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Abstract. A global estimate of the seasonal direct radia-
tive effect (DRE) of natural plus anthropogenic aerosols
on solar radiation under all-sky conditions is obtained by
combining satellite measurements and reanalysis data with
a spectral radiative transfer model and spectral aerosol op-
tical properties taken from the Global Aerosol Data Set
(GADS). The estimates are obtained with detailed spectral
model computations separating the ultraviolet (UV), vis-
ible and near-infrared wavelengths. The global distribu-
tion of spectral aerosol optical properties was taken from
GADS whereas data for clouds, water vapour, ozone, car-
bon dioxide, methane and surface albedo were taken from
various satellite and reanalysis datasets. Using these aerosol
properties and other related variables, we generate climato-
logical (for the 12-year period 1984–1995) monthly mean
aerosol DREs. The global annual mean DRE on the outgo-
ing SW radiation at the top of atmosphere (TOA,1FTOA)

is −1.62 W m−2 (with a range of−15 to 10 W m−2, neg-
ative values corresponding to planetary cooling), the effect
on the atmospheric absorption of SW radiation (1Fatmab) is
1.6 W m−2 (values up to 35 W m−2, corresponding to atmo-
spheric warming), and the effect on the surface downward
and absorbed SW radiation (1Fsurf, and1Fsurfnet, respec-
tively) is −3.93 and−3.22 W m−2 (values up to−45 and
−35 W m−2, respectively, corresponding to surface cooling).
According to our results, aerosols decrease/increase the plan-
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etary albedo by−3 to 13% at the local scale, whereas on
planetary scale the result is an increase of 1.5%. Aerosols can
warm locally the atmosphere by up to 0.98 K day−1, whereas
they can cool the Earth’s surface by up to−2.9 K day−1.
Both these effects, which can significantly modify atmo-
spheric dynamics and the hydrological cycle, can produce
significant planetary cooling on a regional scale, although
planetary warming can arise over highly reflecting surfaces.
The aerosol DRE at the Earth’s surface compared to TOA
can be up to 15 times larger at the local scale. The largest
aerosol DRE takes place in the northern hemisphere both at
the surface and the atmosphere, arising mainly at ultraviolet
and visible wavelengths.

1 Introduction

Atmospheric aerosols, both natural and anthropogenic, can
cause climate change through their direct, indirect and semi-
direct effects on the radiative energy budget of the Earth-
atmosphere system. The effect of anthropogenic aerosols
only, on a global average, is likely to be comparable in mag-
nitude to the radiative forcing of about 2.4 W m−2 by an-
thropogenic greenhouse gases (IPCC, 2001). However, the
quantification of the aerosol effects is more complex than the
quantification of radiative forcing by greenhouse gases be-
cause aerosol mass and particle number concentrations are
highly variable in space and time, due to their much shorter
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atmospheric lifetime compared with the important green-
house gases. Aerosol properties are difficult to measure with-
out instrumental offsets or bias, making it difficult to estimate
the aerosol radiative effects. Therefore, there is large uncer-
tainty regarding the aerosol overall radiative forcing (Remer
and Kaufman, 2006; Granger Morgan et al., 2006; Yu et al.,
2006). Better estimates of the aerosol radiative effects on a
planetary scale are required to reduce the uncertainties.

The present study focuses on the direct radiative effect
(DRE) of aerosols, which is the overall effect of natural plus
anthropogenic aerosols on the radiative energy budget, and
it is different to the direct climate forcing (DCF) which rep-
resents the corresponding effect of anthropogenic aerosols
only. Although the present consensus is that the DRE is
better known than the indirect and semi-direct effects, there
is still a large degree of uncertainty. Our study deals with
the direct effect of aerosols on the shortwave (SW) radiation
budget, since the main DRE lies at these wavelengths, be-
ing much smaller in the longwave (thermal infrared). Even
for dust, the thermal infrared radiative effects are about 10%
those for the shortwave radiation (Tanré et al., 2003).

The assessments of aerosol DRE fall into three broad cat-
egories: (i) measurement-based (e.g. Bellouin et al., 2005;
Loeb and Manalo-Smith, 2005; Zhang et al., 2005; Remer
and Kaufman, 2006; Christopher et al., 2006), (ii) model-
based (e.g. Jacobson, 2001; Chin et al., 2001; Liao et al.,
2004; Koch and Hansen, 2005; Reddy et al., 2005; Take-
mura et al., 2005), and (iii) measurement-model integrated
(e.g. Chu et al., 2002; Yu et al., 2004; Chung et al., 2005).
Measurements involve in-situ, satellite and suborbital remote
sensing data. Yu et al. (2006) provide a review of the above
assessments. Each method has advantages and drawbacks.
For example, there is a wide range of discrepancy in model
results because of the many inherent assumptions involved in
modelling the aerosol effect on climate (Schulz et al., 2006),
so there are difficulties in reproducing correctly satellite ob-
servations (Bellouin et al., 2005; Zhao et al., 2005). On the
other hand, although many problems related to satellite ob-
servations of aerosols have been resolved by more sophisti-
cated instruments, there are still problems as shown by dis-
crepancies between different satellite products (Zhao et al.,
2005).

The present study takes an alternate approach using qual-
ity available global observational data and detailed spectral
radiative transfer flux calculations performed with a radia-
tive transfer model. The adopted technique relies on spectral
aerosol optical properties from the Global Aerosol Data Set
(GADS, Koepke et al., 1997) and satellite observations for
the key surface and atmospheric parameters such as clouds,
water vapour, surface albedo and ozone taken from compre-
hensive global climatological databases (NASA Langley Re-
search Center data set, International Satellite Cloud Clima-
tology Project, ISCCP, Goddard Earth Observing System,
GEOS, version 1 reanalysis, provided by the Data Assimi-
lation Office, DAO, of NASA’s Goddard Space Flight Cen-

