10 s 1 ppbv

COa IR absorption based monitor (Interscan 4000) 20 s 1 ppb
PAN GC-ECD (Meteorolgie Consult GmbH) 10 min 25 pptv
j (NO2), j (O1D) Filter radiometers (Meteorolgie Consult GmbH) 1 min –
C3-C10 NMHCs GC-FID analysis (HP Model 6890) following 3 h (day) and 6 h (night) 37 pptv (4–77 pptv)

the US Compendium Method TO-17 (EPA)

a Measured at the Park O’Higgins station (POH) 1.8 km southeast of the USACH measurement site.
b Used to investigate the ozone interferences during the VOC sampling process.

0.03% (Emmerson et al., 2005a) and a net contribution of
HONO to the radical production of 3% during hot and stag-
nant “heatwave” conditions of the TORCH campaign (Em-
merson et al., 2007) were calculated. A similar contribution
of 3% was estimated in Tokyo assuming heterogeneous pro-
duction of HONO by dry deposition of NO2 to the ground
with HONO subsequently produced according to the reaction
2NO2+H2O→HONO+HNO3 (Kanaya et al., 2007). Dur-
ing the LAFRE campaign in California, 1993 (George et al.,
1999), a significant reduction in both modelled OH and HO2
has been observed when heterogeneous HONO formation on
ground surfaces was removed from the model, especially in
the morning. Similarly, in BERLIOZ, the RACM model pre-
dicted only 50% of the measured OH concentrations when
HONO photolysis was switched off in the early morning (Al-
icke et al., 2003). It is clear, therefore, that the simultaneous
measurement of HONO, along side other major radical pre-
cursors, is crucial in the analysis of atmospheric radical bud-
gets (e.g. Ren et al., 2003; Kleffmann et al., 2003; Acker et
al., 2006a, b).

Several studies focusing on air quality issues in Santiago
de Chile have shown that severe air quality problems, includ-
ing the photochemical formation of large amounts of ozone,
PAN and related photooxidants, have a significant impact on
health problems in the city (Rappenglück et al., 2000; Rubio
et al., 2004; Rappenglück et al., 2005). However, none of
these studies have observed the diurnal variation of the im-
portant OH radical precursor HONO.

The work reported here focuses on the analysis of a com-
prehensive suite of data taken during a summertime field
campaign carried out in the city of Santiago de Chile from 8–
20 March 2005. This work constitutes the first detailed eval-
uation of photochemistry in Santiago, Chile that takes into

account all the major primary OH radical sources, namely
the photolysis of HONO, formaldehyde (HCHO) and ozone
(O3) and the dark reactions of ozone with alkenes, in addition
to peroxy radical (HO2 and RO2) recycling reactions. Un-
der the high NOx conditions often experienced in Santiago
(Elshorbany et al., 2009), a constrained photochemical box
model based around the MCM and a simple photo-stationary
steady state (PSS) model were used to evaluate radical bud-
gets and their source apportionment during late summer in
order to understand the photochemistry occurring in such a
highly polluted urban environment as Santiago.

2 Methodology

2.1 Measurement site

The measurements were performed downtown of the city of
Santiago, Chile, on the third floor of the Physics Depart-
ment of the University of Santiago (USACH) and in the Park
O’Higgins station (POH), situated∼1.8 km southeast of the
main USACH measurement site. The city of Santiago de
Chile is located at−33.45◦ latitude and 70.67◦ longitude,
∼550 m above sea level and surrounded by two mountain
ranges, the Andes and the Cordillera de la Costa.

2.2 Measurement techniques

The techniques used to measure the different parameters are
listed in Table 1 with their response times and detection lim-
its. At the USACH site HONO was measured by the sensi-
tive LOPAP (Long Path Absorption Photometer) technique
(Heland et al., 2001; Kleffmann et al., 2002). The LOPAP
instrument was recently intercompared against the DOAS
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technique, both in a smog chamber and in the urban atmo-
sphere. Excellent agreement was obtained under daytime
photochemical smog conditions (Kleffmann et al., 2006), in
contrast to other intercomparison studies (e.g., Appel et al.,
1990; Spindler et al., 2003). The excellent agreement can
be explained by the active correction of interferences and
the use of an external sampling unit, minimizing artefacts
in sampling lines. Potential heterogeneous HONO forma-
tion on the walls of the USACH building on which the sam-
pling unit was fixed (∼130 cm distance), was also investi-
gated. No significant variation of the HONO concentration
was observed when varying the distance of the sampling unit
(20–150 cm) from the wall.

Other measured parameters at the USACH site included
HCHO, NO, NO2, PAN and photolysis frequenciesj (NO2)
and j (O1D). The photolysis frequencies of HCHO and
HONO were calculated from the measuredj (NO2) and
j (O1D) data (Holland et al., 2003). The parameterization by
Holland et al. (2003) cover a variety of meteorological con-
ditions (zenith angle=31◦–90◦, 300–400 DU total ozone, 0–8
octa cloud cover, 6◦–28◦C ambient temperature). In Santi-
ago, the average campaign maximum zenith angle of 32◦,
annual mean (1979–2004) total ozone column of 281±8 DU
(Diaz et al., 2006), clear sky and ambient temperature range
of 12◦–32◦C, lies within the range of meteorological param-
eters used to generate thej -parameterization by Holland et
al., 2003 justifying its use.

O3, CO and meteorological data were obtained from the
POH station. C3-C10 NMHCs were sampled at the USACH
site on adsorption tubes and analyzed by GC-FID analysis
following the US EPA Compendium Method TO-17 (see Ta-
ble 2). The detailed analytical procedure is published else-
where (Niedojadlo et al., 2007). The ambient NMHCs have
been sampled using an automatic system equipped with cal-
ibrated regulated flow controllers and applying an air flow
of 20 ml/min on the adsorbing tubes. After sampling, the ad-
sorption tubes were capped with Parafilm, stored in air sealed
glass tubes in the refrigerator and returned to Germany for
GC-FID analysis. Potential ozone interferences have been
tested in the laboratory by sampling a standard VOC mixture
over the same type of adsorption tubes with and without ad-
dition of ozone at a mixing ratio of 135 ppbv. Sampling peri-
ods of three hours were chosen using NMHCs mixing ratios
corresponding to the minimum observed NMHCs mixing ra-
tios during the measurement campaign. Ozone was prepared
by passing a regulated flow of pure synthetic air through a
mercury UV-lamp based ozoniser followed by a reaction ves-
sel with glass rings cooled with dry ice to 203 K in order to
trap the HOx radicals from the ozonised air. Ozone has been
monitored by a commercial UV absorption based monitor
(Table 1). Only reductions of as low as−8.8% for trans-
2-butene and as high as−29.4% forcis-2-pentene were ob-
served. The average and median O3 values (averaged over
the same time intervals of the VOC samples) were only 26
and 21 ppbv, respectively. Thus, we exclude significant neg-

ative interferences from ozone. This result is in agreement
with the study of Koppmann et al. (1995) who found no
significant interferences from ozone up to mixing ratios of
100 ppbv either using pressurized air samples or cryogeni-
cally collected air samples even at very low VOC concentra-
tions.

