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Abstract. The quality assurance of the two Brewer spec-
trophotometers of the Finnish Meteorological Institute is dis-
cussed in this paper. The complete data processing chain
from raw signal to high quality spectra is presented. The
quality assurance includes daily maintenance, laboratory
characterizations, calculation of long-term spectral respon-
sivity, data processing and quality assessment. The cosine
correction of the measurements is based on a new method,
and is included in the data processing software. The re-
sults showed that the actual cosine correction factor of the
two Finnish Brewers can vary between 1.08–1.13 and 1.08–
1.12, respectively, depending on the sky radiance distribution
and wavelength. The temperature characterization showed
a linear temperature dependence between the instruments’
internal temperature and the photon counts per cycle, and
a temperature correction was used for correcting the mea-
surements. The long-term spectral responsivity was cal-
culated using the time series of several lamps using two
slightly different methods. The long-term spectral responsiv-
ity was scaled to the irradiance scale of the Helsinki Univer-
sity of Technology (HUT) for the whole of the measurement
time-periods 1990–2006 and 1995–2006 for Sodankylä and
Jokioinen, respectively. Both Brewers have participated in
many international spectroradiometer comparisons, and have
shown good stability. The differences between the Brewers
and the portable reference spectroradiometer QASUME have
been within 5% during 2002–2007.

Correspondence to:K. Lakkala
(kaisa.lakkala@fmi.fi)

1 Introduction

Many spectral UV measurement programs started at the end
of the 1980s, after it was recognized that the stratospheric
ozone content was declining not only over Antarctica but
also over the Arctic and in mid-latitudes (Booth et al., 1992;
WMO, 1990). Decrease in total ozone is observed as a
wavelength-dependent increase in UV radiation. Particu-
larly, spectral measurements are needed to assess the influ-
ence of the ozone depletion on the ecosystem, as the biolog-
ically most effective solar radiation is that at short UV wave-
lengths (Young et al., 1993). Measuring the complete UV
spectrum offers many possibilities for various different kinds
of research, compared with measuring the UV radiation us-
ing a broadband instrument. The challenge is to maintain
the sensitivity of the instrument at all wavelengths, as the
dynamical range of the UV is huge. Well-characterized and
-maintained high-precision spectroradiometers are needed to
detect the possible, even though small, changes at these
wavelengths (Seckmeyer et al., 2002).

The Brewer spectrophotometer MK II #037 of the Finnish
Meteorological Institute (FMI) at Sodankylä, Finland (lat.
67◦ N), was installed in 1988 to monitor total column ozone
at this site influenced by Arctic ozone depletion (Kyrö et al.,
1992; Von der Gathen et al., 1995). Since 1990 it has also
monitored spectral UV radiation, and the UV time series
for Sodankyl̈a is one of the longest in Europe. The time
series has been homogenized, and constitutes a continuous
record since then. A second Brewer spectrophotometer was
installed in the observatory at Jokioinen, Finland (lat. 61◦ N),
in 1995. The Brewer is a MK III-type spectrophotome-
ter #107, which fulfills the WMO level S-2 requirements
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Table 1. The Brewer spectrophotometers of the Finnish Meteorological Institute and their characteristics.

Brewer #037 Brewer #107

location Sodankyl̈a (67◦ N,27◦ E) Jokioinen (61◦ N,24◦ E)
start of UV meas. 1990 1995
surroundings forest and swamp fields and forest
monochromator single double
diffuser 35 mm Teflon, quartz dome 35 mm Teflon, quartz dome
wavelength range 290–325 nm → 24.4.1997: 290–363 nm

25.4.1997–9.11.1997: 286.5–363 nm
11.11.1997→ : 286.5–365 nm

(Seckmeyer et al., 2002) for detection of trends in UV irra-
diance. Both spectral UV time series have been used in
many studies and have thus served the scientific community
in the study of UV features for more than 15 years (Gardiner
and Kirsch, 1997; Bais et al., 2001; De Backer et al., 2001;
Meinander et al., 2003; Arola et al., 2003b; Lakkala et al.,
2003; Lindfors et al., 2003; Glandorf et al., 2005; Gröbner
et al., 2005; Huttunen et al., 2005; Kazantzidis et al., 2006;
Meinander et al., 2006; Arola et al., 2007; Lindfors et al.,
2007; Tanskanen et al., 2007).

In this paper, we present the complete data processing
of the FMI’s Brewer spectrophotometers from raw signal to
quality-controlled UV spectra. This includes a new way of
processing the spectral responsivity time series and correct-
ing for temperature dependence and cosine error. The ter-
minology ’quality control’ and ’quality assurance’ is based
on Webb et al.(2003). Sections 2, 3, 4 and 5 deal with
the quality control, describing the standard operating pro-
cedures, laboratory characterizations, long-term spectral re-
sponsivity and the data processing. The quality assurance
itself is discussed separately in Sect. 6, using the inductive
method described byWebb et al.(2003). There, the qual-
ity of the measurements is evaluated using comparisons with
other independent spectral measurements as well as compar-
isons with reconstructed UV values. The flagging of the Eu-
ropean data base (EUVDB) is also used as an independent
quality statement.

Bernhard and Seckmeyer(1999) have reviewed the var-
ious sources of uncertainty in spectral UV measurements,
andWebb et al.(1998) have described calibration and qual-
ity control procedures. Several papers about the quality as-
surance procedures of broad-band or multichannel UV in-
struments (Blumthaler, 2004; Bernhard et al., 2005; Lakkala
et al., 2005; Josefsson, 2006) have been published. Previ-
ous papers about the complete data processing procedure of
spectral UV measurements have been published for the SUV-
type spectroradiometers of the National Science Foundation
(NSF) network (Booth et al., 2001; Bernhard et al., 2004)
and for the two Brewer spectrophotometers of the Aristotle
University of Greece in Thessaloniki (Garane et al., 2006).

2 Standard operating procedures

We start by presenting the standard operating procedures of
the two Brewer spectrophotometers of the FMI, including the
routine stability check and daily quality control. The charac-
teristics of the two Brewers are presented in Table1.