ter, GSFC). This study incorporates realistic surface and at-
mospheric conditions, especially those of clouds, to reduce
some of the major sources of error in estimates of the di-
rect forcing/effect (Podgorny and Ramanathan, 2001; Chung
et al., 2005). In addition, an important improvement in this
study, compared to other studies, is that the aerosol DRE is
computed at a very high spectral resolution, while other radi-
ation transfer, general circulation (GCM) and chemical trans-
port (CTM) models, usually include a few spectral bands in
the whole SW range. This is achieved only in few other
studies, such as in that by Jacobson (2001) where 153 wave-
lengths in the SW range are considered, 86 of them lying in
the UV and visible and 67 in the near-IR. This can be criti-
cal, since inadequate treatment of spectrally resolved aerosol
properties can result in modified aerosol forcings of up to
16% on a global scale, and 100% locally (Hatzianastassiou
et al., 2004b). Recently, Redemann et al. (2006) have shown
that ratios of aerosol radiative forcing at 400 and 1600 nm
can be as high as a factor of 10, depending on the aerosol
type. Our DRE computations refer to the whole solar spec-
trum (0.2–10µm), and they are performed at 117 wave-
lengths ranging from 0.2 to 1.0µm, and 10 spectral intervals
in the range 1.0–10.0µm (note that our study deals only with
solar radiation). The inclusion of near-IR has been shown
(e.g. Bush and Valero, 2003; Nishizawa et al., 2004; Zhou
et al., 2005; Hatzianastassiou et al., 2006) to be essential
for accurately computing the aerosol radiative effects. We
have used a detailed spectral radiative transfer model using
as input data the detailed spectral aerosol optical properties
(extinction optical thickness, AOT, single scattering albedo,
ωaer, and asymmetry parameter,gaer) from GADS, given at
40 wavelengths within the range 0.2 to 10.0µm, using inter-
polation.

Following this approach, we produced global DRE
monthly climatologies for the 12-year period 1984–1995 for
both clear and all-sky conditions, for winter and summer.
The DRE is computed at TOA, in the atmosphere and at the
Earth’s surface. All computations were performed at a ge-
ographical cell level of 1◦×1◦ latitude-longitude on a daily
basis, and subsequently averaged and presented as monthly
means. Our results provide a realistic climatological assess-
ment of aerosol SW DRE.

This study complements the works by Hatzianastassiou
et al. (2004a, 2006). In Hatzianastassiou et al. (2004a) the
global distribution of aerosol DRE in the ultraviolet and vis-
ible wavelengths was computed for clear-sky conditions, for
the 12-year period 1984–1995. Recently, Hatzianastassiou
et al. (2006) calculated the aerosol DRE in the solar near-
infrared (IR) for both clear- and all-sky conditions for the
period 1984–1995. The present study is an integration of the
previous two studies, providing estimates of clear- and all-
sky DREs for the total SW range for the period 1984–1995.

The methodology, and descriptions of the radiative trans-
fer model and the climatological input data were given in
detail in Hatzianastassiou et al. (2004a, 2006), so only a very
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brief description of these will be given in Sect. 2. More em-
phasis will be given to the results (Sect. 3), before the con-
clusions (Sect. 4).

2 Model and input data

The radiative transfer model and the various assimilated in-
put data are briefly described in this section. For more details
the reader is referred to the relevant studies by Hatzianastas-
siou et al. (2004a, b) and Hatzianastassiou et al. (2006).

2.1 The radiative transfer model

The deterministic spectral radiative transfer model used here
was developed from a radiative-convective model (Vardavas
and Carver, 1984). The incoming solar irradiance at TOA
is computed for the spectral interval 0.2–10.0µm, based on
the spectral profile of Thekaekara and Drummond (1971),
using a solar constantSo=1367 W m−2 (e.g. Willson, 1997)
corrected for the Earth’s elliptical orbit. The computations
were performed for each 1-degree latitude-longitude cell for
117 wavelengths in the range 0.2–1.0µm and ten spectral
intervals in the range 1.0–10µm. For each wavelength and
spectral interval, a set of monochromatic radiative flux trans-
fer equations is solved for an absorbing/multiple-scattering
atmosphere using the Delta-Eddington method of Joseph et
al. (1976), based on the Henyey-Greenstein phase function
which is an extension of the Eddington method described in
Shettle and Weinman (1970). At ultraviolet–visible wave-
lengths we include ozone absorption and Rayleigh scattering
by air. For the near-IR wavelengths we include absorption by
water vapour, carbon dioxide and methane. We include scat-
tering and absorption by clouds (low, middle and high) and
aerosols, and reflection from the Earth’s surface. The treat-
ment of cloud optical properties in the model can be found in
Hatzianastassiou and Vardavas (1999, 2001) and Hatzianas-
tassiou et al. (2004c, 2005). Note, that aerosols within and
above clouds are not considered in this study, due to missing
information. This introduces an underestimate of the aerosol
effect in the case of absorbing aerosols above clouds (e.g.
Keil and Haywood, 2003). In particular, studies (e.g. Hay-
wood and Shine, 1997; Haywood and Ramaswamy, 1998)
have shown that black carbon above clouds exerts a DRE
that may be greater than that in clear skies by more than a
factor of 10, the magnitude of the increase being a function
of the cloud optical depth, the surface reflectance and the
solar zenith angle. This underestimation becomes particu-
larly important in biomass burning regions where aerosols
are lofted to great heights. Reflection of incident solar radia-
tion from the Earth’s surface is treated as explained in detail
by Hatzianastassiou et al. (2005). In brief, the surface reflec-
tivity, Rg, for each 1-degree grid cell, is computed consid-
ering the fractional coverage of the grid cell’s reflecting sur-
face by four general types of surface: land, ocean, snow and

ice (frozen ocean). Information for fractional coverage for
each surface type is obtained from ISCCP-D2 data (Rossow
et al., 1996). The ocean reflectivity,Ro, is computed using
Fresnel reflection as function of incidence angle corrected
for a non-smooth surface, with the condition that if Fresnel
reflectivity is greater than ice- or snow reflectivity, which oc-
curs for low solar elevations, then the reflectivities of ice or
snow are set equal to the Fresnel (see Hatzianastassiou et al.,
2005). Snow and sea-ice albedo values are based on recent
estimates, whereas data for land albedo were derived from
Earth Radiation Budget Experiment (ERBE) data for clear
sky, while overcast albedos were obtained by modifying the
corresponding clear-sky values for diffuse radiation condi-
tions. The model allows for spectral dependence of surface
reflectivity in the UV-visible and near-IR (which is shown to
be very important, Wei et al., 2001), but also for different val-
ues for direct and diffuse solar radiation. The model was run
for all days of each year of the study period (1984–1995) to
account accurately for the variations in the solar zenith angle,
declination and eccentricity of the orbit of the Earth around
the sun.

