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Abstract. The representation of data, whether geophysi- The approaches to fitting straight lines to collections of
cal observations, numerical model output or laboratory re-x—y data pairs can be broadly grouped into two categories:
sults, by a best fit straight line is a routine practice in thethe “standard” least-squares methods in which the distances
geosciences and other fields. While the literature is full ofbetween the fitted line and the data in shdirection are min-
detailed analyses of procedures for fitting straight lines toimized, and the “bivariate” least-squares methods in which
values with uncertainties, a surprising number of scientistgdhe perpendicular distances between the fitted line and the
blindly use the standard least-squares method, such as fourdhta are minimized. A third method, similar to the second
on calculators and in spreadsheet programs, that assumes bat less commonly employed, involves minimization of the
uncertainties in the values. Here, the available procedures areas of the right triangles formed by the data point and the
for estimating the best fit straight line to data, including thoseline. In all of these methods, weights may be also applied to
applicable to situations for uncertainties present in both thehe data to account for the differing uncertainties in the indi-
x andy variables, are reviewed. Representative methods thatidual points. In “standard” least-squares, the weighting per-
are presented in the literature for bivariate weighted fits aretains to they-variables only, whereas in “bivariate” methods,
compared using several sample data sets, and guidance vgeights can be assigned for theand y-variables indepen-
presented as to when the somewhat more involved iterativelently. There is widely varying terminology for these proce-
methods are required, or when the standard least-squares pradures in the literature that can be confusing to the non-expert.
cedure would be expected to be satisfactory. A spreadsheefuthors have used terms such as major axis regression, re-
based template is made available that employs one methoduced major axis regression, ordinary least-squares, maxi-
for bivariate fitting. mum likelihood, errors in variables, rigorous least-squares,
orthogonal regression and total least-squares. Herein, the
terms “standard” and “bivariate” will be used to denote these
two categories of fitting methods. This paper does, however,
present a detailed reference list of available methods and ap-
plications presented in the literature.

For demonstration and testing purposes, two data sets from
the literature were employed. First, the well-known data of
Pearson (1901) with weights suggested by York (1966) were
used (see Table 1 and Fig. 1). The data values are similar to

1 Introduction

Representation of the relationship betwee(independent)
andy (dependent) variables by a straight line (or other func-
tion) is a routine process in scientific and other disciplines.
Often the parameters (slope amdntercept) of such a fitted

line can be related to fundamental physical quantities. It isth that miaht b tered in a laborat wud
therefore very important that the parameters accurately rep- ose thal might be encountered in a laboratory study or ac-
uired in atmospheric measurements, but with rather extreme

resent the data collected, and that uncertainties in the pararr‘f1

eters are estimated and applied correctly or the results of th@’f'gr:ts ';ha: rangi 3 Or(Tjﬁ_rS é)ftmag?l':]udetﬁs th; da:a rar;ﬁets
fitting process and thus the scientific study could be misin-200ut a factor otfive. 1his data set has the advantage tha
terpreted. the exact results of the bivariate fit are known and reported

in the literature, and one that is frequently used as a test for
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Fig. 2. Linear fits to data generated by sampling a Gaussian function
with standard deviation of 10 units plus 30%, and adding the noise
to the numbers 1 through 100. Fit parameters are shown in Table 3.

Fig. 1. Linear fits to the data of Pearson [1901] with weights sug-
gested by York [1966] (“Pearson-York” data set, shown in Table 1).
The weights have been plotted@awvalues (ui:l/aiz). Fit parame-
ters are shown in Table 2.

Next, the methods were applied to two examples of au-
thentic data to demonstrate specifically the value of bivariate
methods, and to point out how and when they should be ap-

Table 1. Example data “Pearson’s data with York’s weights” for
comparison of fitting procedures described in the text.

- o ) o pl|ed: _ .

- This review and recommendation does not attempt to be
1 00 10000 59 1.0 mathematically nor statistically rigorous. The reader is re-
2 09 10000 54 18 ferred to the referenced literature for such details. The pur-
i ;:2 288:8 jzg g:g pose hereisto provide_ operational infor_mation_ for the scien-
5 33 2000 35 200 t|f|c_user of th_ese routme_;, and to provide guidance for the
6 44 800 37 200 choice of routine to be utilized.
7 52 600 2.8 70.0 Note that there is not universal agreement in the uses of
8 6.1 200 2.8 700 symbols for the measuredandy values and the calculated
9 65 138 2.4 100.0 slope and intercept that appear in the literature. The reader is
10 74 10 15 500.0 cautioned in this regard. In this paper,andy; (lower case

italics) refer to the measuredandy values;n refers to the
slope of the best fit line, anklis the y-axis intercept. Other
symbols are defined throughout the paper.

