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Abstract. Principal component analysis provides a fast andrespiratory diseases and mortality rates (Maynard and May-
robust method to reduce the data dimensionality of an aerosatard, 2002; Peters et al., 2000; Spurny, 2000; Schwela,
size distribution data set. Here we describe a methodologyl996). Owing to the importance of the atmospheric parti-
for applying principal component analysis to aerosol size discles in affecting atmospheric processes and human health,
tribution measurements. We illustrate the method by apply-t is important to understand the processes that convert gas
ing it to data obtained during five field studies. Most varia- phase species to particulate matter and that modify particle
tions in the sub-micrometer aerosol size distribution over pe-size distributions.
riods of weeks can be described using 5 components. Using 6 Measurements of time series of aerosol size distributions
to 8 components preserves virtually all the information in thecan help us to understand how atmospheric aerosol particles
original data. A key aspect of our approach is the introduc-evolve under the influence of processes such as nucleation,
tion of a new method to weight the data; this preserves the oreoagulation, and condensational growth. However, aerosol
thogonality of the components while taking the measuremensize distribution data sets can be difficult to handle and in-
uncertainties into account. We also describe a new methoterpret due to the large amounts of data involved. To analyse
for identifying the approximate number of aerosol compo- the size distributions efficiently, data simplification is usually
nents needed to represent the measurement quantitativelsequired prior to data analysis.
Applying Varimax rotation to the resultant components de-  One classic method used to simplify aerosol size distribu-
composes a distribution into independent monomodal distions is that of Whitby (Whitby, 1978; Knutson and Whitby,
tributions. Normalizing the components provides physical 1975) in which distributions are fit to three log-normal func-
meaning to the component scores. The method is relativelyions for the nucleation, accumulation, and coarse particle
simple, computationally fast, and numerically robust. The modes. More recent measurements have shown that there is
resulting data simplification provides an efficient method of often an additional Aitken particle mode; this is located be-
representing complex data sets and should greatly assist ifflveen the nucleation and the accumulation particle modes.
the analysis of size distribution data. Thus four log-normal functions, three of which are in the
submicrometer range, are often required to fit the entire size
distribution.

One difficulty in fitting size distributions with log-normal
functions is that it is usually necessary to specify pre-defined

Atmospheric aerosol particles affect the global climate bothSiZ€ ranges for the different particle modes; this is done to re-
directly, by scattering and absorbing solar radiation, and indi-duce the computational time and increase the numerical sta-
rectly, by increasing cloud lifetime and the number of cloud Pility of the fitting program. In many cases, these ranges
droplets (Schwartz, 1996; Twomey, 1991). Aerosol parti- &€ determined based on the particle formation mechanisms.
cles can also significantly degrade visibility (Cheng and Tsai,For €xample, Nkeh et al. (2000) fit one year of 3-500 nm
2000; Barthelmie and Pryor, 1998). In addition, acute expo-SiZ€ distribution data from a forested site in southern Finland
sure to the atmospheric particulate matter leads to increasefith three log-normal functions, to represent the nucleation,
Aitken, and accumulation modes. They found that it was
Correspondence tavl. Mozurkewich generally not possible to define fixed size ranges for these
(mozurkew@yorku.ca) modes; this was due to particle growth from one mode to

1 Introduction

Published by Copernicus GmbH on behalf of the European Geosciences Union.