2.1 Lamp measurements

The spectral stability of the Brewers is monitored by 50 W
and 1000 W lamp measurements. The 50 W lamps are mea-
sured every second week outdoors and every second week
in the laboratory dark-room. The 1000 W lamps have been
measured in the laboratory on average every month, since
1997 at Jokioinen and 1998 at Sodankylä. The 1000 W lamp
dark-room measurements are performed following a standard
procedure in order to achieve measurements of the highest
accuracy. Both the temperature of the dark room and the
current of the lamp are controlled. The intensity of the cal-
ibration lamp is also recorded by both a UV-B and a UV-A
sensor; the current and voltage of the lamp are recorded as
well. These are used to monitor the stability of the lamp dur-
ing an individual calibration event, but not to determine any
long-term stability (Koskela, 1999). All reflecting surfaces
are covered with black cloths, and baffles are used in order
to minimize diffuse light.

Several lamps are measured each time so that the lamps
are burned for different amounts of time, as recommended
in Webb et al.(1998). Thus some lamps are used more fre-
quently, while others are burned only a few times per year.
This enables distinguishing drifts related to the ageing of an
individual lamp to be recognized.

2.2 Maintenance

The daily operation routine consist of a series of measure-
ments, which depend on the solar zenith angle. The mea-
surement series is mostly started at constant air masses,
where two types of measurement are performed: global UV
radiation measurements and total ozone measurements us-
ing direct sky or zenith sky measurements. Between the
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measurements, certain routine checks are automatically per-
formed. For example, standard lamp measurements allow to
follow the daily stability of the instrument, and mercury lamp
measurements are made regularly to ensure the right wave-
length alignment at 296.7 nm. At both stations the spectrum
is recorded typically every half-an-hour in steps of 0.5 nm.
The total scanning time is around 3 and 6 min for Sodankylä
and Jokioinen, respectively. At the end of the day, the raw
data is automatically transfered to a data base, and daily mea-
surement events are listed.

Maintenance, including a regular check of levelling and
cleaning is performed by the operators of the sounding sta-
tion. Each operator has been trained in the correct operation
of the instrument and use of the control software. The Brewer
stands on a tripod, the levelling of which is checked at least
every time the instrument is replaced there after e.g. a dark-
room calibration.

The Arctic conditions represent special challenges to the
instruments. As frost is a problem during the winter, air is
blown on the diffuser in order to keep it as dry as possible
and free from frost. Whenever an operator is at work, the
dome is also cleaned after rain and snow. In order to keep the
inside of the Brewer dry, nitrogen gas is circulated through
it. At both sites, the outside temperature can be−30◦C dur-
ing winter time; at Sodankylä the temperature falls to−40◦C
almost every winter. In order to keep the interior tempera-
ture above zero degrees, both Brewers have heating elements
inside the instrument.

2.3 Ancillary measurements

As Sodankyl̈a and Jokioinen are both synoptical weather sta-
tions, many different types of ancillary measurements are
available. From the point of view of the UV radiation mea-
surements, the most important of these are related to sky
condition, e.g., clouds and precipitation. The snow depth is
recorded, and has been related to surface albedo (Arola et al.,
2003a). Continuous radiation measurements are maintained
routinely, e.g., global, direct, diffuse and reflected global ra-
diation measurements are available. As well as the Brewer
measurements, total ozone column measurements are avail-
able from SAOZ measurements. Ozone soundings are per-
formed once a week at Sodankylä. Both stations have car-
ried out PFR-type (Precision Filter Radiometer) aerosol opti-
cal depth measurements since 2004 (Wehrli, 2000; Aaltonen
et al., 2006). Many other air quality and atmospheric com-
position measurements are available at both stations as well.

In addition to these standard radiation measurements,
Brewer-scan-synchronized broadband UV and global pyra-
nometer measurements were started in 2001 and 2000 at So-
dankyl̈a and Jokioinen, respectively. A SL501A radiometer,
measuring erythemally-weighted UV radiation, and a CM11
pyranometer, measuring global radiation, have been set up
next to the Brewers. The measurements are synchronized,
so that a reading is recorded each time a wavelength is mea-
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Fig. 1. The response from different parts of the diffuser of Brewer
#037 at 313 nm. The areas around the centre are the most sensitive.

sured with the Brewer. Broadband measurements can be used
to monitor the stability of the sky conditions during a Brewer
scan.

3 Characterizations

In order to make reliable measurements and to process the
data correctly, laboratory characterizations of the instruments
are needed. In the following subsections we present the char-
acterizations that have been made for the FMI Brewers.

3.1 Angular response

The signal of a spectroradiometer should be proportional to
the cosine of the angleθ between the direction of the incident
radiation and the normal of the radiometer’s diffuser. The
deviation from this ideal response is called the cosine error.
In order to be able to correct the data, the angular response of
the instrument has to be characterized. The angular response
of Brewer #037 has been characterized in 1996, 2000 and
2003, and Brewer #107 in 1996 and 2003 (Bais et al., 2005).
The angular responses used in the actual data processing are
those derived from the characterizations of 2000 and 1996
for the Brewers #037 and #107, respectively.

The incident angle of radiation should be measured with
respect to the most sensitive part of the diffuser. For the
FMI Brewers, the diffusers were characterized following W.
Josefsson (personal communication). The quartz dome of the
diffuser was removed, in order to quantify the properties of
the diffuser alone. A black paper screen with a 4 mm hole
was moved on a grid of 4 mm while measuring a calibration
lamp. The results for Brewer #037 at 313 nm is presented
in Fig. 1, where it is seen that the most sensitive parts are
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Fig. 2. The characterization of the cosine response of Brewer
#037 at four azimuth angles (north=0◦, east=90◦, south=180◦,
west=270◦) in steps of 5◦ or 10◦. The normalized relative response
is shown. The averaged and interpolated normalized relative re-
sponse is also shown for Brewer #107 (blue line) and Brewer #037
(green line).

situated, as expected, more or less around the centre of the
diffuser. The result for Brewer #107 was similar, except that
the most sensitive part was even more centred.