A second data set was created by selecting random num-

bers from Gaussian distributions and adding them to base

values, which were numbers 1 through 100 (see Fig. 2). Ini-

tially, the Gaussian distributions were set with means of zero2 Standard least-squares

and standard deviations of 10 units plus 30% of the base

value, but other tests were performed with different amountsThe equations for a line that best describesy data pairs

of constant and proportional uncertainty. These data wergvhen all of the measurement error may be assumed to re-

meant to represent those that would result from an interside in they-variable (i.e. thex values are exact or nearly

comparison of two instruments measuring the same quantityso) is readily available and easily derived (e.g. Bevington,

which have baseline noise of 10 units (1 sigma), measure1969). The fitted line then becomes a “predicted” valuegyfor

ment uncertainties that are well above the baseline of 30%given a value fore. The usual method involves minimizing

(1 sigma), and nominal “true” values from 1 to 100 units. the sum of squares of the differences between the fitted line

This data set has the characteristic that in the absence efnd the data points in the-direction (although minimiza-

noise, or if the noise is properly dealt with, the best fit line tion of other quantities has been used). The slapeand

should have a slope of one, and an intercept of zero. y-interceptp, of this best-fit line can be represented in terms
of summations of computations performed onihmeasured
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Table 2. Comparison of fit parameters using various weighting and fitting procedures for Pearson’s data with York's weights (reproduced in
Table 1).

Reference order Slope Std err Slope % diff Intercept  Std err Intcpt % diff
Std Least-Squares y—x —0.53958 0.0421 12.3 5.7612 0.189 5.1

x—y —0.56589 0.0442 17.8 5.8617 0.216 7.0

—x -0.61081 - 27.1 6.1001 - 11.3

Std Lst-Sqrs wiwgts - y  —0.66171 - 37.7 6.4411  — 17.5
Williamson-York y—x —0.48053 0.0706 0 5.4799 0.359 0

x—y -0.48053 0.0706 0 5.4799 0.359 0
Neri et al y—x —0.48053 - 0 5.4799 - 0

: x—y —0.48053 - 0 54799 - 0

Reed y—x —0.48053 0.0706 210~/  5.4799 0.359 61078

x—y —0.48053 -— %1077 54799 - K10~/
Macdonald y—x -0.48053 — 5106 54799 - %106

x—y -0.48053 - 51075 54799 - 8106

y—x —0.48053 - 2106 54799 - 510~/
Lybanon N _ _ _ _ _

—x -0.46345 - 3.6 53960 - 1.5
Krane and Schecter — Y —055049 - 14.6 58163 - 6.1
data pairsxi, y1, x2, ¥2, - - -+ Xu, Yn- y-values (r}?i). It could include estimates of all sources of
uncertainty in they-values. Other weighting procedures are
_ MKV Z ) Xi )Y also possible. The formulas for the slope and intercept are

ny x2— (3 x,~)2 modified as shown to include data weights.

b Y Y v = Y% Y Xy (1) mZZwiZwixiyi—ZwixiZwiyi

ny et = ()’ X wi Cwief — (i)’
The ¥ symbols refer to the summation of the quantity over , > wix,? DoWiYi = Yo WiXi Y Wik Vi 4
all n values, and the subscrip’t,den_otgs the individual mea- o Yw Y wixiz —(x wixi)z 4)
suredx andy values. The uncertainties in the slope and in-
tercept can also be calculated. These formulas are readily programmed, or exist as available
spreadsheet or calculator functions, and can be routinely ap-
\/2 Y2=bY yi—m Y xivi plied to fitting of straight lines ta —y data sets.
o — n—2 o = o Z_X,Z @) The standard least-squares method was applied with and
m= \/ 5 2 0T Om\y T, without weights, using Eqgs. (1) and (4), to the two test data
nYxf = (X x) sets (“Pearson-York” and “synthetic data”) for comparison

Another useful quantity is the correlation coefficient (also With the bivariate methods (see Tables 2 and 3). Note that

called the Pearson Correlation Coefficient), which provideswhen there are significantandy errors, that standard least-

data. slope was usually too small, whereas for the “Pearson-York”

data, the slope was too large (compared to the Williamson-
Yy Xivi— Y Xi )i @3)  Yorkand Neri etal. methods, discussed below).