2.3 Modelling approach

2.3.1 Simple Quasi-Photostationary State Model, PSS

OH concentrations were calculated with the steady-state ap-
proximation using the radical production rates from HONO,
HCHO and ozone photolysis, alkenes ozonolysis and the rad-
ical loss rate. Under the prevailing high NOx conditions radi-
cal loss is mainly governed by the reactions of OH with NOx
(c.f. George et al., 1999; Ren et al., 2006; Emmerson et al.,
2005b, 2007; Kanaya et al., 2007). During the day, formation
of HONO by reaction of OH with NO is essentially balanced
by photolysis of HONO formed from this reaction. Radical
removal by peroxy-peroxy radical reactions is unimportant
under high NOx conditions (see Sect. 3.3). Thus, the net rad-
ical loss rate can be estimated from the rate of reaction of OH
with NO2:

LR = kNO2+OH[NO2][OH]

The applied steady state approximation can be summa-
rized as follows:

PR=LR.

The total rate of radical initiation, PR, is given by:

PR = POH(prim)−kOH+NO[NO][OH] + PHO2(prim),

for which:

POH(prim)=j (HONO)[HONO]+j (O1D)[O3]8OH+

6kO3+alkene[alkene][O3]8OH,

PHO2(prim)=2j (HCHOradical)[HCHO].

For ozone photolysis8OH (defined here as the fraction
of O1D produced that will react with H2O rather than is
quenched to ground state O3P) was calculated using known
rate constants for O1D quenching and reaction with water in
addition to the measured water concentration. For the alkene
ozonolysis reactions8OH represents the OH yield from the
respective reactions (e.g. Rickard et al., 1999).

Therefore, the steady state OH concentration is given by:

[OH]PSS=PR/(kNO2+OH[NO2]).
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Table 2. List of the VOCs measured during the summer campaign in Santiago de Chile.

MCM Compound name DL (ppbv) Mixing ratio (ppbv)

Max Average Median

∗ propene 0.07 38.8 3.80 1.56
∗ propane 0.07 475 41.8 11.5
∗ i-butane (2-methylpropane) 0.06 18.0 2.95 1.57

1-butene, i-butene 0.20 9.2 2.35 2.04
∗ 1,3-butadien 0.06 0.41 0.15 0.12
∗ n-butane 0.04 18.3 3.89 2.32
∗ trans-2-butene 0.04 0.86 0.18 0.11
∗ cis-2-butene 0.04 0.67 0.16 0.10
∗ 3-methyl-1-butene 0.05 1.22 0.19 0.14
∗ i-pentane (2-methylbutane) 0.06 27.6 5.75 4.08
∗ 1-pentene 0.01 1.77 0.30 0.18

n-pentane, 2-methyl-1-butene 0.06 18.8 2.03 0.82
∗ isoprene 0.02 1.84 0.67 0.51
∗ trans-2-pentene 0.01 1.41 0.24 0.14
∗ cis-2-pentene 0.004 0.74 0.15 0.10
∗ 2-methyl-2-butene 0.04 2.10 0.33 0.20

2,2-dimethylbutane 0.09 5.20 1.07 0.63
cyclopentene 0.02 0.17 0.05 0.04
methyl-tert-butyl ether, 2,3-dimethylbutan, cyclopentan 0.16 5.84 1.28 0.89
2-methylpentane 0.06 14.4 3.11 1.94

∗ 3-methylpentane 0.05 6.09 1.40 0.92
∗ 1-hexene 0.02 0.80 0.20 0.14

n-hexan, 2-ethyl-1-butene 0.06 5.31 1.36 0.94
2,3-dimethyl-1,3-butadiene 0.02 0.15 0.05 0.03
methylcyclopentane, 1-methyl-1-cyclopentene 0.07 6.27 1.36 0.87

∗ 2,3-dimethyl-2-butene 0.02 0.52 0.10 0.06
∗ benzene 0.08 9.22 2.13 1.43

cyclohexane, 2,3-dimethylpentane 0.07 8.07 2.08 1.50
∗ 2-methylhexane 0.04 1.71 0.35 0.22

cyclohexene 0.05 0.39 0.13 0.10
1-heptene 0.02 1.01 0.24 0.17
2,2,4-trimethylpentane 0.03 3.81 0.92 0.68

∗ n-heptane 0.02 2.50 0.55 0.42
1,4-cyclohexadiene 0.04 0.14 0.07 0.06
2,3,4-trimethylpentane 0.03 0.92 0.13 0.05

∗ toluene 0.01 32.7 6.30 4.11
2-methylheptane 0.03 1.46 0.31 0.21
3-methylheptane 0.02 0.57 0.10 0.07
4-methylheptane, 1-methyl-1-cyclohexene 0.06 1.57 0.30 0.19
1-octene 0.03 0.80 0.18 0.14

∗ n-octane 0.02 1.82 0.34 0.23
∗ ethylbenzene 0.02 6.06 1.38 1.14

m-& p-xylene 0.04 22.2 5.14 4.26
∗ styrene 0.03 1.02 0.22 0.16
∗ o-xylene 0.04 7.72 1.81 1.50
∗ α−pinene 0.07 1.95 0.41 0.27
∗ n-propylbenzene 0.02 1.68 0.36 0.26
∗ 4-ethyltoluene 0.01 1.40 0.30 0.21
∗ 1,3,5-trimethylbenzene 0.03 2.79 0.58 0.38
∗ n-decane 0.02 2.94 0.60 0.42

1,2,4-trimethylbenzene, tet. butylbenzene 0.04 6.91 1.42 0.92
∗ 1,2,3-trimethylbenzene 0.01 1.31 0.27 0.17

1,2,3,4-tetramethylbenzene 0.02 5.55 0.43 0.22

∗ Compounds included in the MCM model (see Sect. 3.5).
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Fig. 1. 10 min average data of HONO, NO, CO, HCHO, NO2, O3,
j (NO2) andj (O1D) during the field campaign in Santiago de Chile,
8–20 March 2005.