876 T. Chan and M. Mozurkewich: PCA representation of aerosol size distributions

another. They also found that the decision to include the nuing paper (Chan and Mozurkewich, 2007) we will show how
cleation mode in the fit was often difficult due to the high these simplified representations can assist in source identifi-
level of noise. In contrast, Bhkkonen et al. (2005) applied cation by using them in a conventional factor analysis.
a similar fitting procedure to two weeks of 3-800nm size Since the objective here is to provide a convenient means
distribution measurements obtained from New Delhi, India.of simplifying data sets, we use principal component analysis
In this case, since the three distinct maxima could easily baather than more complex techniques, such as positive matrix
identified throughout the entire study, the three mode log-factorization (Paatero and Tapper, 1994). The former method
normal fits worked very well. However, atmospheric aerosolis numerically much simpler to implement. The chief advan-
size distributions may possess more than three modes. Bitage of the latter method is that it guarantees non-negative re-
mili et al. (2001) fit 17 months of 3—800 nm size distribution sults. Since all of the quantities to be obtained in the present
data, and found that number of modes required varied fromanalysis should be non-negative, this might be seen as a ma-
two to five, depending on the origin of the air mass. jor advantage. However, in practice this does not seem to
These examples illustrate the basic problem encounteretie the case, the results of our analysis gives components in
in fitting atmospheric aerosol data to log-normal functions: which all loadings that are not near zero have the same sign;
the number of observed maxima in the distributions is a vari-these can be chosen to be positive. Changing the sign of the
able. Varying the number of modes used in the fit greatlyloadings also changes the sign of the corresponding scores;
complicates both the fitting process and the interpretation ofvhen the large magnitude loadings are given a positive sign,
the results. Trying to fit more modes than there are maxthe scores also tend to be positive. When this is done, the
ima leads to numerical instability, unless the parameters ar@egative values of loadings and scores that occur are in the
tightly constrained. Forcing the modes into pre-defined sizenature of noise; that is, they are part of fluctuations about
ranges becomes problematic when particle growth covers aero.
wide range of sizes. Fitting atmospheric size distributions Standard principal component analysis was developed
often requires more than three log-normal functions (Birmili largely for handling social science data. It begins by sub-
et al., 2001); since each function requires three fitting pa-tracting variable means from the data and then dividing by
rameters, this can lead to an excessive number of parameteithe variable standard deviations. This scaling is appropriate
Thus, a better method of simplifying size distribution data is for social science data, where all variables are assumed to be
desirable. equally significant and the absolute values have no meaning,
Principal component analysis is an effective alternative forbut, it is inappropriate for physical data. Modifications can
reducing the dimensionality of large data sets; that is, thebe introduced to remove the scaling effects from the rotated
number of components needed to describe most of the varieomponents and obtain absolute results (e.g., Thurston and
ance in the original data is generally much smaller than theSpengler, 1985); however, it is simpler to skip the scaling
original number of variables. This method uses correlationsstep. This is sometimes referred to as applying the analysis
between variables to discover a smaller number of new varito covariances (e.g., Jackson, 1991).
ables, called components, that contain maximum informa- Aerosol size distributions require significant additional
tion about the data. In analysing particle size distribution modifications to the procedure. One difficulty is that aerosol
data, the measured input variables are the number concentraize distributions, whether number or volume, possess very
tions measured in different size bins. The components obiarge variations in concentration; if the data are not weighted,
tained from the analysis will have the form of distribution this tends to force all the components into a limited portion
functions. This occurs because the first component accountsf the size range as the procedure tries to account for small
for the maximum amount of data variance that can be rep+elative changes at those sizes for which the concentrations
resented by a single variable. Each successive componete the highest. If the data are scaled so that each variable has
accounts for the maximum amount of the remaining unex-equal variance, then size bins in which the signal variance is
plained variance in the data. An analysis that retains the firstargely due to instrumental noise are given equal importance
N components gives the best possible fit wittorthogonal ~ with ones that have much less noise. Examples of how these
variables. Since all components are orthogonal to each othegffects can degrade the interpretation of data are given by
the regression fitting of the data to the components is simplé&keenan and Kotula (2004), who have introduced a weight-
and always numerically stable, no matter how many compo-ing method suitable for mass spectral data with pure Poisson
nents are included in the analysis. noise. Our approach is similar in intent, but we introduce a
In atmospheric chemistry, factor analysis methods such asnore general method of weighting the data.
principal component analysis (Thurston and Spengler, 1985) The absolute principal component analysis (APCA) used
and positive matrix factorization (Paatero and Tapper, 1994)n this study produces a weighted least square fit to the data.
have been mainly used for source identification and apporThe procedure described here follows the standard principal
tionment. However, the objective here is only to produce acomponent analysis in selecting a subset of components to
simplified representation of size distribution data sets in or-retain and then rotating the axes to obtain components that
der to assist in data interpretation and analysis. In the follow-are more physically meaningful. We suggest a modification
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T. Chan and M. Mozurkewich: PCA representation of aerosol size distributions 877

of the standard scree plot for identifying the appropriate3 Methodology
number of aerosol components to retain. We use the stan- _ _ _ o
dard Varimax orthogonal rotation; the resulting components3.1  Applying weights to size distribution data

are a set of monomodal distributions with distinct peaks and ) o S )
noise about zero away from the peak. Fitting the measuref\ll the size distribution data used in this study were weighted

ments to the rotated components produces a time series éjsing estimated 'uncertainties in order to ensure the produc-
component scores; these represent the number concentratidf" ©f more reliable results (Cochran and Home, 1977).

of each component present. In this paper, we use size distri?/Ne€n no weights were applied to the data, all the rotated

bution measurements obtained from five different field stud-COMPonent loadings tended to be located below 200 nm; this
ies to illustrate the methodology. is due to the highly varying number concentrations of parti-

cles below 200 nm. Weighting the data produced more rea-
sonable results, with components distributed over the full
particle size range. One consequence of weighting the data
is that conversion to a surface or volume distribution should
2 Size distribution data sources not alter the results; the scaling factors applied to make these
conversions would also have to be applied to the weights and