Fxy =
S (E0)) (127 - (£ 0)°)
3 Methods when bothx and y have errors

It is usually the case that not all the data points have the same

uncertainty. Thus, itis desired that data with least uncertaintyThe application of fitting procedures that account for uncer-
have the greatest influence on the slope and intercept of th&inties in both thev- and y- variables is somewhat more
fitted line. This is accomplished by weighting each of the complex. This is because minimization of the distance be-
points with a factorw;, which is often assumed (and demon- tween data points and a fitted line in theand y-directions
strated mathematically to yield the best unbiased linear fithas not yielded to analytical solutions. Iterative approaches
parameters, if set) equal to the inverse of the variance of thare therefore required. Several equation forms have been
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Table 3. Comparison of fit parameters using various weighting and fitting procedures for synthetic data with random errors (see text).

Reference order Slope Std err Slope % diff Intercept  Std err Intcpt % diff
Sid Least-Squares y—x 0.64455 0.0802 37.7 155840 5.068 526
x—y 1.62395 0.2022 57.0  -33.2653 10.818 810
y—x 051688 - 50.0  3.12330 - 185
Std Lst-Sqrs wiwgts Xx—y 145084 - 403  -257369 - 604
Wiliamson-York y—x 1.03409 0.1004 0 -3.65745 3.369 0
x—y 1.03409 0.1004 0 -3.65745 3.369 0
. y—x 1.03409 - 0 -3.65745 - 0
Neri etal. x—y 1.03409 - 0 _3.65745 — 0
Reed y—x 1.03409 - 0 ~3.65745 - 0
x—y 1.03409 - 0 ~3.65745 - X10~9
Krane and Schecter y—x 0.63716 - 38.4  3.73640 - 202
x—y 1.69288 - 63.7 -16.2079 - 343

proposed and discussed (Barker and Diana, 1974; Borcherdsf x andy. Proper fitting methods should also be invari-
and Sheth, 1995; Brauers and Finlayson-Pitts, 1997; Bruzant to change of scale (i.e. fit parameters do not depend on
zone and Moreno, 1998; Chong, 1991, 1994; Christian andhe choice of units fox andy). Several numerical digits are
Tucker, 1984; Christian et al., 1986; Gonzalez et al., 1992;shown in Tables 2 and 3, not all significant, so that the results
Irwin and Quickenden, 1983; Jones, 1979; Kalantar, 1990from the various methods can be accurately compared.
1991; Krane and Schecter, 1982; Leduc, 1987; Lybanon, The method described by York (1966; 1968) and York
1984ab, 1985; Macdonald and Thompson, 1992; MacTaget al. (2004) was applied to the sample data sets. This in-
gart and Farwell, 1992; Markovsky and Van Huffel, 2007; volves iteratively solving the following equations (Eq. 5).
Moreno, 1996; Neri et al., 1990, 1991; Orear, 1982; Pasa-This method allows for correlation between thendy er-
choff, 1980; Pearson, 1901; Press et al., 1992a,b; Reedprs, indicated by; (different than the-, in Eq. 3), which
1990; Riu and Rius, 1995; Squire et al., 1990; Williamson, is set to zero in the present case (i.e. errors are assumed to be
1968; York, 1966, 1969; York et al., 2004). This list is large uncorrelated).

to provide a comprehensive reference for the reader. While,  _ —  _YWiBVi

these approaches are not as convenient as the straightforwafd™= > ~ " * "=$&w50;

equations applicable to standard least-squares, they can eas—= > W;x; / W y=Y Wiy / W

ily be programmed using standard languages or spreadshe%} _ o Wyi Wy (5)
program routines. P =X X VY Wi

. . . . U; mV; ri
In assessing the impacts of errors on linear fits, normalBi = Wi [w_;l + o — (mUi + Vi);’l.] o = /Wy Wy

e T e procedure i t assume a staring valueorcl
np . L ateW;, U;, V;, a;, andg;, and then calculate a revised value
should be recognized that formulations for error estimates o

) ) . . or m. This process is repeated until changes by some
the slope _ano_l intercept of the fits will be different for other small increment according to the accuracy desired. This is a
error distributions.