The angular response measurements were performed in
the dark-room at constant temperature. A 1000 W DXW, a
vertical beam lamp, was mounted in a holder, which could
be moved to different angles. Zenith angles from 0◦ up to
85◦ and back to 0◦, in steps of 5◦ or 10◦, were measured
at four azimuth angles (north=0◦, east=90◦, south=180◦,
west=270◦). The angular responses obtained, normalized to
the ideal cosine response, are shown in Fig.2 for the four az-
imuth angles for Brewer #037. The results for Brewer #107
were comparable to the results of Brewer #037, with slightly
less steep curves. The cosine error of the direct beam ex-
ceeded 10% at an SZA higher than 50◦. The results of both
Brewers showed no dependency on the azimuth angles, and
the final angular response was calculated by taking the aver-
age of the azimuths. The final normalized and interpolated
angular responses of both Brewers are also shown in Fig.2.

3.2 Slit function and wavelength calibration

The entrance and exit apertures of a monochromator have fi-
nite widths. As a consequence, not only photons with the
desired wavelengthλ0 pass through the monochromator, but
also those with wavelengths within a certain interval around
λ0. When the monochromator is set to a fixed wavelength
λ0, its transmittance, as a function of wavelength, is called
the slit functionf (λ). The width of the slit function is of-
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Fig. 3. The slit functions of the Brewers #037 and #107.

ten quantified by the full width of the function at half of its
maximum (FWHM).

The slit functions for the spectrophotometers at Sodankylä
and Jokioinen were characterized for the first time during
the intercomparison at Izaña in 1996 (Kyrö, 1997). They
were determined using the HeCd-laser line at 325.029 nm as
a source of monochromatic light. In addition, the slit func-
tion of Brewer #107 was measured twice in 1997 immedi-
ately before and after the realignment of the monochroma-
tor, and once again in 2002. The repeated characterizations
confirmed the stability of the slit function between the years
1996 and 1997, the expected change in 1997, and another pe-
riod of stability thereafter. Figure3 shows the measured slit
functions of both Brewers. For Brewer #107, the slit func-
tion “slit1” was used before day 114 in 1997, while “slit2”
was used from that day onwards.

The two Brewers have symmetrical and nearly identical
slit functions down to about 10−3 of the maximum of the
signal. Below that level, the internal stray light in the Mk II
Brewer at Sodankylä can be seen as persistent noise that is
handled as described in Ch.5.2. In the Mk III instrument at
Jokioinen, the stray light level is about two decades lower.
The FWHM for the Brewers #037 and #107 are 0.56 and
0.59, respectively.

The relation between the actual wavelength(L) during the
scan of an irradiance spectrum and the position(M1) of the
micrometer turning the grating in the first monochromator is
given by the equation

L = d1 + d2M1 + d3M
2
1, (1)

whered1, d2, andd3 are the so-called dispersion coefficients.
The determination of these coefficients is an essential part of
each annual maintenance. This work utilizes the emission
lines of spectral discharge lamps, usually those of mercury
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and cadmium. The correct positioning of the grating is phys-
ically checked on every UV scan using the 296.7 nm line of
an internal mercury lamp.

In the case of Brewer #107, the year-to-year change
needed in the calibration has always been equivalent to a very
small, i.e., from zero to 0.1 nm, adjustment in the wavelength
scale. During the last five years there has been no need for
any change in Brewer #107, which indicates a good wave-
length stability.

3.3 Temperature dependence

Brewer spectrophotometers are provided with a heating el-
ement maintaining the internal temperature above approx.
+8◦C under all conditions. However, the instrument is not
temperature stabilized. According to, e.g.,Cappellani and
Kochler(1999) andWeatherhead et al.(2001), Brewer mea-
surements have a temperature dependence, which may be at-
tributable to temperature dependences in the photomultiplier
tube itself and in the filters in front of the photomultiplier.
Ylianttila and Schreder(2005) have discussed the tempera-
ture sensitivity of teflon diffusers.

In 1998, in order to determine the temperature dependence
of the Brewers #037 and #107, the routine lamp irradiance
measurements were analyzed with respect to temperature.
The study indicated temperature dependencies that could not
be overlooked. The dependencies were subsequently charac-
terized for both instruments by on-site laboratory measure-
ments of 1000 W working standard lamps from Optronics
Inc.

The procedure for the characterization measurements was
as follows: The Brewers were heated and cooled using an
air-blower system built for the purpose. Each scan was made
after the temperatures and gradients inside the instrument had
fully stabilized. The range of the internal temperatures cov-
ered values from 15.3 to 47.6◦C and 14.8 to 45.2◦C for #107
and #037, respectively. Unfortunately, the available equip-
ment did not allow cooling the system to any lower temper-
atures. The temperature of the dark room was stabilized at
23◦C.

The results suggested a linear dependence between the in-
ternal temperature and the photon counts per cycle; this de-
pendence can be used for correcting the data. A linear model
relating the irradiance and the temperature was formulated as
follows:

I (λ) = I0(λ) ∗ (1 + c(λ) ∗ dT ) (2)

Here,dT =T −T 0 is the temperature difference between the
Brewer’s internal temperatureT and the reference temper-
atureT 0=23◦C; I0=I (T 0) is the reference irradiance (in
counts/cycle);I is the measured irradiance (in counts/cycle);
and c(λ) is the temperature dependence factor (in units of
1/◦C). The temperature dependence factors obtained by lin-
ear regression for each wavelength are shown in Fig.4. Also
shown are the fits (a polynomial for #107 and a two-piece
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Fig. 4. Temperature dependence factors obtained for Brewer #107
(green crosses) and Brewer #037 (blue circles).

linear for #037) that are performed in order to smooth the
ripples in the curves.

Garane et al.(2006) presented a temperature character-
ization methodology that has a few differences compared
to ours. They performed continuous scans with Brewers
brought into and warming up in the laboratory, whereas in
our measurements scans were taken after the Brewers had
stabilized to a given temperature. The temperature correction
factor for a double monochromator derived byGarane et al.
(2006) exhibited no wavelength dependence, in contrast to
our characterization measurements, in which wavelength de-
pendences for both the single and the double monochroma-
tor were detected. It is not yet known whether this difference
is due to the differences in the measurement procedures or
to inherent variations between the individual Brewer instru-
ments discovered by, e.g.,Weatherhead et al.(2001).