The size distribution measurements used here were obtainetP Would cancel out in the weigthed data.
from five field studies: Egbert 2003, Pacific 2001, Hamil-
ton 2000, Simcoe 2000, and Hamilton 1999. All size dis-

tributions were measured with a DMA-CPC system over 5-1pe gjze distribution data sets used in this study are in the
min intervals with 16 size bins per decade resolution. Am-¢,.m of a (xj) matrix, withi scans and size bins. Each en-
bient particles were size selected with a TSI 3071 dif'feren-try contains the number concentration in the forndbfdin

tial mobility analyser (DMA) operating in a fast scan mode D,. A reasonable estimated weight;;, (or the inverse of

(Wang and Flagan, 1990). Particles exiting the DMA were i square root of the variance) for each data point can be
counted by either a TSI 3010 or a TSI 3025 Condensat'orbxpressed as
particle counter (CPC). Details are given by Mozurkewich et
al. (2004) 2 2172

: : Wi = [(ka€))* + (CjAy) + (k2Ay)’ )

The Egbert 2003 data set was taken at the Meteorological ) ) )
Service of Canada’s Centre for Atmospheric Research ExNereC; is the concentratiordN/din D, corresponding to
periments at Egbert; a rural site located about 80 km north on€ CPC count fF_” sizg; A;; is the measured concentration
Toronto. Data were available for 22 days. Air flow from fOf Sizej in scani; k1 andk are constants. o
the south is often heavily influenced by urban emissions, 1he first termin Eq. (1) is the minimum counting incre-
whereas air from the north is relatively clean. ment, and serves to preveliit; from approaching infinity as

- .the measured concentration approaches zero. In our DMA-

The Pacific 2001 data set was taken at Sumas Mountaitspc system, the TSI 3010 CPC appeared to count particles

(Eagle Ridge) in Abbotsford, Vancouver, B.C. Data Were j, mtiples of 5 when the concentration is low, therefore

available for 17 days. This site is elevated by about 251 M \aq set to 5. For size distribution data measured by the
above the nearby urban area and farmland, and sits above thgs| 3025 CPC/; was set to unity. The second term rep-

inversion layer at night. A full description of this study IS regents the uncertainty due to counting statistics. When the
given by Li (2004). At this site, combination of biogenic and i e4sured concentration is high, the counting statistics term

anthropogenic emissions are expected from various location§yoqyces unreasonably low estimates of the uncertainty. To
both at the site and away from the site. A detailed discussionmhrove the uncertainty estimates, we also include the frac-
of both the sampling site and the size distributions observedigna| error term (the third term). The fractional error term
in this study is given by Mozurkewich et al. (2004). accounts for the combined flow fluctuation errors in both
The other three data sets were taken as part of the SONthe DMA and CPC, which we expect to be proportional to
TAS study. The Hamilton 2000 and Hamilton 1999 data setsthe measured concentration. This fractional error also in-
were taken at Kelly station, an urban air quality monitoring cludes uncertainties associated with the fact that the DMA
site of the Ontario Ministry of the Environment, located in is a scanning sampler; the particle concentration recorded
downtown Hamilton, Ontario. Air at this site is expected to at a particular size may be different from the average con-
be strongly impacted by local traffic and industrial emissions.centration during the scan due to variations in the aerosol
Data were available for 11 days in 1999 and for 25 days induring the time required for the scan. Unfortunately, we do
2000. The Simcoe 2000 data were taken at a rural site aboutot have an independent estimate of this proportionality con-
70km SW of Hamilton. This site is strongly impacted by stant. However, setting, to too small a value gave large
trans-boundary transport from the United States. Data wer@alues of chi square (i.e., numerically poor fits) for distri-
available for 15 days. butions with visually excellent fits. We found thigi=0.05

3.1.1 Estimation of measurement uncertainties
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produced reasonable results in that large values of chi square To obtain the principal components, the covariance matrix
were associated with visually poor fits. R is diagonalized:

3.1.2 Determination of the row and column weights RQ =QA (7)

To ensure that the orthogonal aerosol components obtaine‘H_hereQ Its an orttrtlonolr mal sq:;drbe n:ja_\tnx th?t cotn_tam_?hthe
from principal component analysis are meaningful, the $19€NVECIOrS as the columns, a diagonal matrix wi

weights must be applied to the data prior to the analysis anc!ihe corresponding eigenvalues along the main diagonal for

must be removed from the aerosol components after the ana‘—he corresp.ondmg columns . For a data set with vari-
bles, matriceR, Q, andA all haveb rows andb columns.

sis. It appears that the most general weighting scheme that . . . .
y PP g gning The eigenvectors ilQ are linear transformations of the

allows a preservation of the component orthogonality is the .~ | iables- for th N <" Th
row and column weighting scheme of Cochran and Horneor'g'nat v?rla 'es, we r<|a er q ise ashcomponents_. ‘ne
(1977). This assumes that the applied weights, can be amount of variance explained by each component IS given

expressed as a product of a row weight) and a column by thg Co"eSpOf.‘d'r?g e|genvalge h. Finally, we sort
weight (7): the eigenvalues im\ in descending order, and arrange the

columns inQ according to the corresponding order of their
Vij = XiY;. 2) eigenvalues.