The SW aerosol DRE (denoted henceforth as1F ), or
more precisely the “aerosol flux change”, is the effect of
aerosols on the SW radiation budget at TOA, at the Earth’s
surface, or within the atmosphere, and it is given by

1F = F − Fno−aerosol (1)

whereF andFno−aerosolare the net incoming (downward –
upward) SW radiative fluxes with and without aerosols. The
DRE components1FTOA, 1Fatmab, 1Fsurf, and1Fsurfnet,
represent the effect of aerosols on the net incoming (ab-
sorbed) radiation at TOA, within the atmosphere, and at the
Earth’s surface. As far as it concerns1FTOA, it is essen-
tially the change of the outgoing (reflected) SW radiation at
TOA, since the incoming extraterrestrial SW radiation is not
affected by aerosols, and therefore1FTOA will refer to this
henceforth. Thus, at TOA Eq. (1) reads

1FTOA = F TOA
no−aerosol− F TOA (2)

Therefore, positive values of1F correspond to decreased
outgoing SW radiation at TOA, and increased absorbed SW
radiation within the atmosphere and at the Earth’s surface,
and vice versa.

2.2 GADS aerosol data

The aerosol optical properties, AOT,ωaer, andgaer, used in
the radiative transfer model were taken from GADS (Koepke
et al., 1997), which provides aerosol particle properties aver-
aged over space and time. The use of the Henyey-Greenstein
(HG) phase function, which is defined in terms of a single
parameter, i.e. the aerosol asymmetry parameter, is common
in most radiative transfer models (see e.g. Yu et al., 2006)
for describing the angular distribution of scattered radiation
by aerosols. Nevertheless, it has been shown (Marshall et
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Table 1. Mean global and hemispherical (NH, SH) long-term (1984–1995) extinction aerosol optical thickness (AOT), aerosol single scat-
tering albedo (ωaer) and aerosol asymmetry parameter (gaer) at the visible wavelength of 0.5µm, derived from the Global Aerosol Data Set
(GADS) for actual atmospheric and surface conditions for January and July.

AOT (0.5µm) ωaer (0.5µm) gaer (0.5µm)

January
Globe 0.101 0.938 0.726
North Hemisphere 0.121 0.891 0.698
South Hemisphere 0.082 0.986 0.754

July
Globe 0.093 0.934 0.720
North Hemisphere 0.106 0.951 0.739
South Hemisphere 0.081 0.917 0.702

al., 1995; Boucher, 1998) that although the HG phase func-
tion can advantageously replace the Mie phase function in
most flux calculations with small errors, it can introduce sig-
nificant errors (up to 20%) in the computation of aerosol
radiative effects, depending on solar zenith angle, aerosol
size and refractive index. The GADS, and its earlier ver-
sion (D’Almeida et al., 1991) has been frequently used (e.g.
King et al., 1999) for retrieving aerosol optical properties
(e.g. Chin et al., 2002; Kinne et al., 2003) or in climate
studies (e.g. Morcrette, 2002; Treffeisen et al., 2005). In
GADS, the tropospheric aerosol particles are described by
10 main aerosol components, which are representative for
the atmosphere and characterized through their size distri-
bution and refractive index depending on the wavelength.
These aerosol properties are based on components result-
ing from aerosol emission, formation, and removal processes
within the atmosphere, so that they exist as mixture of differ-
ent substances, both external and internal. Typical compo-
nents include water-soluble, water-insoluble, soot, sea-salt
and mineral. The optical properties of aerosols are subse-
quently modeled with Mie theory on the basis of aerosol
components, from which weighted sums are used to describe
optical properties of the total amount of aerosol particles.
A detailed description of the treatment of aerosol optical
properties by GADS can be found in Koepke et al. (1997)
and Hess et al. (1998). The following optical properties
are available by GADS: extinction, scattering and absorp-
tion coefficients and optical depths, volume phase function,
single scattering albedo and asymmetry parameter. Global
distributions of GADS aerosol properties are given as cli-
matologically averaged values both for the periods Decem-
ber through February (northern hemisphere winter) and June
through August (northern hemisphere summer) on a 5◦

×5◦

latitude-longitude resolution. However, to match the spatial
resolution of the climatological parameters, especially that
of relative humidity to which the aerosol properties are sen-
sitive, the original GADS aerosol optical properties were up-
scaled to 1◦×1◦ latitude-longitude resolution, as explained in
Hatzianastassiou et al. (2006). The aerosol properties orig-
inally taken from GADS, were re-computed for actual rela-

tive humidity values for the aerosol layer in order to compute
realistically the aerosol DREs for the 12-year period 1984–
1995. The mean long-term global averages of AOT,ωaer, and
gaer, are given in Table 1. The global annual value of AOT at
0.5µm is found to be equal to 0.097, whereas theωaer, and
gaer values are equal to 0.936 and 0.723. Theωaer value is
in quite good agreement with the values of 0.935 and 0.929
provided by Yu et al. (2004) and Takemura et al. (2002), re-
spectively, obtained with the Georgia Tech/Goddard Global
Ozone Chemistry Aerosol Radiation and Transport (GO-
CART) and Spectral Radiation-Transport Model for Aerosol
Species (SPRINTARS) models. The AOT value is somewhat
smaller than current estimates from climate models, ranging
from 0.11 to 0.14 (e.g. Kinne et al., 2006), as well as from
the average value of 0.14 based on data from AERONET
stations. Nevertheless, note that the AERONET data are
point specific, and do not provide complete global cover-
age, whereas there exist significant differences between the
AeroCom models (Kinne et al., 2006). Accurate estimates
of AOT are being obtained by multi-wavelength measure-
ments, which are taken with sophisticated instruments on-
board modern satellites (e.g. MODIS). However, these are
available only from 2000. To overlap with our study period
(1984–1995) we relied on the derived AOT data at 0.5µm
from the Total Ozone Mapping Spectrometer (TOMS, Tor-
res et al., 2002). The computed TOMS global annual mean
AOT for the period 1984–1993 was found to be equal to 0.14,
which is higher than ours. Our analysis has shown that the
general underestimation of AOT by GADS with respect to
TOMS arises primarily over oceans, while there are specific
land areas over which the AOT is overestimated. For exam-
ple, this is the case in Sahara, India, and central America
in January, and in eastern Sahara, Australian desert, Europe,
eastern USA, and south America in July. Moreover, it seems
that GADS fails to reproduce some regional features, such
as that from biomass burning in the Congo basin (see also
Hatzianastassiou et al., 2004a), though it performs rather sat-
isfactorily in reproducing other patterns such as the export
of African dust across the Atlantic or the biomass burning
in south America. Such deficiencies in GADS, which have
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to be improved in the future, are rather expected given that
the GADS dataset has limitations since it was created to
represent a comprehensive aerosol climatology by compil-
ing aerosol data on a global basis, that existed from differ-
ent measurements and models by the 1990s. Since then, a
large amount of information on aerosol properties has been
accumulated from surface and satellite measurements. De-
tailed discussions of GADS aerosol properties can be found
in Hatzianastassiou et al. (2004a, 2006).