4 Long-term spectral responsivity

The long-term spectral responsivities of both Brewers have
been calculated for the whole period of measurements. The
objective has been to obtain instrument spectral responsiv-
ity time series based on one specific irradiance scale for the
whole measurement period. A set of lamp measurements
during the period are used. The lamp measurements are made
at both sites on the roof and in the laboratory dark-room, and
the data are corrected to the reference temperature. Before
the years 1998 and 1997, at Sodankylä and Jokioinen, re-
spectively, only 50 W lamp measurements made on the roof
were available. Thereafter mainly laboratory measurements
of 1000 W lamps have been used. The process involves the
use of several lamps throughout the whole period, and the
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Fig. 5. The responsivity time series 1990-2006 and 1995-2006 for
the Brewers(a) #037 and(b) #107, respectively, at 305 nm.

way individual lamps are used is slightly different for the
two Brewers; both methods are presented here.

Firstly, the lamp measurements are quality-checked man-
ually. Secondly, the chosen irradiance scale is transferred
from the primary standard to the working standard and work-
ing lamps. Thereafter, any possible drifts in the lamps are
detected by comparing the time series of all lamp measure-
ments against each other. If a drift is detected, measure-
ments with that lamp are either excluded or, if possible,
re-calibrated with the help of the other lamps. The irradi-
ance scale used in this analysis is provided by the Helsinki
University of Technology (HUT). The primary standards of
both Brewers are calibrated on average once a year at the
HUT, which is an accredited national Standard Laboratory
(Kübarsepp et al., 2000).

Once the set of trusted lamp measurements has been com-
piled, calculation of the instrument spectral responsivity is
possible for each measurement time of an individual lamp
and for each wavelength. In the case of Brewer #107, a lin-
ear time interpolation is thereafter performed for each lamp
separately to give a continuous spectral responsivity time se-
ries based on that lamp. Thereafter all the spectral respon-
sivity time series are averaged, and finally a running average
is calculated using a±15 day window, which smooths out
small-scale time variations from the final product. However,
in the case of Brewer #037, all the available lamp measure-
ments during a given day are first averaged, and thereafter
time-interpolated and smoothed. The choice between the or-
der in time-interpolating and averaging individual lamps is
subjective, and depends on the number of trusted lamps, on
the frequency of laboratory calibrations, and on the desired
level of small-scale features in the final spectral responsivity
time series.

Figure5 shows the 305 nm responsivity time series for the
Brewers #037 and #107. The sudden severe drop in 1993 in
the responsivity of Brewer #037 is due to the accidental burn-
ing of a heating element inside the instrument box. After this
accident, the responsivity rose to almost it’s previous level af-
ter which ageing has occurred, showing as a downward drift
of a couple of percent per year. Approximately the same drift
is observed for Brewer #107. The points of discontinuity in
the responsivity time series denote occasions of instrument
maintenance and repair on which the instrument characteris-
tics have changed. Drifts of the same order of magnitude are
also observed inGarane et al.(2006). They report a decrease
in the spectral responsivity at 320±5 nm of around 3% per
year for both the single and double monochromator Brewer
spectroradiometers of Thessaloniki. They suggest that the
drift is due to an aging effect of the different optical compo-
nents of the instrument, including the diffuser.

During our work, we have compared spectral responsivi-
ties produced using only 50 W working lamps and only using
1000 W lamps. This was important, as at the beginning of the
time series we made only 50 W lamp measurements, and the
question arose, how well we can trust these measurements?
Nowadays, each time the Brewer measures 1000 W lamps
in the laboratory dark-room, 50 W lamps are also measured.
Additionally, between laboratory measurements, 50 W lamps
are measured on the roof. We can therefore produce two dif-
ferent spectral responsivity time series: one using only the
1000 W lamps and one using only the 50 W lamps. In both
time series, the irradiance scale has been transfered from the
primary standard 1000 W lamp, and the spectral responsivity
has been corrected to the reference temperature. These two
spectral responsivity time series follow each other within the
measurement uncertainties, and give us confidence that the
whole time series is homogenized, even though only 50 W
lamps were used at the begining.

5 Data processing

In the previous section, we have described the laboratory
characterizations performed for our spectrophotometers. In
this section the known errors are now corrected using these
laboratory characterizations, using a theoretical approach or
using a combination of these two.

The raw data is processed into irradiances using a Perl
language program called spede.pl. It is based on the Qba-
sic program, that was released by the manufacturer of
the Brewer spectrophotometers (SCI-TEC). Some additional
corrections, e.g., the cosine correction, the spike correc-
tion and the temperature correction have been implemented
within the FMI. During the processing of the data, some
check values, e.g., for an impossible high UV index, are cal-
culated on the fly, in order to warn for suspicious measure-
ments.

Atmos. Chem. Phys., 8, 3369–3383, 2008 www.atmos-chem-phys.net/8/3369/2008/
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5.1 Noise spikes

The first step is to remove noise spikes from the raw data. By
spikes we refer to an anomalous number of counts recorded
in one wavelength channel causing a peak upwards or down-
wards that does not originate from the true radiation signal
(Meinander et al., 2003). The origin of the spikes is not fully
understood, but the spectrum can be corrected. The spike
correction algorithm is based onMeinander et al.(2003),
where a statistical method is used to identify the noise spikes
in the Brewer UV spectra. In order to work both for small
and large count values in the raw data, the method is based
on differences in relative changes in the spectra.

For the correction, two main parts have to be done before-
hand. First a clear sky reference spectrum is needed. For
Sodankyl̈a and Jokioinen, two years of cloud-free data were
used for calculating an average clear sky spectrum. Secondly,
a statistical standard deviation file was computed, based on a
large (two-year) data set.

Next, the spectral ratios of raw counts (C) divided by the
reference (R) are computed. These are termed Ratios. The
differences of these Ratios between the neighbouring chan-
nelsλ andλ − i, wherei denotes the Brewer spectrum step,
are calculated. These differences are termed Dratios, as given
by

Dratio(λ) =
C(λ)

R(λ)
−

C(λ − i)

R(λ − i)
. (3)

Dratios are then compared with the chosen confidence level.
This means that a peak is detected if the signal in the first

channel goes up and that in the next channel down, or vice
versa. Other kinds of peaky features are expected to be due to
changes in the cloud conditions. In addition, only relatively
large spikes are considered, i.e., the ratio of counts divided
by the corrected counts exceeds 1.5 or is less than 0.5.