) ] ] ] Components with small eigenvalues are referred to as
Typically, the actual weights given in Eq. (1) can not be fac-«4ise » and are meaningless in explaining the general trends
tored in the form of Eq. (2). Therefore, we find the row and i, the original data. Hotelling (1933) proposed that all the
column weights that give the best possible estimate to thg,gise components should have equal eigenvalues based on
actual weights};;. The optimum row and column weights - e 45sumption that these components all have equal random
are determined by minimizing the sum of the squares of the ariations. For a finite data set, we expect some variations in
percentage deviations betwegp) andW;;. The derivation e gigenvalues for the noise components. Therefore, sorting
given in the Appendix shows that the best estimated row andy| eigenvalues yields a gradual decrease in the noise eigen-

column weights are given by values. We use the term “signal components” to refer to

X; = (W) /<WH)1/2 3) aerosol components that contribute significantly to the total
i Y variance; therefore, these are worth retaining. Data dimen-

and sionality can be reduced by retaining only the most important
12 signal components, and discarding all noise components. In
Yj = (Wij>j /(Wi ) (4) Sect. 4.2, we describe how can we separate the signal com-

ponents from the noise components; this allows one to retain

where(W;;) is the geometric mean of all values in the weight the suitable numbers of aerosol components.

matrix, (W;;); is the geometric mean of all values in row

and (Wi;); is the geometric mean of all values in column 3.3 Removing weights from scores and loadings

j. This is similar to the ad hoc procedure, using arithmetic

means, suggested by Keenan and Kotula (2004) for PoissoRemoving the weights is essential to making the components

noise. and scores physically meaningful (Keiding et al., 1988). To
Once the optimum row and column weights have been obdo this, consider an unweightedxb) data matrix,A, that

tained, the unweighted data matrik, is converted into a can be represented by an unweightied ) component load-

weighted data matrixZ, according to ings matrix,L, and an unweighted:(«b) scores matrixs,
Z = XAY G V@
A=sLT. (8)

whereX andY are diagonal matrices that contain the row

weights, X;, on the main diagonal oK, and the column  Similarly, a weighted data matrixZ, can be expressed by

weights,Y;, on the main diagonal of . a weighted component loadings matr@, and a weighted
scores matrixpP, via

z=pPQ". ©)
Principal component analysis begins by determining the co-

variances between all pairs of variables in the data set. Th&'0t€ thatS, L, P, andQ are all orthonormal matrices. Sub-
covariance matrixR, can be expressed by stituting Eq. (5) into (9), rearranging, and comparing with
Eq. (8) shows that the weighted and unweighted scores

3.2 Absolute principal component analysis

R=27z/nb (6) and component loadings are related to the row and column
. weights by

wheren andb are, respectively, the total number of scans

(rows), and the total number of variables (columnsXin L=Y"1Q (20)
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and Eq. (1) does not represent all possible errors in the size dis-
tributions. For example, the reported distribution data is im-
plicitly treated as a true average over one measurement scan
time. For DMA-CPC data, this is not true in a dynamic envi-
also diagonal. IX~1 andY 1, the diagonal entries are the ronment in vv_hi(_:h sign?ficant ch_anges in the size distri_b_ution
reciprocals of the corresponding entriesXirand Y. Equa- ~ May occur within the time required for one scan. Additional

tions (10) and (11) show that the weights can be removed'Tors are introduced by the fact that the applied weights,

by dividing each row in the scores and each column in the2® @pproximations to the true weight®;;. These difficul-

loadings by the corresponding row and column weights. Thdies prevent us from using the criteria of Cochran and Horne
to select the number of components to retain.

second equality in Eqg. (11) is simpler to use since it avoids™ ¢ ; i ' .
the intermediate step of computify Nine different methods that are available in the literature
for determining the number of components to retain have

Owing to the orthogonality of the component loadings, :
Egs. (8) through (11) are valid for any subset of Components_been tested by Ferre (1995). He concluded that there is no

To obtain a subset of unweighted componebisand scores, universgl method which works fc.)r.every applicatign. The
S, we first obtain the complete set of eigenvectds sort most suitable method for determining the appropriate num-

the columns according to descending eigenvalue, and theRer of components to retain depends on both the nature of the
eliminate the columns i andL that correspond to the un- data set and the objective of the user: whether the aim is to

desired components. The issue of how many componentSPtain a “good explanation” (good fit to the data), or to ob-
to retain is addressed in Sect. 3.4. Once the subsétief tain a “good prediction” (a good estimation of the parameters
obtained, Egs. (10) and (11) give the subset of unweighted’ @ model). _