simpler implementation of an earlier method of York (1966),
Some representative examples of exact and approximaterhich was described in York (1969) and York et al. (2004),
procedures (discussed below) from the literature were apand is the same as the method of Williamson (1968), if the
plied to the sample data sets, and the results of the fits are and y errors are uncorrelated (i.e=0). The method of
shown in Tables 2 and 3. In each case, slopes and intercepWilliamson (1968) has been praised in the literature (Mac-
were derived by fittingy onx, and by exchanging theand  Taggert and Farwell, 1992; Kalantar, 1990) as being effi-
y variables, thus fitting on y. The slopes and intercepts for ciently able to converge to the correct answer. Other ap-
the latter case were made comparable to those of the formgsroaches (including the earlier York method), may not al-
case by calculating the equivalent valuesyfernx+b (since  ways converge or may be slow to do so, depending on the
x=y/m—b/m, thenm’=1/m andb’= — b/m). For methods specific data set. As with standard least-squares, one can per-
that properly account for errors in both variables, the fit pa-form bivariate fits without weighting. This is done by making
rameters by these two approaches should be identicati.e. all the weights the same (e.g. 1).
from fitting x on y should equalz from fitting y on x, and The uncertainties in the slope and intercept can also be cal-
similarly for b’ andb). This is termed invariance to exchange culated. Among various methods discussed in the literature

Atmos. Chem. Phys., 8, 5473487, 2008 www.atmos-chem-phys.net/8/5477/2008/



C. A. Cantrell: Least squares fitting 5481

(Cecchi, 1991; Kalantar, 1992; Kalantar et al., 1995; Moreno Macdonald and Thompson (1992) describe a number of
and Bruzzone, 1993; Reed, 1990, 1992; Sheth et al., 1996 ases for which their method is applicable. They have made
Williamson, 1968; York et al., 2004), the following forms available a FORTRAN program that applies their procedures,
appear to lead to correct estimates of the fit parameter uncewhich provides nearly exact results for the Pearson-York data
tainties (after York et al. (2004) with some algebraic manip-set. Similarly, Lybanon (1984) presents a detailed method
ulation). that also yields results very close to those of the “exact”
methods. Krane and Schecter (1982) put forward a method

_ =2
"bz = ﬁ + (x + /3) Ulﬁ Uﬁ = m proposed by Barker and Diana (1974) and discussed by oth-
e ers (Irwin and Quickenden, 1983; Orear, 1984; Lybanon,
std ermh= /01;2 /n_fz std ernm=,/02 /n_fz 1984b) that is calle_d “effective vari_ance”. One begins_ with
(6)  Eq. (4), but the weightsy,, are adjusted to the following
B=YWiBi /X W form.
w; = Wi Wyi (9)

Wyi + mzwyi

S =3[y — (mx; + b)]?

. ) ) This is same as York'sV; value with uncorrelated errors.
The quantity, $/(n —2) is a "goodness of fit’” parameter. - gjnce,, appears in the formula for the weight, an iterative
Its expected value is unity. Its deviation from unity can be process is required, in which an initiad value is guessed,
used to adjust the weighting factors (in a global sense), but,; is calculated, followed by calculation of a revised The
the bivariate slope and intercept will not be affected. result differs from the “exact” methods for the Pearson-York
Another straightforward method is that of Neri et data set by a few percent, but it is more accurate than the
al. (1989). This involves minimization of the shortest dis- standard least-squares. This method does not retrieve the
tance between the fitted line and that data points, and aSsgme S|ope and intercept when theand y-\/ariab|es are
sumes thex and y errors are uncorrelated. The following exchanged. The errors are larger with the “synthetic” data

equations are utilized. set.

W2m(mai+b—yi)? Press et al. (1992a,b) present a method called “maximum
> Wixi(mxi +b —y;) =), —————=0 likelihood estimation” and include a routine written in C or
b= Wi (v — mX5)/Z W, 7) F_OR'!'RAN for its implementation. This is also discussed by

N Titterington and Halliday (1979). York et al. (2004) demon-
Wi= o strate that their method and “maximum likelihood estima-

) S tion” are mathematically identical. Brauers and Finlayson-

In this method, an initialn is guessed (such as from stan- pits (1997) applied the Press et al. method to analysis of
dard least-squares or by inspectiah)s calculated (second inetic data.
equation in Eq. 7), and then is adjusted to minimize the  The methods of Williamson (1968), York (1969), York et
left hand side of the first equation in Eq. (7). The process isy|, (2004) and Neri et al. (1989) all agree and appear to pro-
repeated until the left side of the first equation in Eq. (7) iS yide the exact answer to the best fit for the Pearson-York data
satisfactorily close to zero. The Williamson-York and Neri et gt The approaches of Reed (1992), Macdonald and Thomp-
al. methods give identical results for the slope and interceptgp, (1992), and Lybanon (1984) provide results very close to
of the two test data sets. the exact ones. The “effective variance” method performs