The new corrected value for the removed peak is calcu-
lated as the average of the Ratios of the neighbouring chan-
nels multiplied by the reference spectrum value at that chan-
nel, as given by

C(λ)corrected= 0.5 ∗ (
C(λ − i)

R(λ − i)
+

C(λ + i)

R(λ + i)
) ∗ R(λ). (4)

In this way the shape and the fine structure of the spectral
features are preserved.

5.2 Dark current, dead time and stray light

The dark current is the response exhibited by the photomul-
tiplier during periods when it is not actively being exposed
to light. The dark current is recorded before each scan. Raw
count values for further data processing are obtained by sub-
tracting the measured dark current from the measured counts
in a function including the number of cycles and the integra-
tion time.

The dead time is the time after each light exposure, dur-
ing which the photomultiplier would not be able to record
another exposure if it were to happen. The dead time of the
Brewer is regularly recorded, and daily values are saved in
a dead time history file. Typical dead time values for both
Brewers are 30–40 ns. A dead time correction to the raw
counts is performed using an iteration of an exponential func-
tion including the number of counts and the dead time values.

Stray light consists of radiation at wavelengths outside the
wavelength range of the slit function that is detected inside
the range expected. This is a special problem inherent in
single monochromator spectroradiometers. Brewer #107 is
a double monochromator, in which the amount of stray light
passing into the detector is minimal. The average of counts at
wavelengths shorter than 292 nm is calculated. This average
value is subtracted from the count values at each wavelength
of the spectrum. Since Brewer #037 is a single monochroma-
tor, stray light disturbs measurements up to around 305 nm
(Bais et al., 1996). For this Brewer, signals at wavelengths
shorter than 293 nm are considered as stray light, and are sub-
tracted from longer wavelengths.

5.3 Temperature

The temperature dependencies of the Brewers are corrected
using the temperature dependence coefficients derived from
the characterization measurements described in Sect.3.3.
Each scan is normalized to the reference temperature by
computing I0(λ) on the basis of Eq. (2). The procedure yields
a time series of irradiance scans (in units of counts/cycle)
normalized to the same reference (laboratory) temperature
for which the response of the instrument has been derived
(23◦C).The procedure differs from that presented byGarane
et al.(2006) in the selection of the reference temperature. In
our method, the reference is constant, whereas in the method
presented byGarane et al.(2006), the reference is the tem-
perature of the absolute calibration valid for the period.

5.4 Cosine error

Several papers have been written about methods for the
cosine correction of radiometers (Landelius and Josefsson,
2000; Bais et al., 1998; Feister et al., 1997; Seckmeyer and
Bernhard, 1993). They differ mostly in their way of han-
dling the radiation distribution of the sky. The FMI method
is shortly described here.

If F denotes the actual andF ′ the measured irradiance, we
can define the correction factor for the angular response of
a spectroradiometer (fglob) for a particular global irradiance
measurement as
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fglob =
Fglob

F ′

glob
=

Fdiff + Fdir

F ′

diff + F ′

dir
, (5)

where the subscripts glob, diff, and dir correspond to global
irradiance and its diffuse and direct components, respec-
tively.

Equation (5) can be rewritten as

fglob =
(Fdir/Fdiff + 1)

(F ′

dir/Fdir ∗ Fdir/Fdiff + F ′

diff/Fdiff )
. (6)

Equation (6) suggests that in order to obtain the cosine
correction factor, three components are needed:
1) F ′

dir/Fdir, the ratio between the measured and actual direct
irradiance, i.e., the direct cosine error,
2) F ′

diff/Fdiff , the ratio between the measured and actual
diffuse irradiance, i.e., the diffuse cosine error,
and 3) Fdir/Fdiff , the ratio between the actual direct and
diffuse irradiance.

The ratio between the measured and actual direct irradi-
ance can be expressed as the ratio of the angular response of
the diffuser (C(θ, λ)) and the cosine of the solar zenith angle
(θ ),

F ′

dir

Fdir
=

C(θ, λ)

cos(θ)
. (7)

The ratio between the measured and actual diffuse radia-
tion is

F ′

diff

Fdiff
=

∫
L(θ, φ, λ) ∗ C(θ, λ) d�∫
L(θ, φ, λ) ∗ cos(θ) d�

, (8)

where the spectral radianceL(θ) is integrated over the upper
hemisphere,θ is the zenith angle andφ the azimuth angle. In
general, the exact sky radiance distribution (L(θ, φ, λ)) is not
known. By assuming isotropic diffuse radiation, however,
Eq. (8) can be simplified to

F ′

diff

Fdiff
=

∫
C(θ, λ)d�

π
. (9)

In our method, the ratio between the actual direct and dif-
fuse irradiance,Fdir/Fdiff , is obtained using a radiative trans-
fer model. The LibRadtran package and UVspec disort ver-
sion (http://www.libradtran.org) (Mayer and Kylling, 2005)
was used in the following way: Assuming the UV irradiance
can be expressed as a function of wavelength, solar zenith
angle, cloud optical depth, ozone absorption, aerosols and
albedo, a six-dimensional lookup table can be constructed.
Using the lookup table and knowing the irradiance at each
wavelength from the measured Brewer spectrum, the cloud
optical depth,τcloud(λ), can be found as a function of wave-
length. Further details of this approach to estimate the cloud
optical depth can be found inArola et al. (2003b). Once
τcloud(λ) is found, the radiative transfer model is used to de-
rive the direct-to-diffuse ratio as a function of wavelength.

OnceFdir/Fdiff is obtained and the angular response of the
diffuser, C(sza, λ) is known, Eq. (6) can be used to esti-
mate the cosine correction factor for each wavelength. In-
serting the angular response of the Brewers at Sodankylä and
Jokioinen into Eq. (9), and assuming the diffuse to be radia-
tion isotropic, the ratios between measured and actual diffuse
irradiance are 0.90 and 0.91, respectively. This means that,
when there is no direct light coming into the instrument’s dif-
fuser, the errors in the measurements due to the non-ideal an-
gular response can be as much as 10% and 9% for Sodankylä
and Jokioinen, respectively. This value is modified in the
presence of direct irradiance, and its change depends on the
ratio between the actual direct and diffuse radiation. The ac-
tual cosine correction factors of the Brewers at Sodankylä
and Jokioinen can vary between 1.08–1.13 and 1.08–1.12,
respectively, depending on the wavelength.