components and scores. Using these subsets in Eq. (8) yields AnOther approach to selecting the proper number of com-
an approximation to the original data matri, Since all  POnents to retain is to compare the original measurements
the aerosol components are orthogonal, this approximatiof!!th the fitted data generated using various numbers of re-
is identical to the weighted least squares fit to the data by thé"?“ned_ components. The. decision is somewhat ;ubject|ve
retained components. After eliminating undesired columnsSiNCe it depends on what is deemed an adequate fit. For ex-
in Q and before removing the weights, a rotation is applied_ample' is it sufficient for the fit to (?apture the general tre_nds
to the coordinate system:; this is described in Sect. 3.5. Sinc! the measurements, or should it reproduce all significant
the rotation is an orthogonal transformation, it does not altef€atures of the data? This procedure is also cumbersome
the fit to the original data. As a resulg, the representa- © @Pply. In the following we use this method to judge the
tion of Q in the new coordinate system, may be used insteadccess of our procedure for selecting the number of compo-
of Q in Egs. (10) and (11); this may be verified by substitu- N€Nts to retain.

tion. Physically, the weights apply to the measured variables, FToM analysing different aerosol size distribution mea-
independent of the coordinate system used. surements, we found that the most successful and effective

method to determine the number of components to retain is
3.4 Choosing the number of components to retain based ory ;, which we define as the square root of the sum
of the unused eigenvalues:

The dimensionality of a data set is reduced by retaining fewer
components than the number of original variables. How-
ever, there is no fixed method of deciding how many com-%/ = Z Ai (12)
ponents should be retained. One classic method is to plot =i+l
the eigenvalues in descending order against the componenthere A; is the eigenvalue for eigenvectorb is the total
number; this is called a scree plot. The general rule is tonumber of variables in the measurement, grid the num-
look for a point at which there is a sharp change in the slopeber of retained components. Since the covariance matrix in
of the plot (Cattell, 1966), as suggested by the reasoning oEg. (6) is standardized by the total number of data points in
Hotelling (1933) described in Sect. 3.2. When we appliedthe data setrn(), all eigenvectors will have unit length, and
this method to the aerosol size distribution measurementshe eigenvalue of each component represents the scaled vari-
we found that it always indicated fewer aerosol componentsance contributed by the corresponding component (Jolliffe,
than are needed to capture the visible features in the original986). In Eq. (12) X A;, represents the total variance asso-
measurements. ciated with the unused components. The square root of this

As pointed out by Cochran and Horne (1977), if we have quantity represents the deviation between the original data
an accurate estimate of the true measurement uncertaintieand the fitted data based on retainjhgerosol components.
the eigenvalues for loadings that represent noise should be The procedure for using this is to make a plojgfagainst
approximately ¥, whereb is the total number of size bins the number of retained aerosol components; we call this the
in the measurements. The eigenvalues obtained for our sizémodified scree plot,” because of its similarity to the tradi-
distribution measurements are much larger than flius, tional scree plot. Ideally, a sharp break in the plot would

S=X"P=AYQ. (11)

Since bothX andY are diagonal matriceX ! andY 1 are
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distinguish the signal components from the noise compokind of systematic noise. Note that the loadings are dis-
nents. In practice, the break is gradual, so that there is dributed over the entire measured size range. These basic
range of possible values for the number of components to béeatures of the rotated components are preserved when fewer
retained. The actual number retained depends on the extemtixed components are retained. However, when too few or
to which an accurate fit to the data is desired. This will betoo many components are retained, the single mode struc-
discussed in detail in Sect. 4.2. tures are not obtained.
In several of the data sets, the smallest diameter compo-
3.5 Rotation and normalization of loadings and scores  nent is truncated and has a greater amplitude than the others.
This is a consequence of requiring each component to have
The component loadings obtained directly from the abso-pjt area in order to transform the component loadings to a
lute principal component analysis are mathematical fU”C'probabiIity function (see Sect. 3.5). The 9 nm component is
tions that have no physical meaning. In order to provide amissing in the Hamilton 2000 data set, apparently as a con-
physical meaning to each component, rotation of the retainedequence of the cloudy and rainy weather encountered dur-
components is required (Buharma et al., 1998). We adapt thgyg that study. As mentioned earlier, we can not assign the
widely used Varimax procedure (Comrey and Lee, 1992) tojgentified components directly to specific sources. However,
obtain the optimal rotation matrix,. Some workers incor-  \hen combined with other data, these components are useful

rectly use the term rotation to refer to other types of linear;j, identifying sources; this will be addressed in the accom-
transformations, we don’'t. This matrix relates the rotatedpanying paper (Chan and Mozurkewich, 2007).

componentsQr, to the original non-rotated componer(g,
via 4.2 Number of components retained

Qr = QT. (13) The modified scree plots for the Egbert 2003, Pacific 2001,
Hamilton 2000, Simcoe 2000, and Hamilton 1999 data sets

. . . : are shown in Fig. 2. For a data set withvariables, there
OnceQy is obtained, it can be used in place@in Egs. (10) are p-1) points in these plots. The point for retaining all

and (11) to obtain the unweighted components and scores. : . . . .
o g b components is not included in the plot, since this always
For aerosol data, it is desirable for the component load-

ings to be in the form of probability distributions, so that the gives a perfect fit V\.”th Z€ro de_wat|on. The pglnt for retalnmg

. ion 46 components is also omitted because it has no practical
corresponding score represents the absolute concentration 9
particles associated with the component. To do this, the load-
ings for each component are normalized in the probability
sense. The normalization factor for each component is ob
tained by integrating its loadings over the entire size range
taking into account the logarithmic spacing of the size bins.