Four other methods give results that are reasonably closgaasonably well for the Pearson-York data set, but poorer for

to the above results, but are not exactly the same, and dghe synthetic data. Because of this variability in performance,
not always give the same slope on exchange ofcth@d y it should be used with caution.

variables. These approximate methods may be satisfactory
for many applications.
Reed (1992) suggests finding roots of the following 4 Comparing the methods

quadratic expression. ] o ] o
A more detailed examination of the behavior of bivariate

g(m)=Am?> +Bm+C =0 and standard least-squares as a function of the random noise
WRULV: 2 y2 weu.v, (8) added in the “synthetic data” was performed. The purpose
A=) —ip=Y WP (’—’) c=-) 2 here is to advise the reader when the more involved bivariate
Wy Wyi  Wyi Wyi
methods should be used or when the standard least-squares
This equation is solved fom by the quadratic formula, —are expected to provide satisfactory values for the fit parame-
m = (—B + VB2 = 4AC)/2A where the choice of roots  t€r'S- A series of calculations was performed in which random

is refined b . ith standard least bnoise was sampled from Gaussian distributions with varying
:isr;()eel(r:]t?on y comparison with standard least-squares of by, stant and proportional standard deviations (like the sec-

ond test data set used above). Standard least-squares (without

www.atmos-chem-phys.net/8/5477/2008/ Atmos. Chem. Phys., 8, 54872008



5482 C. A. Cantrell: Least squares fitting

Synthetic Data Fit Summary were performed with 100 data points. If the sizes of the data
16 ‘ ‘ ‘ ‘ sets are increased, the error (scatter) in the slope decreases
Ll (cvi S g xayoon | accordingly. As an example, for a constant error of 28 units,
B PearsonYorksigLs the average error in the slope (5 repetitions) decreases from

19% to 6% to less than 1% as the number of data points goes
from 100 to 1000 to 10000 (an approximagé: relation-
ship).

Knowing that the bivariate methods are an improvement
over standard least-squares when there are errors in-the
variable is a start, but can the information gathered be used
to indicate when the extra trouble of the bivariate fit is called
for, versus when standard least-squares will suffice. Figure 3
shows that there is a rather robust relationship between the
systematic error in the slope from standard least-squares and
the absolute value of the correlation coefficient (as expected,
comparing Eqgs. 1 and 3). For errors in both variables, the
Fig. 3. Ratio of fitted to expected slopesf;/mexpected fromstan-  fractional error in the standard least-squares slope is approx-
dard least-squares and the Williamson-York bivariate method versusmately 14r|. Thus, a quick calculation of the correlation
r-values from Eq. (3). Errors in both theandy variables lead to  coefficient can give a rough indication of the error in the de-
systematic errors in the slope from standard least-squares. Slopefyed standard least-squares slope for data with comparable
from the bivariate method show no such systematic variation witharrors in both variables. If this error in the slope is outside
r. the needs of the task at hand, then a bivariate approach should

be employed. For unusual weighting situations (such as the

, . Pearson-York data), it is probably best to always use robust
W‘?'ths) were applied to the data sets, as was the method (Hivariate methods, since the impact of such weights on the fit
Williamson-York. The values of (Eq. 3) were also calcu-  harameters is not intuitive (although in this specific case, the

!ated. This test has the advantage tha_t the “correct” slope and,,,qard least-squares slope is only in error by 12%). When
intercept are known (1 and 0, respectively). Note that the eryne error in they-variable is much greater than the error in
rors are normally distributed, which may not necessarily be

e x-variable, then standard least-squares performs better than

the case in “real” data sets. indicated by the calculatedvalue.
Figure 3 showsnfit/ mexpectedversus of the best fit lines
using standard least-squares when proportional uncertainties
of zero to 50% and/or constant uncertainties of up to 505 Application to actual observations
units were applied to the-data, they-data, or both. Stan-
dard least-squares performs well by retrieving slopes close tqwo authentic sets of data from the TRACE-P campaign
unity (the expected value) when errors are applied toythe (TRansport And Chemistry Experiment — Pacific) were se-
data only. However, when errors are added toxth@riable  lected for application of these fitting procedures. TRACE-P
either alone or with errors added to thevariable, the slopes involved two aircraft (the NASA DC-8 and P3-B) as plat-
of the best fit lines from standard least-squares are signififorms for observations primarily in the western Pacific Ocean
cantly less than unity. The ratio of the fitted slope to that ex-basic. The observations used here are gas-phase formalde-
pected is approximately equal pd. This is true even when hyde (CHO) concentrations collected by Alan Fried and col-
r values are very small. The normal interpretation of theseleagues aboard the NASA DC-8 aircraft (Fried et al., 2003),
small r values is that the data are uncorrelated and cannoand peroxy radical concentrations (HHIRO,) collected by
be represented by a linear relationship. In this case, howthe author and colleagues aboard the NASA P-3B aircraft
ever, we know that there is a linear relationship between (Cantrell et al., 2003). These data represent very typical sit-
andy because of the way the data were constructed. The uations that might require the fitting procedures discussed
statistics for the standard fits indicate that they are statistihere.
cally significant at the 95% confidence level for all but those  The details of the measurement techniques and the model-
corresponding to the 3 smallestalues. ing approaches can be found in the references cited above.
Applying the Williamson-York bivariate method to the Briefly, CH,O was measured in the NASA DC-8 aircraft