2.3 Surface and atmospheric data

The water vapour and temperature data were taken from the
GEOS-1 reanalysis product (6-hourly), averaged to a daily
temporal resolution. Atmospheric temperature and specific
humidity profiles for the years 1984 through to 1995 were
used to compute the mean relative humidity of the aerosol
layer. The associated uncertainty is about 3◦ K for temper-
ature on average, and 20–25% for the atmospheric column
precipitable water (Zhang et al., 2006). Cloud data on a
1◦

×1◦ resolution were taken from the NASA-Langley data
set based on GEWEX ISCCP DX cloud climatologies. The
mean daily 1◦×1◦ NASA-Langley cloud data were com-
piled by processing the 3-hourly ISCCP-DX pixel-level data,
which contain radiance and cloud retrieval information from
geosynchronous and polar orbiting satellites sampled to a
nominal resolution of 30 km. All 30 km DX pixels within
a grid cell are averaged analogously to the methods of IS-
CCP (e.g. Rossow et al., 1996) to produce gridded radi-
ance and cloud products. The NASA Langley 1◦

×1◦ cloud
data include: cloud amount, cloud-top pressure, cloud-top
temperature, liquid water path, and optical depth for total
clouds. They also provide cloud amount and cloud-top tem-
perature for low-, mid-, and high-level clouds, as well as
cloud amount, cloud-top temperature, cloud optical depth,
and cloud albedo separately for ice and liquid water phase
clouds. The uncertainties in these products, which are re-
sponsible for uncertainty in computed radiative fluxes, and
hence DREs, are extensively discussed by Rossow and Schif-
fer (1999). Although clouds have, for a long time, been high-
lighted as the major source of uncertainty, they are not con-
sidered thus any more (Zhang et al., 2006), since the qual-
ity of ISCCP data has been drastically improved (for exam-
ple, biases in cloud amounts have been generally reduced to
≤0.05, whereas biases in cloud-top temperature have been
reduced to≤2–4◦ K, (Rossow and Schiffer, 1999)). The sur-
face reflection was computed by using surface-type cover
fractions on a mean daily and 1-degree geographical cell res-
olution for the years 1984–1995. Ice/snow cover data were
taken from ISCCP, while surface type classification maps
were obtained from other high resolution data sets (Stack-
house et al., 2002). A complete topography scheme is in-
cluded in the model, which uses the NASA DAO GEOS-1
surface pressure, gridded on 1◦

×1◦ cells.
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Figure 1. Global distribution of the aerosol direct radiative effect (DRE) on the outgoing 

shortwave radiation at top-of-atmosphere (aerosol DRE ∆FTOA, W m-2), for (a) January 

and (b) July.  

Fig. 1. Global distribution of the aerosol direct radiative effect
(DRE) on the outgoing shortwave radiation at top-of-atmosphere
(aerosol DRE1FTOA, W m−2), for (a) January and(b) July.

3 Shortwave aerosol direct radiative effect computa-
tions

The model total SW mean monthly (winter and summer)
aerosol DREs for each cell (1◦ longitude-latitude) are given
at TOA, in the atmosphere and at the surface. At TOA, the
change in planetary albedo (1Rp) due to the presence of
aerosols is also given.

3.1 Aerosol direct radiative effect at the top of atmosphere
(1FTOA)

The average (1984–1995) change of outgoing SW radiation
(OSR) at TOA due to aerosols (aerosol direct radiative ef-
fect, 1FTOA), for all-sky conditions, is given in Fig. 1. Ac-
cording to Eq. (2), negative values indicate increased OSR,
i.e. solar radiative cooling effect of the Earth-atmosphere
system. In contrast, positive1FTOA values indicate de-
creased OSR due to aerosols, or a warming radiative effect.
Given that the incoming SW radiation remains unchanged,
the change of planetary albedo (1Rp) is directly depen-
dent on1FTOA. Thus, positive and negative values of1Rp
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(b) 

 

Figure 2. Global distribution of change in planetary albedo (∆Rp, in %) due to the aerosol 

direct radiative effect (DRE), for (a) January and (b) July.  

Fig. 2. Global distribution of change in planetary albedo (1Rp, in
%) due to the aerosol direct radiative effect (DRE), for(a) January
and(b) July.

in Fig. 2 correspond to increased and decreased planetary
albedo, respectively, due to aerosols (expressed in absolute
percentage values).

In general, natural plus anthropogenic aerosols modify the
reflected SW radiation by the Earth-atmosphere system by
about−15 to 10 W m−2 (or −3 to 13% in terms of1Rp,
Fig. 2). Over most of the globe the change is smaller than
5 W m−2 (or 2%). Aerosols mostly increase the OSR (neg-
ative and positive values of1FTOA and1Rp, respectively)
producing thus planetary cooling. However, they also pro-
duce a warming of the Earth-atmosphere system by decreas-
ing the outgoing SW radiation at TOA by up to 10 W m−2

(or −3%, Fig. 2). This occurs over high-latitude regions with
strong surface albedo, such as Greenland in July and Siberia
in January, as well as over continental areas (e.g. Sahara,
Arabian peninsula) with large surface albedo and significant
loads of absorbing aerosols. The sign of DRE at TOA is
determined byωaer, AOT and surface albedo,Rg. Therefore,
combinations of these parameters can lead to a changing sign
of 1FTOA and1Rp with time over the same location (e.g.
planetary warming over Siberia in winter against planetary

cooling in summer), and also to a different sign of1FTOA
and 1Rp over adjacent areas (e.g. planetary cooling over
sub-Sahel and along the Atlantic Ocean tropical zone extend-
ing from northern Africa through central America, against
planetary warming over highly reflecting Saharan desert ar-
eas). The role ofωaer for 1FTOA is demonstrated by the fact
that our study gives planetary warming over Sahara and Ara-
bia (Figs. 1 and 2), whilst a cooling was found by Reddy et
al. (2005) usingωaer>0.95.

Although planetary warming over these regions is sug-
gested by other results (see e.g. Yu et al., 2004), there is evi-
dence (e.g. Kaufman et al., 2001; Dubovik et al., 2002; Cat-
trall et al., 2003; Haywood et al., 2003) that dust absorption
could be much weaker. According to our GADS-based data,
the ωaer values over Sahara and Arabia are equal to about
0.85. To assess a possible overestimation of dust absorption
by GADS, we performed a sensitivity analysis that showed
that a 6% largerωaer, involvingωaervalues of≈0.91 over Sa-
hara and Arabia, has increased1FTOA over these regions by
2–6 W m−2 in January, and by 4–9 W m−2 in July, resulting
thus in negative1FTOA, i.e. planetary cooling, in agreement
with Reddy et al. (2005).