2.3.2 The Master Chemical Mechanism, MCM

A zero dimensional photochemical box model based on the
Master Chemical Mechanism, MCMv3.1 (http://mcm.leeds.
ac.uk/MCM) has been used to evaluate the radical bud-
gets. MCMv3.1 is a near-explicit chemical mechanism de-
scribing the detailed gas phase tropospheric degradation of
methane and 135 primary emitted NMHCs, which leads to
a mechanism containing ca. 5900 species and 13 500 reac-
tions. The mechanism is constructed according to a set of
rules as defined in the latest mechanism development pro-
tocols (Jenkin et al. 1997; Jenkin et al., 2003, Saunders
et al., 2003; Bloss et al., 2005). The MCM photochemi-
cal box model’s system of simultaneous stiff ordinary dif-
ferential equations (ODEs) was integrated with a variable or-
der Gear’s backward differentiation method (FACSIMILE;
Curtis and Sweetenham, 1987). The model was constrained
with average 10 min values of the following measured pa-
rameters:j (NO2), j (O1D), relative humidity, pressure, tem-
perature, NO, NO2, HONO, CO, HCHO, O3, PAN and 31
NMHCs (see Table 2).j (HONO) andj (HCHOradical) were
parameterized from the measuredj (NO2) andj (O1D) (Hol-
land et al., 2003) and their values have been constrained in
the model. The other photolysis frequencies are parameter-
ized within the model using a two stream isotropic scatter-
ing model under clear sky summertime conditions (Hayman,
1997; Saunders et al., 2003). The photolysis rates are calcu-
lated as a function of solar zenith angle and normalized by
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 Fig. 2. (a)Average diurnal 10 min data of HONO, NO, NO2, PAN,
O3 and HCHO and(b) average diurnal HONO/NOx ratio.

a scaling factor, calculated from the ratio of measured and
model calculatedj (NO2) values, which takes into account
the effects of varying cloud cover and aerosol scattering. A
series of rate of production analyses (ROPA) were carried out
in order to identify the most important photochemical pro-
cesses driving the formation and loss of OH and HO2. The
MCM photochemical model was run for a period of five days,
with the model being constrained with the same measured
campaign average parameters each day, in order to gener-
ate realistic concentrations for the unmeasured intermediate
species. By the fifth day the free radicals in the model have
reached a photostationary state, which has been used for the
data evaluation.

3 Results and discussion

3.1 Measurements results analysis

For the data evaluation, all measurements were averaged over
10 min time intervals. The trace gases data of the whole cam-
paign are shown in Fig. 1 while the 10 min average diurnal
variation profiles are shown Fig. 2a. During the campaign
sunny weather conditions were prevailing with temperatures
ranging from 285 K to 305 K during the daytime. The wind
speed was relatively low ranging from 0.2 m s−1 to 4.1 m s−1,
and the average relative humidity was 49%, reaching up to
100% during the night. The maximum HONO mixing ratio
during rush hour reached∼7 ppbv on the 10th March at∼9 h.
For the campaign averaged data maximum and minimum
HONO mixing ratios of 3.7 ppbv at around 8 h and 1.5 ppbv
around 17 h were obtained. For CO and NO a similar rush
hour peak at∼9 h on the 10th March was also observed with
maximum concentrations of 3.6 ppmv and 480 ppbv, respec-
tively.

The average daytime rush hour maxima for CO and NO
were 1.38 ppmv and 180 ppbv, respectively (see Fig. 2a).
The NO2 maximum was shifted later owing to small di-
rect emissions and formation by the reaction of NO with
peroxy radicals and O3. From the slope of the correlation
plot of HONO against NOx a mean HONO/NOx ratio of
0.008 was estimated during the rush hour peaks, which is
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in excellent agreement with direct tunnel measurements in
Europe (Kurtenbach et al., 2001).

PAN, HCHO and O3 showed typical diurnal variations
with average daytime maxima at about 14 h of 3 ppbv, 7 ppbv
and 65 ppbv, respectively, demonstrating their photochemi-
cal formation. However, from the fast increase of HCHO in
the early morning, when the Ox (NO2+O3) increase was still
small, a significant contribution from direct emissions was
also identified (see Sect. 3.8.1). In addition to the maximum
at ∼14 h, the ozone diurnal variation profile is characterized
with an afternoon shoulder at 18 h, which has become a typi-
cal feature under photochemical smog conditions in Santiago
(Rappengl̈uck et al., 2000, 2005). The daytime HONO con-
centrations are significantly higher than in other polluted ur-
ban areas such as New York, Milan or Rome, where the min-
imum mean daytime concentrations were 0.3–0.6 ppbv (Ren
et al., 2003; Kleffmann et al., 2006; Acker et al., 2006b).
The high mixing ratios and the daytime maximum of the
HONO/NOx ratio (see Fig. 2b) in Santiago points to a very
strong daytime HONO source.

53 measured NMHCs have been identified (see Table 2).
The remaining 127 unidentified NMHCs represents in aver-
age about 43% of the total measured NMHCs. Total average
measured NMHCs of∼900 ppbC and known average mea-
sured NMHCs of∼490 ppbC were determined, which cor-
respond to average diurnal VOC/NOx ratios of 14 and 7, re-
spectively. According to the VOC/NOx ratio rule (Sillman,
1999) the first value corresponds to a NOx-sensitive pho-
tochemical regime while the second correspond to a VOC-
sensitive photochemical regime. However, the VOC/NOx
ratio may not correctly represent the sensitivity of a photo-
chemical regime. An explicit VOC-NOx-O3 sensitivity anal-
ysis showed that the photochemical regime in Santiago is
clearly VOC sensitive (Elshorbany et al., 2009). Alkanes
have the highest contribution (ppbC) to NMHCs (56%) fol-
lowed by aromatic hydrocarbons (32%) and finally alkenes
(12%). The BTEX compounds (benzene, toluene, ethylben-
zene and xylenes) contribute∼80% of the total aromatic hy-
drocarbons and∼25% of the total NMHCs.

3.2 Oxidation capacity

The loss rate of the VOCs and CO due to reactions with
OH, O3 and NO3 has been calculated using the MCM
model. The average oxidation capacity of OH, O3 and
NO3 radicals through the entire day was 3.7×107, 4.3×106

and 1.2×105 molecule cm−3 s−1 representing 89.4, 10.3 and
0.3% of the total oxidation capacity, respectively. Clearly,
the OH radical was the dominant oxidant during daytime
contributing by a maximum of 3.2×108 molecule cm−3 s−1

(94%) to the total oxidation capacity at about 15 h. The
ozone contribution to the oxidation capacity during daytime
ranged from 6% to 11% while it reached>50% during the
night, mainly due to alkene ozonolysis. In general, the nitrate
radical had a negligible contribution during both the day and
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Fig. 3. (a) Production and destruction rates of OH and HO2. (b)
Ratio of the rates of production to destruction of OH and HO2.

at night, which was mainly caused by the high NO concen-
trations during the campaign. The modelled NO3 concentra-
tions showed two peaks of 1.0×106 molecules cm−3 at about
13 h and of 8.4×105 molecules cm−3 at 19 h. The total num-
ber of the depleted molecules per day due to oxidation by
OH, O3 and NO3 were 6.4×1012, 7.4×1011 and 2.0×1010

molecules cm−3, respectively. Accordingly, the OH radical
is the driving force of the oxidation capacity of the atmo-
sphere in Santiago and thus, only the sources and sinks of
the OH radical are further considered in this study.

3.3 Radical production and destruction rates

The total production and destruction rates of OH and HO2
calculated by the MCM model, constrained to campaign av-
eraged data, are shown in Fig. 3a with the ratios of the rad-
ical production/destruction shown in Fig. 3b. The ratio was
around unity throughout the day for the hydroperoxy radical
whilst the ratio for the hydroxyl radical reaches a maximum
of ∼1.7 during the early morning, which may be caused by
the photolysis of night time accumulated HONO.