same data sets, leads to slopes within about 20% of the exn a low-pressure cell with multi-pass optics (100 m path
pected value of unity. Note that this is the case even whertotal optical path) using a tunable lead salt diode infrared
the data are very noisy and thus correlation coefficients aréaser as the source. A spectral line near 2831.6'cmas
small. Values much closer to the expected value are retrievedcanned and the second harmonic spectrum (after subtraction
when the data is less noisy (see inset in Fig. 3). These fit®f the background) was related to the ambient concentration

mlit / mexpected

r
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through addition of known mixtures of GI® in zero air to CH,0 measurement-model comparison
the instrument inlet. The measurements were corrected for ¢
small interference from methanol. The estimated uncertainty
of the measurements was 15%, and detection limits typically
ranged from 50 to 80 pptv (parts per trillion by volume). One %‘
minute average retrieved concentrations ranged from —47 tc§ ‘
10665 pptv. Concentrations measured below the detectior3 o[
limit were used as observed in the fits described here.
HO»+RO, concentrations were measured on the NASAP- = 400t
3B aircraft and were determined by conversion to gas-phase;:
sulfuric acid through the addition of reagent gases NO and &' ,,,| -
SO, to the instrument inlet. The sulfuric acid product was
ionized by reaction with negatively charged nitrate ions. The
product and reagent ions were quantified by quadrupole mas:
spectrometry. Calibrations were performed using quantita-
tive photolysis of water vapor at 184.9 nm. The estimated
uncertainty for these data was 17% and the detection lim-.

. o5 C . bel he d ion | ., Fig. 4. Comparison of measured formaldehyde concentrations with
Its were 2—5 pptv. Concentrations below the detection Imltthose estimated from a constrained box model during the TRACE-

were used as observed in the fits deSC“bed her'e. P campaign (after Fried et al., 2003; Olson et al., 2004). The data
CH20 and HQ+RO; concentrations were estimated by a points are divided into two groups: those corresponding to measure-
photochemical box model with inputs of key parameters con-ments below 500 pptv (small points), and those for measurements
strained by the observations (Crawford et al., 1999; Olson etibove 500 pptv (large points). The main window (on linear scales)
al., 2004). The time-dependent model is run for several dayshows results of linear fits using four approaches: solid line, bivari-
to diurnal steady state. Monte Carlo calculations yielded un-ate weighted fit to all data; long dash, standard unweighted least-

certainty estimates of 20% for modeled gMand 30% for ~ Squares fit; medium dash, fit using weighted standard least-squares
HO,+RO,. (Eqg. 4) with weights calculated using effective variance; and short

Figure 4 shows the measured &M concentrations ver- da;h, f'F using weighted Sta'?da“.’ least-squares With weights in the
y-direction only. The lower right inset shows the fit lines and data

sus those estimated by the constrained box model on linz . )