Bais et al.(2005) have described the cosine characteri-
zation of several spectroradiometers using a portable device
for characterizing the angular responses. Among the instru-
ments, the two Finnish Brewers were characterized as well.
The results show angular response errors in the diffuse irra-
diance, assuming isotropic radiation, of 10.4±3% (1σ ) and
8.0±3.1% (1σ ) for the Brewer #037 and Brewer #107, re-
spectively. The results are consistent with our results within
the measurement uncertainties.Garane et al.(2006) report
mean cosine correction factors of 7±1.5% (1σ ) and 11±2%
(1σ ) for the single and double monochromator Brewers of
Thessaloniki, respectively.

5.5 Wavelength alignment

Because of the strong increase of the solar spectrum with
wavelength in the UV-B range, even small errors in the wave-
length alignment of a spectroradiometer lead to significant
errors in measured spectral irradiance. Brewer spectropho-
tometers are typically assumed to have only minor problems
with wavelength alignment. The need to perform a wave-
length shift correction is therefore not seen as critical. This is
indeed the case for most Brewers, including Brewer #107. In
such cases, the wavelength error is randomly spread around
the average wavelength error.

In the case of Brewer #037,Arola et al. (2003b) found
that a stepwise change in the wavelength alignment had oc-
curred between 1993 and 1994. The typical value for the
wavelength shift before 1994 was−0.06 nm, and 0.01 nm
thereafter. If this wavelength error had not been corrected,
an error of several percent could have been introduced in a
long-term change analysis of UV spectra.

The current data processing includes a wavelength shift
correction using the SHICRIVM wavelength shift correction
package described inSlaper et al.(1995). Spectra transfered
to the EUVDB database, for example, have been corrected
for possible wavelength shift.
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Table 2. Intercomparison campaigns in which the FMI Brewers have participated.

Year Campaign Place #037 #107

1993 NOGIC-93 Nordic comp. Izaña, Spain x
1995 CAMSSUM European comp. Ispra, Italy x
1996 NOGIC-96 Nordic comp. Izaña, Spain x x
1997 SUSPEN European comp. Nea Mihaniona, Greece x
2000 NOGIC-00 Nordic comp. Tylösand, Sweden x x
2002 QASUME Core group of Europe Ispra, Italy x
2002 QASUME portable reference visit Jokioinen x
2003 QASUME portable reference visit Jokioinen and Sodankylä x x
2005 QASUME portable reference and Iberonesian network comp. Huelva, Spain x
2007 QASUME portable reference visit Jokioinen and Sodankylä x x

6 Quality assessment

Following Webb et al.(2003), the quality assessment of an
instrument can be done by comparing the instrument to other
independent instruments measuring the same quantities. In
this section, we review the results of intercomparison cam-
paigns and comparison with the portable reference spectro-
radiometer QASUME (Quality Assurance of Spectral Ultra-
violet Measurements in Europe) (Bais et al., 2003). For qual-
ity assurance purposes the measurements are also compared
with reconstructed UV dose rates. The flagging reports of the
spectra transferred to the European UV Data Base (EUVDB)
are also discussed.

6.1 Intercomparison campaigns

Both Brewer spectrophotometers of the FMI have partici-
pated in several international UV spectroradiometer com-
parisons (Koskela, 1994; Kjeldstad et al., 1997; Gardiner
and Kirsch, 1997; Bais et al., 2001; Meinander et al., 2003;
Thorseth et al., 2002). Table2 shows in detail the year of
the campaign, the location and the Brewer that has partici-
pated. Brewer #037 has mainly participated in the Nordic
comparisons and has been the host for two portable reference
spectroradiometer QASUME visits, whereas Brewer #107
has travelled successfully around Europe. This instrument
took part in the Ispra comparison in 2002, to which were in-
vited six spectroradiometers that had performed consistently
in previous intercomparisons. Besides the intercomparison
campaigns with several instruments, smaller intercompari-
son campaigns have been organized. A regular comparison
is done on the yearly visit of the reference Brewer #017 of
the International Ozone Services (IOS). During these visits,
both UV and ozone measurements are compared, and the in-
struments are checked and maintained, if necessary. National
comparisons have also been performed during many of these
visits.

When interpreting the results of the intercomparison cam-
paigns, we need to keep in mind that especially the results
obtained in the earliest campaigns represent the situation pre-
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Fig. 6. The ratios (Brewer/Reference) of daily sums of irradiances
for the Brewers #037 (green) and #107 (blue) during the NOGIC-
2000 intercomparison campaign for day number 164.

vailing at that time, and that the data can nowadays be re-
analyzed using different methods and knowledge. In those
first intercomparisons, almost no instrument had correction
for the cosine error. Also, the intercomparisons were con-
centrated on clear sky weather.

Every campaign has been a good step to improve the mea-
surements. Regarding the FMI Brewers, the NOGIC-00
campaign was the first, in which the data processing pro-
cedures presented in this paper were in use. In that cam-
paign, the cosine correction and temperature correction pro-
cedures where used for the first time. An example of one
day’s measurements (06:00 UTC–20:00 UTC) compared to
the reference spectra is shown in Fig.6. The plots are ratios
of the daily sums of irradiances measured with the Brew-
ers to the calculated reference daily sums. The measure-
ments were processed using the SHICrivm QA/QC software
package (Slaper et al., 1995), and the reference spectra were
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Fig. 7. The results of the comparisons between(a) Brewer #037,
(b) Brewer #107 and the portable reference spectroradiometer QA-
SUME.

calculated followingSlaper and Koskela(1997). From the
figure, it can be seen that compared to the reference spectra,
Brewer #037 was within±5% at wavelengths longer than
305 nm and Brewer #107 was within±5% at most of the
wavelengths. Individual spikes can be due to changing cloud
conditions at a single moment. The observed downward drift
observed at wavelengths longer than 317 nm for Brewer #037
was due to problems with the irradiance scale of one calibra-
tion lamp. The lamp was recalibrated after the campaign.