Since bothQ andT are orthonormalQ  is also orthonormal.

The points on the modified scree plot are fit to a four

parameter function, which is defined as the greater of two
straight lines. This divides the points into three categories:
5ignal, noise, and mixed components. Components that fall

Then the loadings are divided by the normalization factor on the first straight line segment are classified as signal com-

and the corresponding scores are multiplied by the same faé:_)onents, while those that fall on the second straight line seg-

. o ment are classifi Nnoi mponents. The rationale for
tor. This normalization procedure causes the aerosol compot-hie; isatr?ecsilsrie eads ?sr tﬁesest(;?] dsrc()j zcrcsae Ioet e}l'k?e ?n?xeo q
nents to be no longer normalized in the vector algebra sense, piot.

therefore, this procedure is done after using Eq. (11) to obtairggmps?nﬁgltz:éentor;seones that contain significant amount of
the component scores. 9 '

This interpretation is supported by tests with synthetic
data. Those tests suggest that the signal components rep-

4 Results and discussion resent critical features in the original data set and should
always be retained, while the noise components represent
4.1 Nature of the rotated components unimportant features and should always be discarded. They

also showed that the mixed components tend to represent fea-
Figure 1 shows the rotated component loadings obtained fotures that appear only in a portion of the data set. Therefore,
each field study. In each case, the results shown are those otle choice of how many mixed components should be re-
tained when retaining the maximum number of componentdained depends on how important these small features are to
indicated by the method described in Sect. 3.4. Once thdhe user. Specifically, retaining only the signal components
components have been rotated and the effects of weights havgeems to be sufficient to fit the general trends in the data set,
been removed, the dominant feature in each rotated compowhile some or all the mixed components are needed to be
nent has a shape similar to a single mode size distributionable to fit all significant visual features in the data set.
In addition, away from the peak there are oscillations about From Fig. 2, we see that from 5 to 7 components should
zero; this is a consequence of the orthogonality conditionbe retained for the Egbert 2003 data set, from 4 to 8 should
We believe that these oscillations should be regarded as he retained for Pacific 2001, from 4 to 5 for Hamilton 2000,
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Fig. 1. The relative positions and shapes of the components after Varimax rotation and probability normalization for the five field studies.
Each component is labelled with its modal diameter, as determined by fitting the component loadings to log-normal distributions.

from 6 to 10 for Simcoe 2000, and from 5 to 6 for Hamil- with four components, one of the rotated components shows
ton 1999. For the Pacific 2001 data set, we conclude thaa bimodal structure, while with five components, all rotated
the minimum number of components to retain should be in-components are monomodal.

creased to five due to the shape of the rotated components;
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Fig. 2. Modified scree plots for various field studies. Open circles represent signal components, open triangles represent noise components
and solid squares represent mixed components. The solid line indicates the best fit to a four parameter function defined as the greater of twe

straight lines.

deciding whether to include the mixed components is some-
what subjective. In all five data sets considered here, we

found that when all the mixed components are retained we

As notgd above, the modified scree plot does not provide ptain excellent fits to the original data throughout each data
unambiguous result for the number of components to retain;

4.3 Quality of fits
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Fig. 3. Relative deviations between the measured and fitted data for one week of data from Pacific 2001. The components used were
determined from the entire 17 day data set. The top panel is for the retention of 5 components and the bottom panel is for the retention of 8
components. The darkness scale corresponds with the product of the absolute deviations with their approximate weights.