The high total production and destruction rates are dom-
inated by the recycling reactions of the peroxy radicals
(RO2+NO and HO2+NO). The main loss of RO2 is due to
its reaction with NO with an average daytime loss rate of
∼34.6 ppbv h−1, which accounts for most of the HO2 pro-
duction. The next most important HO2 sources are the
reactions of OH with CO and HCHO with average day-
time production rates of∼0.5 and∼1.1 ppbv h−1, respec-
tively. HCHO photolysis accounts for the PHO2(prim) (see
Sect. 2.3.1) with an average daytime production rate of
0.54 ppbv h−1 (Figs. 4b and 5). In contrast to the other sec-
ondary oxygenated VOCs (OVOCs), HCHO is considered
here as a net source of HO2 (PHO2(prim)) since on aver-
age only 28% of the HCHO is formed photochemically (see
Sect. 3.8.1). The main destruction route of HO2 is through
its reaction with NO reaching rates up to 71 ppbv h−1, with
a daytime average of∼28.4 ppbv h−1 which corresponds to
∼90% of the total destruction rate, and is comparable to
those of the TORCH,∼99% (Emmerson et al., 2007) and
BERLIOZ campaigns,>80% (Mihelcic et al., 2003). The
loss rates due to the HO2 self-reaction and its cross-reactions
with RO2 are very small with daytime averages of<0.01 and

www.atmos-chem-phys.net/9/2257/2009/ Atmos. Chem. Phys., 9, 2257–2273, 2009



2264 Y. F. Elshorbany et al.: Oxidation capacity of Santiago

-80

-40

0

40

80

L O
H
(V

O
C

+O
H)

, 
P O

H
(H

O
2→

O
H)

re
cy

cl
ed

 

[p
pb

v 
h-1

]

-10

-5

0

5

10

L O
H
 (O

H 
+ 

N
O

2),
 P

R

 [p
pb

v 
h-1

]

POH (HO2 + NO)
LOH (VOC + OH)
LOH (OH + NO2)
Reihe4

a

-80

-40

0

40

80

L R
O

2 (
RO

2+
NO

), 
L H

O
2 (

H
O

2+
NO

) [
pp

bv
 h

-1
]

-4

-2

0

2

4

P
H

O
2 (

CO
, H

C
HO

+O
H

),
 P

H
O

2(H
C

HO
+h

ν)
 

[p
pb

v 
h-1

]

LHO2 (HO2+NO)
LRO2 (RO2+NO)
PHO2(HCHO+hv)
PHO2 (CO+OH)
PHO2(OH+HCHO)

b

0

20

40

60

80

100

120

00:00 06:00 12:00 18:00 00:00

time

O
H 

R
ea

ct
iv

ity
 [S

-1
] c

POH(HO2→OH)recycled

LOH(VOC+OH)
LOH(OH+NO2)
PR

LHO2
(HO2+NO) 

LRO2
(RO2+NO) 

PHO2
(HCHO+hν) 

PHO2
(CO+OH) 

PHO2
(OH+HCHO) 

 

Fig. 4. Production and destruction rates of(a) OH and(b) HO2 and
c) modelled OH reactivity.

 

OH  

RO2

HONO+hν: 5.6 
Alkenes+O3: 0.58 
O3+hν:  0.27 

NO: 4.2 
NO2: 3.4 

VOC: 24.9 

CO: 0.48 
HCHO: 1.1 
OVOCs: 1.95 

HO2 

NO: 28.4 

others, mainly, sec. 
alkenes+O3: 1.1 

LOH(VOC+OH):
28.4

POH(sec.): 
28.9

HCHO+hν: 0.54 
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slightly lower than in the text because [HONO]PSS is calculated
here using [OH] calculated by the MCM (∼4% higher).

0.02 ppbv h−1, respectively, in agreement with other urban
studies (e.g., George et al., 1999; Ren et al., 2006). The
main OH loss route is through its reaction with hydrocar-
bons, followed by reactions with NO and NO2. The rate of
OH destruction due to hydrocarbon oxidation depends on the
detailed chemical mechanism and can be estimated using the
following relationships:

LOH(OH + VOC) ≈ LOH(total) − kNO2+OH[NO2] (1)

[OH] − kOH+NO[NO][OH]

or

LOH(OH + VOC) ≈

∑
ki[VOCi][OH] (2)

where LOH (total) is the total loss rate as calculated by the
MCM model andki represents the bimolecular rate constant
for OH reaction with the corresponding VOC.

If Eq. (2) is used to calculate LOH due to reactions with
the measured VOCs only, the OH loss rate will be underesti-
mated since reactions with secondary VOC products are not
included. Consequently, HO2 as a net source of OH will be
over estimated. Relationship (1) takes into account the de-
tailed degradation of the VOCs due to reactions with OH, as
calculated by the MCM photochemical box model, which in-
cludes the secondary VOC oxidation products. The average
daytime (08:00 h–19:00 h) loss of OH radicals by VOC reac-
tion calculated employing Eq. (2) is about 6 ppbv h−1 while
that obtained using Eq. (1) is about 28.4 ppbv h−1, represent-
ing about 79% of the total OH loss. The fraction of OH loss
by VOC reactions is similar to that calculated for Berlin, 50–
70% (Mihelcic et al., 2003) and Mexico City, 72% (Shirley
et al., 2006).

OH production is dominated by the recycling reaction of
HO2 with NO, POH(HO2→OH)recycled, for which:

POH(HO2→OH)recycled=POH(HO2→OH) − PHO2(prim),

where:

POH([HO2→OH)=kHO2+NO[HO2][NO].

POH(HO2→OH)recycled reached a maximum produc-
tion rate of 70.5 ppbv h−1 with a daytime average of
∼27.8 ppbv h−1 (Fig. 4a). The POH(HO2→OH) route ac-
counts for∼80% of the total OH radical production. This
value is comparable to that simulated during TORCH, 80%
(Emmerson et al., 2007) and BERLIOZ,>70% (Mihelcic
et al., 2003) and Mexico City,>80% (Shirley et al., 2006
and Sheehy et al., 2008). However, the oxidation of hydro-
carbons results in the production of other radical precursors
namely, O3 and HCHO as by-products in addition to alkene
ozonolysis as a subsequent process. These processes, in ad-
dition to HONO photolysis, constitute the net radical produc-
tion term, PR as shown in Fig. 4a. The rest of the OH produc-
tion term (1.1 ppbv h−1) is mainly due to the ozonolysis of
the secondary alkenes produced from the oxidation process
which are not constrained by the measurements (as illustrated
in Fig. 5). The balance between POH(HO2→OH)recycledand
LOH(OH+VOC) (see Sect. 3.5), results in the NO2+OH (ter-
mination) reaction becoming the net dominant sink for OH
with a maximum loss rate of 6.4 ppbv h−1 and a daytime av-
erage loss rate of∼3.4 ppbv h−1 (see Fig. 5). An accompa-
nying sensitivity analysis showed that only under very low
NOx conditions reaching<5% of the current levels HO2 re-
cycling through its reaction with NO could be a limiting fac-
tor (Elshorbany et al., 2009). Under these conditions hydro-
carbon oxidation could be a net sink for OH radicals, which
in turn will also lead to a reduction in the OH sources, i.e. O3
and HCHO photolysis as well as alkenes ozonolysis.
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3.4 OH reactivity