Planetary warming produced by aerosols in high-latitude
and polar regions, such as Greenland, are of much interest
because of its relation to climate change issues (melting of
ice, e.g. Rignot and Kanagaratnam, 2006). Negative DRE
values of similar or even stronger magnitude are also ex-
pected at least over the Arctic in January, because of the pres-
ence of Arctic haze (e.g. Hu et al., 2005; Yamanouchi et al.,
2005) involving long-range transport of anthropogenic pollu-
tion from industrialized areas in Europe, North America and
Asia. Such features do not appear in Figs. 1 and 2, however,
because they correspond to areas with missing data.

The largest values of1FTOA occur in tropical and sub-
tropical latitudes, and especially over continental desert ar-
eas (e.g. Sahara, Arabian peninsula, Taklimakan and Gobi in
Asia, and central Australia), over oceanic areas over which
are transported dust and smoke from biomass burning (e.g.
off the coast of west Africa in the tropical Atlantic Ocean,
Arabian Sea) and over remote oceanic areas with intense
production of sea-spray (storm-track zone of the Southern
Hemisphere). The features shown in Fig. 1 are in agree-
ment with those found from satellite-based studies (e.g. Loeb
and Manalo-Smith, 2005; Yu et al., 2006), though some
other features such as those associated with dust transport
from Asia across the Pacific Ocean, are not well captured by
GADS properties, perhaps due to the different periods con-
sidered (i.e. 1984–1995 here, against after 2000 in satellite-
based studies). The magnitude of1FTOA and1Rp for a spe-
cific place on the globe is determined by AOT, cloud cover
and surface albedo, apart from the incoming solar flux. Thus,
large negative values, up to−9 W m−2, appear in regions
with small cloudiness and significant aerosol loads, e.g. sub-
Sahel, Gobi and Australian deserts, as well as Middle-East
and India in January. In July, large negative values (up to

Atmos. Chem. Phys., 7, 2585–2599, 2007 www.atmos-chem-phys.net/7/2585/2007/



N. Hatzianastassiou et al.: Direct effect of aerosols on solar radiation 2591

−15 W m−2) exist over limited maritime areas such as the
eastern Mediterranean basin and the Red Sea, and secondar-
ily over continental areas such as Australia. Note that highly
populated and industrialized urban areas such as Europe and
North America are found to have relatively smaller values
of 1FTOA (up to 2 W m−2). We note that small values of
aerosol DRE at TOA do not exclude important aerosol ef-
fects taking place within the Earth-atmosphere system, since
the effect at TOA is the sum of the effects of aerosols in the
atmosphere and at the surface. The aerosol effects on the ra-
diation budgets of the atmosphere and surface are examined
separately, in the following two subsections.

Overall, the large modifications of OSR produced by
aerosols on a climatological basis, equivalent to changes in
planetary albedo of1Rp=±1–2% at the geographical cell
level, can have a strong climatic impact. Aerosol modifica-
tions to spatial gradients in OSR can affect general circula-
tion patterns in the atmosphere and hence climate, as shown
by GCM studies (Krist́ansson et al., 2005; Lau et al., 2006).

3.2 Aerosol direct radiative effect in the atmosphere
(1Fatmab)

The aerosol DRE on the atmospheric absorption of SW ra-
diation under all-sky conditions,1Fatmab, is very important
and can be as large as 35 W m−2 (Fig. 3). Nevertheless, over
the oceans it is generally1Fatmab<3 W m−2, whereas over
most continental areas it is1Fatmab<15 W m−2. The largest
values of1Fatmab(15–35 Wm−2) are found over areas char-
acterized by significant amounts of absorbing aerosols (such
as mineral-dust or soot), especially over highly reflecting sur-
faces (surface albedo>0.3) in tropical and subtropical lati-
tudes, but large values are also found over the Middle-East,
South and South-East Asia, Europe, USA, South America,
South Africa, and Australia. Large values of1Fatmab are
found over oceans only for transported aerosols of continen-
tal origin. This occurs across the tropical Atlantic due to
long-range transport of desert dust at higher atmospheric lev-
els (e.g. Formenti et al., 2003; Moulin and Chiapello, 2004)
by the “harmattan” trade winds during the dry season (this
transport is shifted northwards in July due to the changed at-
mospheric circulation, Azores anticyclone and thermal low
of Pakistan), as well as over the Yellow and Japan Seas due
to Asian dust exported from the Gobi desert (e.g. Sun et
al., 2001; Liu et al., 2003). The strong increase in atmo-
spheric absorption of solar radiation is either associated with
large mass concentrations of absorbing mineral aerosol com-
ponents or with significant (but smaller) concentrations of
strongly absorbing soot or water soluble and insoluble com-
ponents, especially in the presence of large amounts of solar
radiation and over highly reflecting surfaces underneath. The
enhancement of absorbed solar radiation is converted into
heat. The resulting atmospheric heating rate can be calcu-
lated from the First Law of Thermodynamics and hydrostatic
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Fig. 3. Global distribution of the aerosol direct radiative ef-
fect (DRE) on the atmospheric absorption of shortwave radiation
(aerosol DRE1Fatmab, W m−2), for (a) January and(b) July.

equilibrium

∂T

∂t
=

g

cp

1F

1P
(3)

where∂T /∂t is the heating rate (K day−1), g is the accel-
eration due to gravity,cp the specific heat capacity of air
at constant air pressure (∼1006 J Kg−1 K−1) and P is the
atmospheric pressure, respectively. The estimated1Fatmab
translates into an atmospheric heating rate of 0.98 K day−1

for 1Fatmab=35 W m−2 for 1P=300 mb (mid-latitude pres-
sure width of troposphere), whereas the atmospheric heating
rate over oceans is<0.14 K day−1 (for 1Fatmab<5 W m−2).

3.3 Aerosol direct radiative effect at surface (1Fsurfnet)

Through scattering and absorption, together natural and an-
thropogenic aerosols decrease drastically the downwelling
and absorbed solar radiation at the Earth’s surface by up to
45 and 35 W m−2, respectively. As shown in Fig. 4, large
values of1Fsurfnet are found over continental areas, espe-
cially over deserts and polluted regions of the world. Thus,
the absorbed SW radiation by the surface is decreased by
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Fig. 4. Global distribution of the aerosol direct radiative effect
(DRE) on the absorbed shortwave radiation by the Earth’s surface
(aerosol DRE1Fsurfnet, W m−2), for (a) January and(b) July.