set. In the case of the Simcoe 2000 data set, we found thatds. These results are typical of those obtained from all five
only 8 components (instead of 10, indicated by the modifieddata sets.
scree plot) are sufficient to capture virtually all features in  As a result of the normalization procedure; the component
the original measurements. When some or all of the mixedscores represent the absolute concentrations of particles as-
components are omitted, the fits are degraded slightly duringociated with each component. Thus, the sum of all rotated
most time periods and substantially during others. component scores should be equal to the total number con-
An example of these comparisons is shown in Fig. 3, forcentration of the measured size distribution. We tested this
the retention of either 5 or 8 components in the Pacific 2001for all field data sets; the corresponding r.m.s. deviations be-
data. Although the figure shows just six days of data, thetween the sum of all scores and the integrated DMA total
components used were derived from the entire study and thaumber concentration are summarized in Table 1. The com-
results in Fig. 3 are representative of the entire study. For thgparisons were carried out using both the minimum and max-
comparison, we multiply the absolute deviations (that is, theimum numbers of retained components. In the former case,
absolute values of the differences between the measured anghen including only the signal components, the r.m.s. devia-
fitted data) by the estimated weightg {, Eq. 2); these rel-  tion varies from 1.0% to 2.5%. As expected, when the mixed
ative deviations provide an indication of how large the devi- components were included, the r.m.s. deviations are slightly
ations are in comparison with what would be expected fromsmaller, ranging from 0.75% to 1.9%. Note that since the
the measurement uncertainty. In Fig. 3, we see that duringomponents are orthogonal, the scores for individual non-
the second half of the time period (21 August to 24 August),rotated components do not depend on how many components
both the 5 and 8 component fits reproduce the original datare retained. Thus, the difference between the two sets of
well, with no large systematic deviations. In contrast, duringr.m.s. deviations in Table 1 is caused by the additional com-
the first half of the period (17 August to 21 August), the 5 ponents that are retained in each data set. The small differ-
component fit shows some large systematic deviations. Thignces of the two sets of r.m.s. deviations in Table 1 are indica-
shows that although 5 components are adequate to fit most aive of the relatively small impact of the mixed components
the data set, more mixed components are needed in order ton fitting the data set as a whole.
fit the entire data set quantitatively. When we apply principal
component analysis separately to the periods from 17 August.4 Interpretation
to 21 and 21 August to 24, the corresponding modified scree
plots show that the former period requires 6 to 9 componentsWe find that the number of mixed components in a modified
while the latter period requires 3 to 6 components. scree plot appears to relate to the amount of atmospheric pro-
In Fig. 4, we show the comparison between the Pa-cessing of the sampled aerosol. Among the five field studies
cific 2001 measurements and fits obtained by using either Tonsidered, both Hamilton 1999 and 2000 data sets are the
or 8 components. For clarity, only the period from 15 Au- simplest, with the fewest number of mixed components (see
gust to 21 August is shown, the results are representative dfig. 2). This may be because the measurement site is located
the entire 17 day study. At most times, both fits reproducewithin a source region, where the air is strongly affected by
the measurements very well. However, the 5 component fitocal vehicle and industrial emissions. As a result, we might
has some significant deviations during the two circled peri-expect that the individual components would be most nearly
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Table 1. Comparisons of the r.m.s. deviation between the sum of aIIthat sampled during the Pacific 2001 study. The Egbert 2003
component scores and the integrated DMA total number concentradata were measured at a rural site that has a major nearby

tions for maximum and minimum numbers of retained components Pollution source from Toronto as well as being impacted by
regional scale pollution; it has an intermediate number of

Field study Components Deviation Components Deviaton ~Mixed components.

Egbert 2003 5 2.5% 7 1.9% It does not appear that there is a direct connection between
Pacific 2001 5 1.0% 8 0.85% T . .

Harmilton 2000 4 > 506 5 1.9% the |r_1<_j|V|duaI components obtalned_by this met_hod and any
Simcoe 2000 6 2.0% 8 1.6% specific sources. However, we believe that this procedure
Hamilton 1999 5 2.0% 6 0.75% will be extremely useful in simplifying the analysis of size

distribution data since it enables a large number of size bins
to be replaced with a much smaller number of components.
At a minimum these components can be thought of as a way
associated with specific sources at this site. In contrast, thef “binning” the data that preserves maximum information.
Pacific 2001 sampling site was located at a considerable diswe find it remarkable that only 4 or 5 such “bins” are needed
tance from a number of sources; this leads to greater atmato reproduce most features of the size distributions and that
spheric processing which may be the reason for the largejust 6 to 8 components can preserve virtually all details of the
number of mixed components. In terms of the size distri-distributions. This is made possible by the fact that the data
butions, this is seen as a greater variability in the locationghemselves are used to determine the optimal “binning”. In
and shapes of the various fine particle modes. Compared tanalysing data, the scores may be treated as being analogous
the Pacific 2001 sampling site, the Simcoe 2000 data wergo the numbers of particles in various size ranges (such as nu-
obtaineded at a rural site that occasionally receives local poleleation, Aitken, and accumulation modes). However, using
lution from Nanticoke but mostly experiences regional scalethe principal components should be much preferred to us-
pollution, largely transported from the United States. Thus,ing predefined size ranges since the components retain much
air in Simcoe is also highly processed but not as variable asnore of the information present in the size distribution data.
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For this reason, we believe that this procedure has the poterponents gives the corresponding component scores physical

tial to greatly aid data analysis. As example of this is givenunits of absolute concentrations. We believe that principal

in the following paper (Chan and Mozurkewich, 2007). component analysis will be a useful method to simplify the
representation of aerosol size distribution data and aid in the
analysis of these data sets. However, some experience will