. . ._on expandead- andy-scales (linear). The upper left inset shows the
ear scales (4466 d‘?‘ta pairs). The mset_plots show the hig Il range of data on logarithmic scales. See text for fit parameters
range of concentrations-600 pptv, lower right) and the data  4q giscussion.
plotted on logarithmic scales (upper left). The lines repre-
sent different methods of fitting the data. The solid line is
a weighted bivariate fit to all of the data with the measure-ception of the standard unweighted least-squares fit. The
ments weighted using a variance of the square of 15% ofntercepts are all within the detection limit of the measure-
the concentration plus 50 pptv, and the model results usingnents (around 50 pptv). The large slope retrieved with the
a variance of the square of 20% of the concentration. Thestandard unweighted approach could lead one to make the
slope is near unity (1.054, standard error=0.0144) and thessessment that there are missing processes in the model,
y-intercept is small (1.283, standard error=2.046), in agree-<errors in the measurements, or both. While it does appear
ment with assessments by Fried et al. (2003) and Olson ethat there are statistically significant differences between the
al. (2004). The correlation coefficient squaredjs 0.856. measurements and the model at high concentrations, the
The long dashed line is a standard unweighted least-squaresnall number of outliers should not significantly change the
fit which yields a slope of 1.462 (standard error=0.0090) andfit of the entire data set. Eliminating data pairs with mea-
a y-intercept of —44.6 (standard error 3.16). It appears thasurements greater than 4000 pptv, results in bivariate fit slope
the line is being unduly weighted by the handful of points and y-intercept values of 1.041 and 2.476, respectively. The
at high concentrations in which the model systematically un-weighted standard fits change by small amounts as well. The
derestimates the observations, leading to a larger slope thamweighted standard fit, though, yields slope and y-intercept
the bivariate method. The medium dashed line is a weightedvalues of 1.248 and —5.744, respectively. This is a signif-
least-squares fit (Eq. 4), with weights calculated using theicant change and shows how susceptible the standard fit is
“effective variance” method (Eq. 9). Its slope is 0.873 andto a small number of outliers (the term outlier is used here
the y-intercept is 20.1. Finally, the short dashed line is ato mean data that are not described well by the bivariate fit
weighted least-squares fit (equation 4) with weights in the y-line).
direction only (i.e.w;=wy;). The slope for this fit is 0.811 The impact of outliers on the various fit methods is demon-
(std err=0.012) and the-intercept is 22.4 (std err=2.14). strated further. To the full data set are added numbers of data
These fits mostly have slopes of unity within the combined pairs (up to 1000) for whick is 50 and y is 5000. A second
measurement-model uncertainties (0.25),lwith the ex-  trial added data pairs with values of 5000c andy values

1000

800 |-

ptv (mea.

400
CH,0, pptv (model)
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1.0 — - . - Fig. 6. Fits of HO;+RO, measurements versus constrained box
model estimates. The lines are four different fit approaches: solid
08| 1 line, bivariate weighted fit to all data; long dash, standard un-
\\\ O weighted least-squares fit; medium dash, fit using weighted stan-
« ~ | dard least-squares (Eq. 4) with weights calculated using effective
= 04l \ | variance; and short dash, fit using weighted standard least-squares
with weights in they-direction only.
0.2 [ O i
* 10 100 1000 ous techniques put forward to eliminate outliers (e.g.@he
Number of outliers added test, Dean and Dixon, 1951) that can applied, these exercises

show that the bivariate fit method is relatively insensitive to
Fig. 5. Impacts of added data outliers to the formaldehyde datasebutliers.
presented in Fig. 4. Shown are slopes (top panel), intercepts (middle  As mentioned earlier, and discussed by Fried et al. (2003),
panel), and correlation coefficients (bottom panel) of various fits asihere appears to be a change in the ratio of measurement to
impacted by adding extra points, in amounts indicated onis,  54e| values from near unity at lower concentrations to well

to the dataset that are clearly outliers. Eight (?ollectlons of fit param- . o unity at higher concentrations. As one approach, the
eters are shown for 1, 10, 100, and 1000 outliers added. Four coIIecaa,[a were separated into two arouns for measured values be-
tions had outliers equal to=50, y=5000 (dark gray); the other four P group