20–35 W m−2 in the Sahara and Sahel, by 10–20 W m−2 in
the sub-Sahel, Arabian peninsula and Middle-East, and by
5–15 W m−2 in Europe, India, eastern China and USA. The
aerosol optical thickness, AOT, is the determinant parameter
for 1Fsurfnet. Smaller1Fsurfnet values (<5–7 W m−2) are
found over oceans, due to the optically thin aerosol layers
there. The strong discontinuity of1Fsurfnet between land
and ocean can be attributed to the rapidly changing optical
properties of the aged (transported) aerosols in GADS. Only
in oceanic areas close to land and areas where long-range
transport of aerosols takes place, the values of1Fsurfnet be-
come as large as 10–15 W m−2. The strong decrease in sur-
face solar radiation due to aerosols produces strong surface
radiative cooling. For oceanic layers of 10 m depth, and us-
ing Eq. (3) and acp of water equal to∼4184 J Kg−1 K−1,
a value of−7 W m−2 for 1Fsurfnet translates to an oceanic
water cooling rate of−0.015 K day−1. For land, using a 1 m
deep soil layer with acp value of 800 J Kg−1 K−1 , the es-
timated cooling rate is equal to−1.24 K day−1 for 1Fsurfnet
equal to−15 W m−2.

The drastic decrease of surface solar radiation due to
aerosols, an effect which is calledglobal dimming, is very

important since it can modulate the hydrological cycle (e.g.
Jacobson, 2001; Kaufman et al., 2002; Ramanathan et al.,
2001). Recent studies (e.g. Lau et al., 2006) have shown that
on time-scales of climate change, the cooling of the Earth’s
surface might lead to a gradual spin-down of the tropical
water cycle and the eventual weakening of the Asian mon-
soons. The values of1Fsurfnet are larger compared to those
of 1FTOA and1Fatmab(Figs. 1 and 3, respectively), so that
the aerosol DRE is much larger at the Earth’s surface than at
TOA or in the atmosphere. This is further discussed in the
next section.

3.4 Ratio of top-of-atmosphere to surface shortwave
aerosol direct radiative effect

The three types of aerosol DRE satisfy the conservation con-
dition

1FTOA + 1Fsurfnet+ 1Fatmab= 0 (4)

The atmospheric absorption of aerosols1Fatmab and
1Fsurfnet can be estimated from satellite observations only
indirectly (e.g. Bellouin et al., 2003). When1Fatmabvalues
are extremely small, then1FTOA and 1Fsurfnet are essen-
tially equal and opposite and this permits the surface DRE
to be estimated from the DRE at TOA (Ramanathan et al.,
2001), as in the case of purely scattering aerosols.

Computed values of the ratio1Fsurfnet/1FTOA are given
in Fig. 5. The ratio ranges from−10 to 10 over most of the
oceanic and land areas, demonstrating the dominance of the
surface to TOA aerosol DRE. Note that in cases of very small
1FTOA values, the ratio’s magnitude can be much larger than
15, but without any physical meaning, and hence such areas
have been masked in Fig. 5 (white shaded areas e.g. in Sahara
and Arabian peninsula). When the ratio takes values close
to 1, the magnitude of surface forcing equals that at TOA,
which means that1Fatmabis negligible. In case of large pos-
itive 1Fsurfnet/1FTOA values, the ratio1Fatmab/1FTOA is
also large when there are strongly absorbing aerosols in the
atmosphere (ωaer<0.95), e.g. over southern and eastern Asia,
sub-Sahel, south Africa, and Europe in July, especially when
surface albedo is large; this is the case of northern polar lat-
itudes in July. Regions with blue-green color correspond to
opposite sign values of DRE at TOA and surface; given that
1Fsurfnet is always negative (see Fig. 4), these regions must
have positive1FTOA values, i.e. they are characterized by
planetary warming due to aerosols. This occurs over regions
with large surface albedo and strongly absorbing aerosols
above, e.g. Sahara, Arabian peninsula, Greenland.

Further, our results indicate that over many areas of the
globe the surface DRE of aerosols can be up to 3–4 times
larger than at TOA, in general agreement with the findings
of Ramanathan et al. (2001) and Kaufman et al. (2002), but
there are also many areas where the ratio exceeds 5, as also
reported recently by Chung et al. (2005).
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(a)

(b)

Fig. 5. Global distribution of the ratio of aerosol direct radiative
effects1Fsurfnet/1FTOA, for (a) January and(b) July. Extremely
small1FTOA values, close to zero, which are associated with large
ratios with no physical significance have been omitted.

3.5 Global and hemispherical averages of aerosol direct ra-
diative effects

Global and hemispherical averages of SW DREs at TOA,
in the atmosphere and at surface were also estimated, by
including surface area weighting in the computations, and
the results are given in Table 2 and Fig. 6. The largest
DRE arising from natural plus anthropogenic aerosols is
found at the surface, where it is about twice the DREs
in the atmosphere and at TOA, irrespective of the hemi-
sphere; the downward and absorbed fluxes are decreased by
about 3.9 and 3.2 W m−2, respectively, on a global scale.
In the atmosphere, solar radiation absorption increases by
about 1.6 W m−2, and the globally averaged reflected solar
flux to space increases by about 1.6 W m−2. Our model
value at TOA is in good agreement with other recent esti-
mates from measurement-based approaches (e.g. Loeb and
Manalo-Smith, 2005; Yu et al., 2006, review paper), rang-
ing between−1.5 and−2.0 W m−2. For both1Fatmaband
1Fsurfnetthere are large inter-hemispherical differences, with
the largest effect of aerosols taking place in the more polluted
and less cloudy northern hemisphere. More specifically, the
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Fig. 6. Hemispherical and global averages of aerosol direct radia-
tive effects (DRE) on the shortwave radiation at: TOA (1FTOA), in
the atmosphere (1Fatmab), and at surface (1Fsurfnet), for (a) Jan-
uary and(b) July. Each forcing is divided in ultraviolet(UV)-visible
and near-infrared (IR) components. NH, SH and G correspond to
North Hemisphere, South Hemisphere and Globe.

northern hemispherical values for1Fatmabare larger than the
southern ones by factors of 3.3 and 6.3 in January and July,
respectively, while the corresponding factors for1Fsurfnet
are 1.7 and 2.5, i.e. they are quite smaller. On the con-
trary, very small inter-hemispherical differences are found
for 1FTOA, as a result of the combination of1Fatmab and
1Fsurfnet. In general, the magnitude of global hemispheri-
cal aerosol DREs at surface and in the atmosphere is slightly
(by factors 1.3 and 1.1, respectively) larger in July than in
January. Also, significant differences in the relative impor-
tance of the DREs at TOA, in the atmosphere and at the sur-
face, are found between the two hemispheres. For exam-
ple, the ratio1Fsurfnet/1Fatmab is about−1.7 in the north-
ern hemisphere and−3.7 in the southern hemisphere. This
inter-hemispherical contrast indicates the different nature of
aerosols, being much more scattering in the cleaner southern
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Table 2. Mean global and hemispherical (NH, SH) all-sky shortwave aerosol direct radiative effect (DRE, denoted as1F in W m−2) for
January and July. The DRE components are given in terms of: outgoing radiation at TOA (1FTOA), radiation absorbed in the atmosphere
(1Fatmab), downward radiation at surface (1Fsurf), and net downward (absorbed) radiation at surface (1Fsurfnet).