The OH reactivity defined as the reciprocal of the OH radical
lifetime has been calculated as LOH (total)/[OH]. The mean
day average modelled OH reactivity is about 42 s−1 reach-
ing a maximum of 105 s−1 during rush hour (Fig. 4c) and a
night-time peak of 60 s−1. These numbers are slightly higher
than the average and night-time peaks measured in Mexico
City of 25 and 35 s−1, respectively, while the maximum mea-
sured OH reactivity in Mexico City of 120 s−1 exceeded that
of Santiago (Shirley et al., 2006). Sheehy et al. (2008) have
also reported a modelled total reactivity of 110 s−1 during the
morning rush hour and 45–50 s−1 at night in Mexico City.
Both, Ren et al. (2006) and Yoshino et al. (2006) reported
OH reactivities in the range of 10–100 s−1 in New York City
and Tokyo, respectively. The diurnal variation of the mod-
elled OH reactivity (Fig. 4c) is characterized by morning rush
hour and night peaks in agreement with studies of Ren et
al. (2006) and Shirley et al. (2006). Underestimation of the
OH reactivity using relationship(2) has been previously ob-
served when compared with measured OH reactivity in dif-
ferent field measurements (Di Carlo et al., 2004; Yoshino et
al., 2006; Ren et al., 2006 and references therein). It is worth
mentioning that the OH uptake on aerosol surfaces and the
uncertainty of the rate coefficient of (k(NO2+OH)) could not
account for the missing OH reactivity in previous field mea-
surements (Yoshino et al., 2006).

3.5 Radical propagation

Although hydrocarbon oxidation consumes most of the OH
radicals (LOH(OH+VOC)=28.4 ppbv h−1 on average), it also
regenerates these radicals through the secondary production
of OH, POH (sec.), (28.9 ppbv h−1) given by the sum of
POH(HO2→OH)recycled(27.8 ppbv h−1) and other secondary
sources of 1.1 ppbv h−1 (mainly, secondary alkenes+O3, see
Fig. 5). This result is in good agreement with the study of
Emmerson et al. (2007) for which a similar balance was re-
ported for stagnant “heatwave” periods during TORCH 2003,
which were associated with high pollutant concentrations,
low wind speed and high temperatures, which is probably
similar to the situation in Santiago. On the contrary, for
lower pollutant concentrations, OH→RO2 and HO2→OH
were not balanced (Emmerson et al., 2007).

While all the measured hydrocarbons were quantified, not
all could be defined (see Sect. 3.1). In addition, not all de-
fined hydrocarbons could be included in the MCM model
because either some of these compounds were measured as
a mixture of two compounds (or more) or not defined in the
MCM (see Table 2). Thus, to further investigate the recycling
process, an additional MCM model scenario has been run, in
which the concentrations of all aromatic hydrocarbons and
alkanes in addition to isoprene and propene have been in-
creased by a factor of 2 while the rest of alkenes have been
left unchanged. The reason for including only isoprene and
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propene is because of their relatively high reactivity with OH
but their low potential for OH production through ozonoly-
sis (see Sect. 3.8.2). Only∼1% increase in the modelled
OH concentration was observed for this additional scenario.
In addition, although the fluxes POH(HO2→OH)recycledand
LOH(OH+VOC) increased by almost a factor of 2, they were
still balanced. These results clearly demonstrate that the
main net radical sources and sinks were not affected by the
VOC level and that the secondary radical sources (e.g. OVOC
photolysis) and sinks (e.g. RONO2) are included in the re-
cycling process, i.e. do not add to the net initiation sources
or termination reactions. In the main, this can be explained
by the high NO concentrations during daytime in Santiago
and the fast recycling through the reactions RO2+NO and
HO2+NO.

The high recycling efficiency of the peroxy radicals can
be demonstrated by the relatively low HO2/OH ratio eval-
uated by the MCM model (see Fig. 6a). The low maxi-
mum in the HO2/OH ratio of∼11 is typical for highly pol-
luted conditions (e.g. Mihelcic et al., 2003) and implies a
high recycling efficiency towards OH. The RO2/HO2 ratio
(Fig. 6b) of 1–1.5 is similar to that reported in Berlin with
a maximum modelled ratio of 1.3 (Mihelcic et al., 2003)
but much lower than that of 3.9 calculated for the TORCH
campaign (Emmerson et al., 2007). While the RO2/HO2
and HO2/OH ratios both reach a minimum in the morning at
about 09:30 h, the HO2/OH ratio reaches its afternoon maxi-
mum at about 14:30 h when the NO levels reach a minimum.
The average daytime maximum HO2 radical concentration
of 6.3 pptv (see Fig. 7a) is very similar to that measured in
Tokyo, 2004 (Kanaya et al., 2007). The average daytime
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maximum total peroxy radical concentration of 15 pptv is
relatively low when compared with other studies (Mihelcic
et al., 2003; Shirley et al., 2006) and can be explained by
the high NO concentrations in the city of Santiago. This is
also in agreement with the expected anti-correlation between
the HO2/OH ratio and NO as shown in Fig. 7b in agreement
with other studies (e.g. Emmerson et al., 2007 and references
therein).

3.6 Net radical sources

Evaluation of the total rates of radical initiation and termina-
tion required a simple steady state approach (see Sect. 2.3.1)
that takes into account only the net radical sources and sinks.
The net photolysis of HONO, HCHO, ozone and the reac-
tions of ozone with alkenes are considered as initiation re-
actions while reaction of the OH radical with NO2 is the
main termination reaction. According to this assumption,
the radical production rates, PR, of the main corresponding
species were evaluated with the same rate constants used in
MCMv3.1. The average absolute and relative diurnal contri-
butions to radical production are shown in Fig. 8a and b re-
spectively. For daytime conditions (08:00 h–19:00 h) HONO
photolysis has by far the highest contribution of∼55% fol-
lowed by alkenes ozonolysis (∼24%), HCHO photolysis
(∼16%) and ozone photolysis (∼5%).