From previous intercomparisons, the most important result
is that the ratio to the reference was stable during the compar-
ison days. In the NOGIC-96 intercomparison, for example,
the standard deviation of the ratio of the measured dose rate
to that of the reference was 1–2% for both instruments. The
other important result is that all measurements starting from
the beginning of the time series are appropriate after applying
all known corrections to the data.

6.2 QASUME reference

The portable reference spectroradiometer QASUME from
Physikalisch-Meteorologisches Observatorium Davos,
World radiation Center (PMOD/WRC) is a Bentham
spectroradiometer, whose irradiance scale is traceable
to the primary standard of the Physikalisch-Technische
Bundesanstalt (PTB), Germany, through transfer standard
lamps (Gröbner and Sperfeld, 2005). It can be seen as the
“European standard spectroradiometer”, and the irradiance
scale is assumed to be stable over the years. As spectro-
radiometers are challenging instruments for travelling, this
gives a good opportunity for checking the performance of a
site spectroradiometer without travelling.
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Fig. 8. Brewer #037 UV dose rates plotted together with modelled
clear sky UV dose rates, reconstructed dose rates, SL501A dose
rates, modelled clear sky global radiation and CM-11 pyranometer
global radiation measurements at Sodankylä for 29 April 2001.

The portable reference spectroradiometer QASUME has
visited Jokioinen and Sodankylä in 2003 and 2007. In addi-
tion to this, the instrument visited Jokioinen during the first
experimental year, in 2002. The Jokioinen Brewer #107 was
also part of the core group, and participated in the starting
comparison of the QASUME project in 2002, in Ispra, Italy
(Gröbner et al., 2005). The protocol of each site visit in-
cluded measurements of the spectral solar irradiance, which
were performed every half-an-hour from the morning to the
evening. Synchronized solar spectra were obtained in the
range of the site spectroradiometer, every 0.5 nm, with a
wavelength increment every 3 s. The solar spectra were con-
verted to a common wavelength scale and to a nominal reso-
lution of 1 nm using the SHICRivm software package. A de-
tailed description of the measurement procedure is published
in Gröbner et al.(2005).

A summary of the results is shown in Fig.7 for both the
Brewers. The mean ratio to the QASUME reference for SZA
smaller than 75◦ are shown for all comparison years. For
Brewer #037, the results of both comparisons, in 2003 and
2007, are near each other. A difference of around 5% can be
seen in wavelengths longer than 305 nm. At shorter wave-
lengths, the typical single monochromator stray light prob-
lem disturbs the readings, and those wavelengths need to be
rejected.The small downward shift at longer wavelengths in
2003 may be due to problems with a single calibration lamp.
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For Brewer #107, a difference of around 4–5% was ob-
served in 2002 and 2007, at Ispra and Jokioinen, respec-
tively. At Jokioinen in 2002 and 2003 the mean difference
was around 2%. These results show very good agreement
within the measurement uncertainties of spectral measure-
ments and demonstrate the good stability of the instrument.
As the irradiance scale of the FMI Brewers is traceable to
the HUT, and that of QASUME to PTB, some differences
in the scale are possible (Gröbner et al., 2002). The stable
difference between the instruments over all wavelengths also
supports the theory of differences in the irradiance scale. At
Jokioinen, in 2007, using laboratory lamp measurements, the
difference in the irradiance scale was found to be 3%. This
leaves only 2% of the differences to be explained, which can
be considered as a very good results in the challenging field
of measuring UV wavelength spectra.

6.3 Comparison with reconstructed UV

For quality assurance purposes, the UV spectra are processed
to give erythemally-weighted UV dose rates that are com-
pared with reconstructed UV dose rates. The reconstruction
of the UV dose rates is based on the method described in
Lindfors et al.(2007). The method uses pyranometer mea-
surements to quantify the influence of clouds. A radiative
transfer model is used to reproduce the UV dose rates using
an appropriate cloud modification factor.

For quality assurance purposes figures are plotted show-
ing the reconstructed erythemally-weighted UV dose rates,
the measured UV dose rates, the modelled clear sky UV
dose rates, and the modelled clear-sky global radiation and
global radiation measured with a CM-11-type pyranometer.
Figure 8 shows an example of a suspicious measurement
day, the 29th of April 2001 at Sodankylä. One-minute dose
rates measured with a nearby SL501A radiometer are also
plotted. Both the modelled values and the SL501A data
behaviour differ from that of the Brewer measurement at
around 10:00 UTC. The Brewer seems to have measured val-
ues that are too low.

One need to be careful, when interpreting figures like
Fig. 8. As the modelled data is presented as a one-hour
average, the data represent the average situation during that
hour. The Brewer data, on the other hand, represent the sky
conditions over some minutes, which means that differences
from the model are obviously possible, e.g. large changes in
cloudiness can be observed on a time-scale of minutes, lead-
ing to high variations in the UV radiation. A feature like that
shown in Fig.8 could be due to a sudden rain shower, heavy
clouds, malfunction of the instrument, a local shadow on the
diffuser caused e.g., by a person walking by, cleaning of the
dome or for some other unknown reason. Ancillary mea-
surements are often needed in order to find out if the feature
is real or not. In this specific case, the SL501A erythemal
UV dose rates confirm the doubt that something is wrong
with the Brewer measurement. The most probable reason

Table 3. Summary of the all Sodankylä and Jokioinen quality flags
in the EUVDB database.

Sodankyl̈a GREEN YELLOW RED GREY BLACK
shift1 97.98% 0.00% 0.00% 2.02% 0.00%
start irr 99.61% 0.13% 0.08% 0.07% 0.11%
spike+shape 94.87% 4.20% 0.69% 0.08% 0.16%

Jokioinen GREEN YELLOW RED GREY BLACK
shift1 99.12% 0.60% 0.00% 0.27% 0.00%
shift2 99.83% 0.00% 0.00% 0.17% 0.00%
start irr 99.86% 0.05% 0.04% 0.01% 0.03%
spike+shape 89.93% 8.17% 1.65% 0.01% 0.24%

shift1=shifts in the wavelength range 300–325 nm
shift2=shifts in the wavelength range 325–400 nm,
start irr=irradiance level at which the readings start to become
significant (i.e., noise in the spectrum below 25% of the signal),
spike+shape=local deviation from the expected spectral structure

was shadowing by people in front of the instrument during a
maintenance event.