had outliers equal to=5000, y=50 (light gray). The circles in the low ar.‘d %bove 500 pptv, and each 9“’”9 was fit sgparately.
top two panels represent parameters derived from weighted bivari] N€ bivariate slope of the low concentration group is 0.789,
ate fits; the downward pointing triangles represent parameters dewhile the bivariate slope of the high concentration group is
rived from Eq. (4) using effective variance; the squares represent pal.403. An alternate method is to fit the ratio of measure-
rameters derived from Eq. (4) with weights in the y-direction only; ment to model ([CHO]mead[CH20]mode) Versus measure-
and the diamonds represent parameters derived from unweighteghent value. Separating into two groups as before leads to
standard least-squares. The values onytaeis (corresponding to g pjvariate slope of 0.00607 for the low concentration group
x=0.8) are thqse derived from the original formaldehyde data with(i.e_ moderate dependence of the ratio on the concentration)
no added outliers. and an intercept of 0.797 (the ratio at the limit of zero con-
centration). The slope for the high concentration group is
0.000679 and the intercept is 1.290. It seems that there could
of 50. These results are summarized in Fig. 5. It can bebe atmospheric processes missing from the model or instru-
seen that outliers above the fit line have little impact on themental issues affecting the measurements in the high concen-
bivariate and the other weighted fit slopes, even when thdration regime that need to be addressed (in agreement with
number of outliers approaches 20% of the data. The stanFried et al., 2003).
dard unweighted least-squares fit is affected moderately by Fits of measured versus modeled H®RO, are shown
outliers above the fit line. Outliers below the fit line impact along with the data in Fig. 6. The solid line is a bivari-
all of the fits greatly except the bivariate. In fact, as shownate fit weighted using variances for the measurements that
before, the bivariate fit procedure continues to perform wellare the square of 20% of the concentration plus 5, and us-
even when the? parameter indicates that theand y data  ing variances for the model results that are the square of
are completely uncorrelated. While there have been vari-30% of model values. Its slope is 0.961 (std err=0.015) and
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the intercept is —2.96 (std err=0.35). The correlation coef-derived standard least-squares slope. If a more accurate slope
ficient squaredr?2, is 0.437. The other methods (effective is desired, then bivariate methods such as those reported by
variance, y-weighting only, and no weighting) yield smaller Williamson et al., York et al., or Neri et al. are recommended.
slopes (0.63 to .71). There are some noticeable outliers ifFor these methods, the accuracy of the slope improves with
which the measured concentrations are systematically highethe number of data points (hot so with the standard least-
than the modeled ones at low modeled concentrations. Elimsquares with significant errors in tlvevariable).
ination of these data does not greatly affect the bivariate fit.
A fit of the measured to model ratios versus measured val-
ues yields a moderate slope (-0.00864) and an intercept nedr Supplemental material
unity (1.053). . . .

It has been reported (Faloona et al., 2000) that measureahe_W'”""‘mson'York method has bgen incorporated into
peroxy radical concentrations are systematically greater thaf Microsoft ExceP spreadsheet available as supplemen-

model values at high NOconcentrations. This is observed tal material.http://www.atmos-ch.em—phys.net/8/5477/2008/
for TRACE-P HO+RO, data as well. For NO concentra- acP-8-5477-2008-supplement.zip

tions less than 500 pptv, the measured to modeled ratios are

close to unity with no significant dependence on NO con—’A‘CknOWIeO|gementSThe aum(.)r aCknOW"e.dges grat.efu"y the help
centration. The bivariate fit yields a slope of —0.00145 andof Norm Evensen and Andi Andreae in the refinement of the

. . spreadsheet tool. The National Center for Atmospheric Research
a y-intercept of 0.77. For NO concentrations greater thanis sponsored by the National Science Foundation. Any opinions,

500 pptv, there is a systematic dependence of the measureglngings, and conclusions or recommendations expressed in this
modeled ratio on the NO concentration. The bivariate fit publication are those of the author and do not necessarily reflect

slope is 0.00317 and thg-intercept is —0.785. It has been the views of the National Science Foundation.

suggested (Olson et al., 2006) that this phenomenon could

be the result of short term large spikes in the NO concentraEdited by: V. F. McNeill

tion that impact the average NO concentration, but have little

impact on the average peroxy radical concentration. Without

high rate NO and peroxy radical data, we cannot rule out suctR€ferences

tan sXplan?tlon' Alternatlyel)t/, theretclo.uld be ;Jhnlinown F:?}‘]Oﬂ}Bt"alrker, D. R. and Diana, L. M.: Simple method for fitting data
ochemical processes or instrumental ISSues that occur in € e poth variables have uncertainties, Am. J. Phys., 42, 224—
presence of high NO concentrations. The measurement and 557 1974

modeling communities continue to search for satisfactory ex-gevington, P. R.: Data reduction error analysis for the physical sci-
planations of these observations under high NO conditions.  ences, McGraw-Hill Book Company, New York, 1969.

Does the quality of fits obtained with the bivariate Borcherds, P. H. and Sheth, C. V.: Least squares fitting of a straight
methods depend strongly on the selection of weights? line to a set of data points, Eur. J. Phys. 16, 1, 204-210, 1995.
This was examined using the GB measurements and Brauers, T.and Finlayson-Pitts, B. J.: Analysis of relative rate mea-
model results. The best estimate for the variance ofB S“remer‘:'s' '“g JMChem- *g“\fvgh 665‘672’_19§7t-h it
the measurements is (O-XEHZO]meaS'"SO)Zy and for the ruzzone . an qreno, ) :Z en grrorg In DOth coordinates
model values is (O-N[CHzo]model)z- Varying the mea- make a difference in the fitting of straight lines by least squares,

. Meas. Sci. Technol., 9, 2007-2011, 1998.
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