The high relative contribution of HONO is in excellent
agreement with other recent studies (Ren et al., 2003, 2006;
Kleffmann et al., 2005; Acker et al., 2006 a, b), in which an
integrated contribution of up to 56% was reported. For av-
erage daytime conditions (08:00 h–19:00 h), high net mean
and maximum OH production rates by HONO photolysis of
1.7 ppbv h−1 and 3.1 ppbv h−1, respectively, have been de-
termined, the latter being even higher than the∼2 ppbv h−1

reported by Ren et al. (2003) for New York City. Only in the
study of Acker et al. (2006b) was a higher maximum OH
production rate by HONO photolysis of up to 6 ppbv h−1

reported for the city of Rome. However, this number is
an upper limit since in their estimations the back reaction
of NO+OH was not considered. During the morning, for
which the maximum production rate was reported by Acker
et al. (2006 b), high NO concentrations can especially lead
to a strong overestimation of net OH production rates (see
Sect. 3.8.3). On a 24-h basis, HONO photolysis was also the

dominant radical source contributing∼52% to PR followed
by alkene ozonolysis,∼29%, HCHO photolysis∼15% and
ozone photolysis∼4%. During almost the entire daytime
the HONO photolysis contribution was higher than any other
primary source except in the early evening when the con-
tribution from alkene ozonolysis starts to dominate. This is
caused by the decreasing light intensity with the ozone con-
centrations remaining high. In the early morning, the photol-
ysis of HONO is the dominant source representing∼80% of
the total radical budget. This is due to its low dissociation en-
ergy threshold and the high concentrations accumulated dur-
ing night-time.

A high morning peak production rate that slows down dur-
ing the day has been previously observed in Los Angeles,
Milan, Pabstthum (downwind of Berlin) and Mexico City
(George et al., 1999; Alicke et al., 2002, 2003; Volkamer et
al., 2007, respectively). However, in contrast to these stud-
ies, where the net OH production was very low in the af-
ternoon, the relative contribution of the OH production by
HONO photolysis never falls below 40% for Santiago (see
Fig. 8b). This high daytime contribution of HONO is in good
agreement with other recent studies under urban conditions
(Ren et al., 2003; Acker et al., 2006b). The reason for the
difference between the two sets of studies in which the con-
tribution of HONO to afternoon radical production is either
significant or negligible is still unclear. One potential expla-
nation would be an overestimation of HONO due to inter-
ferences and sampling artefacts for all studies, in which wet
chemical instruments were used (see Kleffmann and Wiesen,
2008). However, the LOPAP instrument used in the present
study corrects for interferences and was successfully vali-
dated against the DOAS technique in a recent urban study
in Milan (Kleffmann et al., 2006). In addition, a simple PSS
analysis of the HONO data from the Milan campaign showed
that HONO was also a strong net source of OH radicals dur-
ing daytime, a result confirmed by the parallel co-located
DOAS measurements (Kleffmann et al., 2006). This result is
in contradiction to other DOAS measurements carried out at
the same place under similar meteorological conditions and
time of the year (Alicke et al., 2002). The reason for this dif-
ference is still unclear. Another explanation for the different
daytime contributions of HONO in different studies may be
the different sampling altitudes and strong vertical gradients
during daytime. However, in the study of Alicke et al. (2002)
the light path of the DOAS was even lower than the sam-
pling height during the present study and no gradients were
observed during daytime (Stutz et al., 2002). In addition,
in the present study no horizontal gradients were observed
towards the wall of the building on which the external sam-
pling unit was fixed, excluding strong local wall sources. In
conclusion, the reason for the different daytime contribution
of HONO to the OH production in different studies remains
unclear. The high contribution of HONO observed in the
present study may be explained by the unique geographical
situation of Santiago under very high pollution levels.
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Fig. 10. Correlations between the radical production rate, PR and
(a) j (NO2) and(b) j (O1D).

The average diurnal variation of the OH concentration
calculated by both the MCM and PSS models are shown
in Fig. 9. The maximum estimated OH concentrations
of 1.4×107 molecules cm−3 occurs approximately one hour
after the maximum inj (O1D). Using different simplified
photo-stationary state approaches, Rappenglück et al. (2000)
and Rubio et al. (2005) estimated much lower values
of ∼2.6×106 and ∼8.8×106 molecules cm−3, respectively.
Possible reasons for these differences are that Rappenglück
et al. (2000) did not consider HONO photolysis and alkenes
ozonolysis while Rubio et al. (2005) did not consider alkenes
ozonolysis.

The excellent agreement between the OH concentration
profiles evaluated by both the MCM and PSS models shows
that the major OH radical sources and sinks are included in
the PSS model and that the sinks OH→RO2 are balanced
with the sources RO2→OH.

3.7 Correlation of OH with j(O 1D) and j(NO2)

In spite of the complexity of the mechanisms controlling OH
concentrations, the OH correlation withj (O1D) has shown
to have a linear pattern in both urban and rural environ-
ments and for long and short time periods (Rohrer et al.,
2006, Kanaya et al., 2007). For Santiago, the calculated
OH radical concentration also correlates well withj (O1D)
(R2=0.54), andj (NO2) (R2=0.56). An even stronger cor-
relation between the measured daytime OH andj (NO2) has
been obtained in other studies (e.g. Kanaya et al., 2007 and
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Fig. 11. (a) HCHO source apportionment,(b) Photochemical
HCHO simulated with MCM and calculated with O3 tracer.

references therein). In addition, a better correlation between
the total rate of radical initiation, PR, andj (NO2) compared
to the correlation withj (O1D) was observed in the present
study, especially for lowj -values in the morning and evening
(see Fig. 10a and b). This can be explained by the much
broader diurnal profile ofj (NO2) compared toj (O1D). The
results demonstrate the importance of the UV-A rather than
UV-B region for the production of OH during daytime which
is dominated by the daytime production of HONO.

3.8 Source apportionments of the main OH radical pre-
cursors

3.8.1 Formaldehyde (HCHO) contribution

HCHO is a main photochemical oxidation precursor con-
tributing∼16% of the total primary radical sources, PR, dur-
ing the daytime in Santiago. HCHO is both primarily emitted
and produced photochemically from the oxidation of VOCs
(Friedfeld et al., 2002; Garcia et al., 2006). In this study, we
have used O3 and NOx as HCHO tracers for which NOx has
been assumed as an indicator for primary HCHO resulting
from direct emissions and O3 as a photochemical indicator.
The measured HCHO was described by:

[HCHO]measured=βo+β1×[O3]+β2×[NOx]

whereβo is the background HCHO (BKG), which stands
here for the residual fraction of HCHO that can not be ac-
counted as photochemical or primary, and the factorsβ1 and
β2 are the average weighted slopes of HCHO to O3 and NOx,
respectively. For the whole campaign, values ofβ1=0.062
andβ2=0.018 ppbv/ppbv, respectively were determined. The
photochemically formed HCHO (PHOT) comprises up to
>70% of the observed HCHO in the afternoon (Fig. 11a).
In contrast, during the early morning rush hour the primary
HCHO (traffic) comprised up to 90% (Fig. 11a). Averaged
on a daily basis,∼34% of the measured HCHO is due to di-
rect emissions while photochemical and background HCHO
account for∼28 and∼38%, respectively. The value of the
direct emitted fraction is very similar to the 32±16% pre-
viously reported by Rubio et al. (2006) while the sum of
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the photochemical and background fractions is similar to the
secondary fraction reported during the summer in Santiago,
79±23% (Rubio et al., 2006) and London, 74% (Harrison
et al., 2006). Since only 28% of the HCHO is photochem-
ically formed as a result of hydrocarbon oxidation, HCHO
was considered as a net source of HO2 (PHO2(prim)) in the
present study.