5 Conclusions be required to determine the best applications of the results.
A first application of this is described in the accompanying

We have described how to apply absolute principal compopaper (Chan and Mozurkewich, 2007).

nent analysis to atmospheric aerosol number size distribution

measurements. This method provides a useful means to re-

duce the data dimensionality prior to analysis; DMA-CPC Appendix A

size distribution data with initially about 30 size bins can be

accurately summarized using just a few components. Oné&stimation of row and column weights

use of these components is as a way of “binning” the data

that preserves maximum information. Only 4 or 5 compo- We begin with a set of weightsV;;, for each individual data

nents are needed to reproduce most features of the size digoint, such as those calculated from Eq. (Al). To apply

tributions and just 6 to 8 components can preserve virtuallyweights in principal component analysis, we need to factor

all details of the distributions. As a result, this has the poten-the measured uncertainties into a set of row weigkitsand

tial to greatly simplify data analysis. column weightsY;. The products of these generate a set of

In particular, we believe that this produces a simplified approximate weightsy/;;, given by

representation of size distribution data that is very advanta-

geous in comparison with fitting multiple log-normal modes. Vij = Xi¥;. (A1)

Numerically, principal component analysis is extremely Sta'Since the row and column weights can not be determined di-

ble, so its appllcatpn can be reqd|ly automated; this is nOtrectly, we find the row and column weights that provide the
usually the case with fitting multiple modes. The number

of time varying parameters needed to fit the distributions isb.eSt estimate of the actual_ measured w_elng;§, The_op-_
! " . . timum row and column weights are obtained by minimizing
typically fewer than for fitting multiple modes. Finally, the

principal component results are fully continuous whereas thethe sum of squares of the deV|at|orS§, between the loga-

number of modes used in fits may vary with time. fithms of V;; andW;;; which is given by Eq. (A2)

We find that there are a number of steps that must be taken n b
in order to successfully apply absolute principal componentss2 = Z Z [In Wij —In (X,- Yj)]z' (A2)
analysis to aerosol size distribution data. First, the weight- i
ing scheme used for social science data is often not appro- o o )
priate for size distribution data. Therefore, the data mearUr Objective is to minimize Eq. (A2) so that the ratios of
should not be subtracted from the data prior to the analysid/ij ©© Wij are as near as possible to unity. We choose to
and the individual size bins should not be scaled accordin%‘fe percentage deviations over absolute deviations because
to their standard deviations. An appropriate data weighting'ij Vary over a wide range and we see no reason why the
is essential to produce realistic results. This can be accom@rger weights should be more accurately estimated than the
plished by adopting the row and column weighting schemeSMaller ones. Minimizing Eq. (A2) makes the percentage
of Cochran and Horne (1977). To make it possible to dodeviations independent of the magnitudes ofithe. To get
this, we introduce a method of finding the row and column the optimum row weights, we set the d.er|vat|ve8§fW|th
weights that give the best estimate to the actual individual®SPeCt to any on&; equal to zero, this yields
data point weights derived from instrumental uncertainties. b
The weight for each row or column is the geometric mean of _ > [Inwij —In(x;v;)]. (A3)
all weights in that row or column divided by the square root F
of the geometric mean of all the weights.

We have found that a modification of the widely used screeSolving Eq. (A3) for the optimum row weighk;, yields
plot provides an effective method for determining the min- b b
imum and maximum number of components to retain; the X, = }Zln Wi | - }Zln v; ). (A4)
exact number of components to retain depends on the user b= b=
objectives. Application of the Varimax rotation to the re-
tained component loadings and scores generates meaningflihe first term on the right hand side of Eq. (A4) is the log-
results. Each rotated component has a distinct maximurarithm of (W;;);, which we define as the geometric mean of
with low amplitude oscillations away from the peak. After the individual weights in row. The last term in Eq. (A4) is
removing the effect of weights, normalizing the rotated com-the logarithm of the geometric mean of the column weights.
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Equation (A4) indicates that the row weights should be pro-Jackson, J. E.: A user’s guide to principal components, Wiley-

portional to(W;;); due to the fact that all rows in any partic- Interscience, New York, 1991. _ _
ular column have the same column weight. Also, since theJolliffe, I. T.: Principal component analysis, Chapter 1. Springer-
V;; should have the same geometric mean asithewe ad- Verlag, New York, 1986.

Keenan, M. R. and Kotula, P. G.: Accounting for Poisson noise in
the multivariate analysis of ToF-SIMS spectrum images, Surf.
Interface Anal., 36, 203-212, 2004.

Keiding, K., Sgrensen, M. S., and Pind, N.: A receptor model for
urban aerosols, based on oblique factor analysis, Anal. Chim.
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