1FTOA 1Fatmab 1Fsurf 1Fsurfnet

January
Globe −1.72 1.41 −3.87 −3.13
North Hemisphere −1.79 2.16 −4.96 −3.95
South Hemisphere −1.66 0.65 −2.79 −2.31

July
Globe −1.51 1.79 −4.0 −3.3
North Hemisphere −1.65 3.09 −5.83 −4.74
South Hemisphere −1.37 0.49 −2.17 −1.86

hemisphere compared to the more absorbing nature of those
in the northern hemisphere that includes many anthropogenic
sources and most of the world’s deserts. As for the spectral
contribution to the total SW DREs (see Fig. 6), it appears that
for all DRE components, both for summer and winter and
both hemispheres, the largest contribution (about 70–80%)
is in the UV-visible wavelengths.

A comparison of our computations of aerosol DREs at
TOA and at the Earth’s surface under all-sky conditions
with some other estimates based on satellite observations and
multi-component aerosol models is presented in Table 3. Of
course, the estimates given in this table are not homogeneous.
However, they are given just for inter-comparison with our
computations. Given the different approaches, model- or
satellite-based estimates, the different aerosol properties, the
different properties of the rest atmospheric and surface pa-
rameters, the different time periods, the different spatial and
temporal resolutions etc, a perfect agreement cannot be ex-
pected. In order to assess the differences in each case, a large
numbers of parameters should be considered and examined
carefully, which is beyond the scope of this study. There are
fewer results for1Fsurfnetpublished in the literature than for
1FTOA. The present estimate of all-sky global mean1FTOA
(−1.62 W m−2) is larger than previous estimates obtained
with aerosol models (ranging from−0.24 to−1.04 W m−2),
while it is very close to the model-based estimate by Jacob-
son (2001) and to the estimates by Yu et al. (2004a, 2006,
see Table 3) based on measurement-based approaches. Note
that the present model estimates include uncertainties re-
lated to possible underestimation of AOT by GADS, as ex-
plained in Sect. 2.2. Based on our model sensitivity (see
e.g. Hatzianastassiou et al., 2004b) an underestimation of
AOT by 25%, may lead to smaller magnitudes of the aerosol
DREs in Table 2 by 0.39 W m−2 for 1FTOA, and 0.68 W m−2

for 1Fsurfnet. The global mean1Fsurfnet from this study
(−3.22 W m−2) is slightly smaller in magnitude than the es-
timates by Yu et al. (2004a, see Table 3) and, especially, by
Jacobson (2001), though relatively close to the estimates by
Yu et al. (2004b, see Table 3) and Yu et al. (2006). The dif-

ferences with the former two studies should be attributed to
differences in atmospheric absorption by aerosols (1Fatmab).
For example, Jacobson (2001) reported that1Fatmab is pri-
marily due to absorption by soil dust, certain organic matter
and black carbon. It is possible that GADS underestimates
the aerosol absorption with respect to the studies by Yu et
al. (2004a, see Table 3) and Jacobson (2001), thus leading
to slightly underestimated1Fsurfnet values. The underesti-
mation in this study can be partly explained by the fact that
aerosol DRE is not accounted for when aerosols are within
and above clouds (see Sect. 2.1). Definitely, the treatment
of various aerosol components, the way they are mixed, as
well as other factors like the assumed aerosol size distribu-
tions, refractive indices, or aerosol formation, emission and
removal processes, are crucial for explaining the differences.
This is also shown by the different DRE estimates obtained
by Yu et al. (2004) using either the GOCART model alone
(2004b, see Table 3) or combined with the Moderate Res-
olution Imaging Spectroradiometer (MODIS, 2004a, see Ta-
ble 3). We note that estimates computed with coupled aerosol
and general circulation models are not only based on a re-
stricted number of spectral intervals but are also based on
generated global distributions of cloud cover fractions that
are not as accurate as those from satellite observations, as
used in our study.

Although all-sky aerosol DREs are given in Table 3, the
clear- and cloudy-sky DREs are also estimated separately
with our modelling approach, in contrast to measurement-
based approaches, which have to assume a cloud-sky effect
equal to zero to get the all-sky estimate. This is one of the ad-
vantages of modelling techniques. According to our results
for the period 1984–1995, the cloudy-sky DREs are found to
be smaller than the clear-sky ones, as expected. The long-
term mean annual ratios1Fcloudy/1Fclear at TOA are equal
to 0.25, 0.15 and 0.2 for the northern hemisphere, south-
ern hemisphere and the globe, respectively. At the surface,
the corresponding values are equal to 0.48, 0.25 and 0.39,
while in the atmosphere they are equal to 0.71, 0.72 and 0.71
(northern hemisphere, southern hemisphere, globe).
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Table 3. Comparison of published shortwave aerosol DRE (in W m−2) at TOA (1FTOA) and at the Earth’s surface (1Fsurfnet) under all-sky
conditions*.

1FTOA 1Fsurfnet

NH SH Globe NH SH Globe

Present study −1.72 −1.51 −1.62 −4.35 −2.09 −3.22
Yu et al. (2006) −1.9 −3.4
Reddy et al. (2005) −1.51 −0.58 −1.04
Liao et al. (2004) −0.93
Yu et al. (2004)a −1.82 −1.33 −1.57 −4.65 −2.24 −3.44
Yu et al. (2004)b −1.33 −0.91 −1.12 −3.64 −1.61 −2.62
Takemura et al. (2002) −0.17 −0.3 −0.24
Jacobson (2001) −1.8 −4.6

a Obtained with MODIS+GOCART (Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport) integration.
b Obtained with GOCART alone.
∗ The values of Yu et al. (2004, 2006) have been adjusted for all-sky (from clear-sky) conditions, using a mean (spatial and temporal terms)
cloudiness equal to 0.65 (based on satellite ISCCP data) and considering the DRE negligible under cloudy skies.