Photochemical HCHO production has also been simulated
using the MCMv3.1 photochemical box model constrained
with all measured trace gases including the NMHCs except
the measured HCHO. The photochemical HCHO calculated
using O3 as tracer matched well that calculated by the MCM
model with a gap in the late afternoon (see Fig. 11b). This
gap however, is due to the afternoon ozone shoulder, which
has become a typical feature during photochemical smog
episodes in Santiago de Chile (Rappenglück, 2000, 2005).
Primary HCHO starts to build up in the early morning at
about 06:30 h, nearly one hour before sunrise, and becomes
the dominant source until∼09:00 h. The photochemical for-
mation of HCHO follows the light intensity, and starts to in-
crease nearly an hour after the sunrise, becoming dominant
at around∼13:00 h and reaching a maximum at∼16:00 h
nearly 3 h after the maximum inj (NO2). The photochemi-
cal HCHO contribution starts to decline at∼19:00 h, about
3 h after thej (NO2) starts decreasing, while the primary
HCHO turns again to be the dominant source until 02:00 h
due to night time emissions. The average background base-
line of HCHO is less than 2 ppbv representing about 20%
of the total HCHO throughout the day (red dotted line in
Fig. 11a). The baseline of the background determines the
average HCHO background values during the early morning
and afternoon and is in agreement with other studies (Garcia
et al., 2006). However, unpredicted high background con-
centrations of HCHO, reaching a maximum of up to 5 ppbv
at ∼10:00 h, have been evaluated. One explanation is an
underestimation of photochemical produced HCHO by the
use of O3 as tracer, since photochemically produced O3 is
first efficiently titrated by the morning rush-hour NO. In this
case, photochemical HCHO would become even more im-
portant after∼09:00 h. The use of Ox (O3+NO2) as tracer
was not possible, since NO2 is also linked to direct emis-
sions (Carslaw and Beevers, 2005). Another explanation for
the high HCHO background peak may be direct HCHO emis-
sions that are not traced by NOx (Garcia et al., 2006). These
emissions should then however, be limited to the time period
09:00 h–14:00 h (see Fig. 11a), which is unreasonable. Fi-
nally, the high background HCHO could also be caused by
mixing of surface air masses with the residual layer in the
morning when the boundary layer height is increasing. The
concentration of HCHO in the residual layer could remain
high from the previous day. Rappenglück et al. (2005) has
also observed a similar background carbonyl peak at noon-
time in Santiago.

The contribution of each of the VOC classes (alkenes,
alkanes, aromatics) to the photochemically formed formalde-
hyde has been determined by the MCM model. As expected,
the alkenes are the dominant photochemical precursor con-
tributing alone more than 70%, followed by aromatics, 18%,
and alkanes, 12%. These contributions are in good agree-
ment with those reported in Mexico City (Volkamer et al.,
2007). Of the alkenes, oxidation of isoprene contributes
alone about 23% to the photochemical produced HCHO,
propene 11% andα-pinene 9%. From the aromatics class,
1,3,5-trimethylbenzene represents 6% followed byortho-
xylene, 4%, and toluene, 3%. Of the alkanes, 2-metylbutane,
decane and 3-methylpentane are the major sources contribut-
ing to about 3%, 2% and 1.6% respectively. OH is the
dominant oxidant responsible for nearly 85% of the total
HCHO produced by the oxidation of hydrocarbons followed
by alkene ozonolysis, 14%. The contribution of NO3 was
found to be negligible.

3.8.2 Alkene ozonolysis contribution

Unlike the other OH radical sources, alkene ozonolysis can
occur at night as well as during the day (Paulson and Or-
lando, 1996; Johnson and Marston, 2008). In this study,
the ozonolysis of alkenes was found to be the second most
important radical initiation source after HONO photolysis,
accounting for 29% of the OH formed on 24-h basis. Al-
though their total concentrations are only∼19% of the to-
tal measured alkenes, internal alkenes contribute 86% to the
total alkene OH radical production, POH (alkenes) given by
6kO3+alkene[alkene][O3]8OH (see Sect. 2.3.1), and nearly
21% to the total primary radical production, PR, as shown
in Fig. 12a. The order of efficiency in OH production from
the reactions of ozone with alkenes is:

internalalkenes>cycloalkenes>terminalalkenes.

Among the internal alkenes, 2-methyl-2-butene and 2,3-
dimethyl-2-butene have the highest contributions to POH
(alkenes) with 37% and 33%, respectively (see Fig. 12b). Cy-
cloalkenes are represented byα-pinene alone and contribute
about 6.6% to the total alkene concentration,∼9% to total
alkene OH production and∼2% to PR. The other measured
cycloalkenes are not yet included in the MCM. Terminal
alkenes, while representing 75% of the alkenes concentra-
tion, contribute only∼5% to the total alkene OH production
rate and about 1% to PR (Fig. 12a).

3.8.3 Contribution of HONO during daytime

As already discussed, over the last few years it has been
demonstrated that the contribution of nitrous acid to the pri-
mary radical production, PR, has been frequently underesti-
mated (e.g. Ren et al., 2003; Kleffmann et al., 2005; Acker et
al., 2006a). High measured daytime concentrations point to
an additional strong HONO source (Kleffmann, 2007), for
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which several photochemical reactions have recently been
proposed from laboratory studies (Zhou et al., 2003; George
et al., 2005; Bejan et al., 2006; Stemmler et al., 2006, 2007).

The photostationary state concentration of HONO,
[HONO]PSS, was calculated from the known gas phase
chemistry by the following equation:

[HONO]PSS=kOH+NO[OH][NO]/ (j (HONO)

+kOH+HONO[OH]) .

On average, [HONO]PSSwas found to account for about
69% of the observed HONO concentration reaching its maxi-
mum contribution during the rush hour peak time at∼10:00 h
coinciding with the NO peak. During the early afternoon
(12:30 h–15:00 h), when the absolute production rate of OH
by HONO photolysis was highest, the PSS contributed on
average∼66% of the measured HONO. Thus, one reason for
the extreme high HONO daytime concentrations observed is
the daytime production of HONO by the gas phase reaction
of NO+OH caused by the very high levels of OH and NO.
However, this reaction and the uncertainty in the PSS con-
centration by only gas phase chemistry (see below) cannot
explain the measured daytime values of HONO alone. If the
heterogeneous dark conversion of NO2 (see Sect. 3.8.4) is
included, the PSS increases by only 4% during noon, thus,
an additional daytime source of HONO is needed. The most
important uncertainty in the calculation of the PSS concen-
tration besides the measured [NO], [HONO] andj (HONO)
values is modelled [OH]. However, an average maximum OH
concentrations of 2.2×107 molecules cm−3, which is about