6.4 European UV database

Jokioinen and Sodankylä spectral UV data are regularly sub-
mitted to the European Database of UV radiation (EUVDB)
(http://uv.fmi.fi/uvdb/index.html). At the EUVDB all incom-
ing spectra undergo an automatic quality flagging process by
the SHICrivm package developed by the RIVM, Netherlands
(Slaper et al., 1995) (http://www.rivm.nl/shicrivm) and the
CheckUVSpec package by the NILU, Norway (http://zardoz.
nilu.no/∼olaeng/CheckUVSpec/CheckUVSpec.html). The
SHICrivm tool assigns to each spectrum quantitative quality
indicators for wavelength scale errors, spikes and shape prob-
lems, lowest wavelength with accurate measurement, and
atmospheric transmission. The CheckUVSpec tool assigns
spectra with an atmospheric signature flag which is related
to the prevailing atmospheric conditions. It should be noted
that while some of the quality flags, e.g. wavelength scale
errors, can be determined with high accuracy, problems with
irradiance scale errors can only be detected if the error is very
large.

Table3 shows the summary of selected EUVDB quality
flags related to errors and problems that can be determined
with accuracy. The majority of the flags for both instruments
are in the GREEN category, with some YELLOW flags in
the spike and shape category, which is to be expected, be-
cause changing cloudiness causes spectral shape distortions.
At Sodankyl̈a, for example, 98% of the spectra are flagged
as green for wavelength shifts, 99% for start irradiance, i.e.,
instrument sensitivity, and 95% for spike detection and shape
problems. For Jokioinen the values are 99%, 99% and 90%,
respectively. In general, the number of RED, GREY and
BLACK flags is very small, and in this respect the data can be
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considered of high quality. Further details about flagging can
be found here:http://uv.fmi.fi/uvdb/html/flaginformation.
html http://www.muk.uni-hannover.de/∼seckmeyer/EDUCE

7 Conclusions

Since the early 90’s, spectral UV radiation has been mea-
sured with the Brewer spectrophotometers #037 and #107 at
two sites in Finland. From the very beginning, special atten-
tion has been paid to the quality of these measurements, and
a comprehensive quality assurance scheme has been devel-
oped. A lot of work has also been done on the characteriza-
tion of the instruments, which has resulted in better monitor-
ing of the instrument stability and improved postcorrection
methods. This paper presents the quality assurance work and
data processing scheme for the FMI spectral UV measure-
ments. A future objective is to make a quantitative uncer-
tainty analysis of these measurements.

At FMI, much effort has been put into the quality assur-
ance of the spectral UV measurements, starting from care-
ful training of the operators. Standard operating procedures
include a daily routine check of the operation of the instru-
ment, as well as regular lamp measurements in order to mon-
itor the stability of the instruments. Since the late 90’s,
both of FMI’s measurement sites have had a well-equipped
laboratory dark-room that enables absolute calibration in a
temperature-controlled environment with a 1000 W lamp.
The lamp measurements are carried out varying the lamp set.
This allows the use of lamps with different burn histories and
a better identification of the lamp drifts.

The lamp measurements have been used to determine the
whole spectral responsivity time series of the spectral UV
measurements starting from 1990 and 1995 for Sodankylä
and Jokioinen, respectively. The construction of the spec-
tral responsivity time series is based on the transfer of the
HUT irradiance scale to the whole time period, including
also the first measurement years when only 50 W lamp mea-
surements were available. The procedure normalizes the
lamp measurements, as well as the whole time series, to the
reference temperature. This is essential, because otherwise
the temperature-dependent outdoor lamp calibrations would
cause a seasonal calibration error.

The most important laboratory characterizations of the
Brewer instruments have been carried out, and the whole
of the spectral UV time series have been corrected and re-
processed using the results. The temperature characteriza-
tion showed a linear temperature dependence that can be ac-
counted for in postprocessing. Using the angular response
measurements and a radiative transfer model, a wavelength-
dependent cosine correction factor can be determined for
each spectrum. The spectral resolution of the instrument
has also been characterized, as well as the entrance optics.
The processing software also includes corrections for noise
spikes, dark current, dead time and stray light. The pro-

cessing scheme can be applied to other spectroradiometers
as well, assuming that the required instrument characteristics
are available.

Intercomparisons with other spectroradiometers have
showed good agreement within the measurement uncertain-
ties. The latest comparison with the portable reference
spectroradiometer QASUME showed a mean difference of
around 5% for both Brewers. About half of this difference
can be explained by differences in the irradiance scale, and
the rest falls well within the measurement uncertainties.

Reconstructed UV dose rate data can contribute to quality
assurance. They can be used to identify suspicious measure-
ments that require more careful manual quality checking. A
future objective is to implement this tool as part of the au-
tomated quality assurance process, so that the whole time
series could be re-checked, and new measurements could be
checked online. Reconstruction methods can also be used to
produce UV spectra, which have a further potential for qual-
ity checking.

The spectral UV data of both Brewers are submitted to the
European UV database (EUVDB) and can be downloaded
at http://uv.fmi.fi/uvdb/index.html. All spectral UV data un-
dergo an automatic flagging procedure at the EUVDB, and
the results for the Finnish Brewers indicate good wavelength
accuracy, and that anomalies in the spectra are very rare. It
should be noted that the quality flagging does not give precise
information about the accurary of the absolute calibration of
the measurements.

Spectral UV data contain a lot of information about the
atmosphere. Traditionally they have been used for monitor-
ing of the ozone layer, but they also contain information on
aerosols, trace gases, surface albedo, and clouds. Combined
with other measurements and models, the long-term time se-
ries of spectral UV data can be used for versatile study of the
changing climate.
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Blumthaler, M., Seckmeyer, G., Webb, A., Koskela, T., Görts,
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