4 Summary and conclusions

In this study, we quantified the global-scale direct radiative
effect (DRE) of natural plus anthropogenic aerosols on so-
lar radiation. This was accomplished by using a detailed
spectral radiative transfer model covering the UV, visible,
and near-IR wavelengths together with spectral aerosol opti-
cal properties (optical thickness, single scattering albedo and
asymmetry parameter) taken from the Global Aerosol Data
Set (GADS). This is in contrast to other similar studies of-
ten treating the whole solar spectrum as one spectral inter-
val. The state of the atmosphere (clouds included) and that
of the Earth’s surface were specified using reanalysis data
sets and satellite measurements. Therefore, the DRE on the
outgoing SW radiation at the top of atmosphere (1FTOA),
on atmospheric absorption (1Fatmab), and on the downward
and absorbed SW radiation at the Earth’s surface (1Fsurf
and1Fsurfnet) were computed for realistic conditions of the
Earth-atmosphere system for the 12-year period 1984–1995.
The results are given for January and July at 1◦ latitude-
longitude resolution for all-sky conditions, but also averaged
for the two hemispheres and for the globe, and they represent
a climatological assessment of aerosol DREs.

On a mean global basis, natural and anthropogenic
aerosols together are found to increase the outgoing SW
radiation at TOA (planetary cooling) by about 1.6 W m−2,
and to radiatively heat the atmosphere (atmospheric heat-
ing) by increasing the absorption of solar radiation by about
1.6 W m−2. As a result, the downwelling and the absorbed
SW radiation by the Earth’s surface is found to be decreased
(surface cooling) by 3.9 and 3.2 W m−2, respectively, due to
aerosols. Recently, Yu et al. (2006) presented in a review pa-
per aerosol DRE values over land+ocean from measurement-
based approaches under clear-sky conditions. These values

when combined and adjusted to all-sky conditions are equal
to −1.9 W m−2 at TOA, and−3.4 W m−2 at surface, i.e. they
are close to our computations (−1.6 and−3.2 W m−2, re-
spectively). It should be noted that our computations refer to
the DRE of natural plus anthropogenic aerosols. The effect
of anthropogenic aerosols only, called direct climate forcing
(DCF), can be derived nowadays from new-generation satel-
lite instruments (e.g. MODIS), which are able to distinguish
between fine (submicron) and coarse (supermicron) aerosols.
Thus, recent estimates under all-sky conditions (e.g. Bellouin
et al., 2005) give a DCF at TOA equal to−0.8±0.1 W m−2

and at surface equal to−1.9±0.2 W m−2, values that cor-
respond to about 50% of our computed total aerosol DRE.
There are also other model-based estimates of DCF with
smaller magnitude, such as those of−0.65 W m−2 by Pen-
ner et al. (1998),−0.19 and−0.1 W m−2 by Takemura et
al. (2002) and (2005), respectively, and−0.35 W m−2 by
Chung et al. (2005).

The magnitude of the combined radiative effect of natu-
ral and anthropogenic aerosols at TOA (1FTOA), which is
equivalent to an increase in planetary albedo of the order of
1%, is very important for the climate of the Earth-atmosphere
system, since it is comparable to that of climate forcing in-
duced by elevated concentrations of greenhouse gases (about
2.4 W m−2, IPCC, 2001). Nevertheless, the largest DRE oc-
curs at surface (1Fsurfnet, about double1FTOA) having the
potential for major effects on surface radiation budget (SRB),
evaporation, and the hydrological cycle. The mean global en-
hanced absorption of solar radiation by 1.5 W m−2 translates
to an estimated atmospheric heating rate of 0.01 K day−1.
The major part of the computed DREs is for the northern
hemisphere, which has most anthropogenic aerosol sources
and desert areas, while larger DREs occur in July than in
January.
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According to our computations, a large percentage of
the incident solar radiation at TOA is radiatively forced by
aerosols. More specifically, these percentages can be as
large as 13% at the Earth’s surface and TOA, and 7% in
the atmosphere. Furthermore, the aerosol effect on plane-
tary albedo (1Rp) can even change sign. Thus, although it
is found that in general, natural and anthropogenic aerosols
together cool the Earth-atmosphere system, through scatter-
ing of SW radiation back to space, by up to about 15 W m−2,
aerosols are also found to produce planetary warming (by
up to 10 W m−2) over areas such as Sahara, Arabian penin-
sula, Siberia and Greenland. Regionally, the aerosol parti-
cles warm the atmosphere by absorbing solar radiation by
up to 35 W m−2. The largest aerosol-induced atmospheric
warming occurs above areas characterized by strongly ab-
sorbing mineral dust particles, especially over highly reflect-
ing deserts. The estimated1Fatmab values translate into
a tropospheric maximum heating rate of 0.98 K day−1 over
land, and<0.14 K day−1 over oceans. At the Earth’s sur-
face, the downward and absorbed SW radiation is decreased
by up to 45 and 30 W m−2, respectively, due to aerosol scat-
tering and absorption. Regionally, the ratio of surface to
TOA aerosol SW DRE changes from strong negative values
of −15 to strong positive values up to 15, which indicates
the important role of both natural and anthropogenic aerosols
for surface processes and the surface radiation budget. This
strong surface SW cooling combined with an associated at-
mospheric warming, can have important consequences on at-
mospheric circulation, since it can create more stable atmo-
spheric conditions (by decreasing the vertical atmospheric
temperature gradient) and lower surface evaporation, result-
ing in less clouds and precipitation, thus enhancing desertifi-
cation processes, especially in semi-arid regions such as the
Mediterranean basin or northern Africa.

The computations presented in this study have uncertain-
ties related to the limitations of the GADS aerosol optical
properties used as input data. These uncertainties refer to
the quality and incompleteness of measurements, quality of
data (refractive index and size distribution) for describing the
aerosol components, aerosol height distribution, description
of aerosol particles with limited number of components or
validity of amount and mixture of components for describing
aerosol as an average for a specific location. Another source
of uncertainty in the present DREs is the use of aerosol asym-
metry parameter for describing the angular distribution of
scattering instead of the Mie phase function. Nevertheless,
the model results can be considered as reasonable for esti-
mating the direct radiative effect of aerosols, though not for
examining time-series. They are also useful for perform-
ing detailed spectral analyses of DREs, as shown in this
study and those by Hatzianastassiou et al. (2004a, b, 2006).
The uncertainties will be reduced in planned future studies
by using satellite measurements (TOMS, MODIS), that will
provide more accurate estimations of aerosol DREs. Note,
however, that the spectral resolution of those satellite-based

aerosol properties is still inferior to that provided by GADS.
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