155% of the modelled OH, is required to get [HONO]PSS
equal to measured values. The OH simulated by the MCM
model was validated through different field intercomparisons
and showed excellent agreement with that measured, espe-
cially under such high NOx conditions (Mihelcic et al., 2003;
Sheehy et al., 2008). Recently, Sheehy et al. (2008) reported
maximum OH over prediction by the MCM of 20% during
afternoon. In contrast, for Santiago an under prediction of
the modelled OH level by∼55% would be necessary to ex-
plain the daytime concentrations of HONO. Therefore, addi-
tional average daytime HONO sources of 1.7 ppbv h−1 are
necessary. These additional daytime HONO sources become
obvious from the diurnal variation of the HONO/NOx ra-
tio (Fig. 2 b). While the night-time behaviour, with a lin-
ear increase of the HONO/NOx ratio from 2–5%, is typical
for urban conditions and can be explained by known emis-
sion and heterogeneous conversion of NO2 on ground sur-
faces (Alicke et al., 2002; Kleffmann et al., 2002, 2003; Vo-
gel et al., 2003), the second daytime maximum, reaching al-
most 8%, has not been observed in our previous urban stud-
ies in such a pronounced manner. A daytime maximum un-
der urban conditions was however observed for the city of
Rome (Acker et al, 2006b) and is also typical for remote and
mountain site measurements (see e.g., Huang et al., 2002;
Kleffmann et al., 2002; Acker et al., 2006a, Kleffmann and
Wiesen, 2008). A daytime maximum in the HONO/NOx ra-
tio can only be explained by a very strong additional photo-
chemical HONO source. Three photochemical mechanisms
were identified recently, two of them being well correlated
to j (NO2) (George et al., 2005; Bejan et al., 2006; Stemm-
ler et al., 2006, 2007), while the photolysis of nitric acid
(Zhou et al., 2003) would better correlate toj (O1D), caused
by the much lower wavelength range of the nitric acid pho-
tolysis. This was tested by plotting the campaign averaged
net production rate of OH radicals due to HONO photolysis
againstj (NO2) andj (O1D). Both plots (j (NO2), R2=0.62
andj (O1D), R2=0.45) show that the daytime source is corre-
lated with the light intensity, confirming former assumptions
of a photochemical production of HONO. However, since a
better correlation was obtained whenj (NO2) was used, espe-
cially for low j -values, the heterogeneous conversion of NO2
on photosensitized organics (George et al., 2005; Stemmler
et al., 2006, 2007) and gas phase photolysis of organic nitro-
gen compounds (e.g. nitrophenols, Bejan et al., 2006) may
be of higher importance compared to the nitric acid photoly-
sis in Santiago. Similar results were obtained when plotting
PR againstj (NO2) andj (O1D) (see Fig. 10 and Sect. 3.7).

3.8.4 HONO dark sources

Besides photochemical daytime sources of HONO, forma-
tion of HONO during the night by heterogeneous conver-
sion of NO2 on humid surfaces is well known (Alicke
et al., 2002). The dark heterogeneous rate constant of
HONO formation,khet, due to the first order conversion of
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NO2 on humid surfaces (NO2+X→HONO) has been esti-
mated from the increase of the HONO/NO2 ratio during the
night (see also Alicke et al., 2002). An averagekhet of
(3.5±1.9)×10−6 s−1 has been obtained, which is similar to
that of (3.3±1.4)×10−6 s−1 obtained by Alicke et al. (2002).
This heterogeneous rate constant has been found to correlate
inversely with the wind speed (R2=0.65) confirming hetero-
geneous formation on ground surfaces during the night (Kl-
effmann et al., 2003). However, almost no correlation ofkhet
with relative humidity was observed (R2=0.086) in contrast
to the study by Stutz et al. (2004). The lack of water depen-
dence can be explained by the heterogeneous conversion of
NO2 into HONO on adsorbed organics (Arens et al., 2002;
Gutzwiller et al. 2002; Ammann et al., 2005), which are per-
sistent on any urban surface. For this type of reaction only
a moderate humidity dependence was observed in the labo-
ratory (Arens et al., 2002) for a humidity range comparable
to the present study. In addition, NO2 conversion on organic
surfaces is much faster than the typical proposed reaction of
NO2 with water on surfaces (Finlayson-Pitts et al., 2003) at
atmospheric NO2 levels and thus is a more reasonable source
for night-time formation of HONO in the atmosphere.

4 Conclusion

The oxidising capacity of the atmosphere over the urban
area of Santiago, Chile, has been studied for the first time
during an extensive measurement campaign in the summer
2005. A zero dimensional photochemical box model con-
taining the detailed gas phase mechanism MCMv3.1 was
constrained with a suite of ancillary measurements including
HONO, HCHO, O3, NOx, PAN, VOCs,j (O1D), j (NO2) and
meteorological parameters. The average ratio of total pro-
duction/destruction rates of the hydroperoxy radical (HO2)
was around unity throughout the day, whilst the produc-
tion/destruction ratio for the hydroxyl radical (OH) reaches a
maximum of∼1.7 during the morning. HO2 radical produc-
tion was dominated by the RO2+NO reaction while HO2 de-
struction was dominated by its reaction with NO, which was
also the strongest OH source (∼80%). OH loss was domi-
nated with its reaction with hydrocarbons (∼79%). The high
recycling efficiency was demonstrated by the low HO2/OH
ratio of ∼11. The RO2/HO2 ratio of 1–1.5 is comparable
to that of other urban studies. Both, the MCM and simple
PSS models predict the same OH concentrations showing
that the main radical precursors included in the PSS model
are dominant and that the OH→RO2 sinks are balanced by
the RO2→OH sources. This balance was verified by an ad-
ditional MCM model scenario that was run under a different
VOC reactivity regime. The high modelled OH concentra-
tions show that the high daytime concentrations of HONO
cannot be explained by known gas phase chemistry and sug-
gest the presence of an additional strong daytime source of
HONO. This conclusion is further supported by the observa-

tions of a second daytime maximum in the HONO/NOx ra-
tio. HONO was the most important direct OH source with
daytime average contribution of 55% followed by alkenes
ozonolysis, 24%, HCHO photolysis, 16%, and O3 photol-
ysis, 5%. The better correlation of the daytime HONO
source withj (NO2) compared toj (O1D) shows that day-
time HONO formation cannot be explained by the recently
proposed nitric acid photolysis channel. Alkene ozonolysis
represented the second most important direct source of OH
radicals with internal alkenes contributing∼86% to the OH
radical formation. HCHO source apportionment has been
achieved using NOx and O3 as direct emission and photo-
chemical tracers, respectively. Photochemical HCHO com-
prises up to>70% of the observed HCHO during the af-
ternoon. The HCHO photochemical source apportionment
has revealed that alkenes contribute most by 70% followed
by aromatics, 18%, and alkanes, 12%. The major contribu-
tion of HONO to the direct OH radical production is in good
agreement with several recent studies and highlights the im-
portance of HONO measurements in studies which focus on
the radical chemistry of the atmosphere.
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