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Abstract. The Empirical Orthogonal Function (EOF) re- dard deviation. This procedure is optimal in the sense that
trieval technique consists of calculating the eigenvectors ofto improve the retrievals one must resort to using a different
the spectra to later perform a linear regression between thedeaining data set or a different algorithm.

and the atmospheric states, this first step is known as train-
ing. At a later stage, known as performing the retrievals,
atmospheric profiles are derived from measured atmospheric

radiances. 1 Introduction

When EOF retrievals are trained with a statistically differ- . ]
ent data set than the one used for retrievals two basic probl@mperature and water vapour are basic meteorological pa-
lems arise: significant biases appear in the retrievals and diff@meters of high importance for weather forecasting as well
ferences between the covariances of the training data set arff atmospheric chemistry studies. Observations from high-
the measured data set degrade them. spectral-resolution infrared sounding instruments on board
The retrieved profiles will show a bias with respect to the of satellites can provide unprecedented accuracy and verti-

real profiles which comes from the combined effect of the cal resolution of temperature and water vapour profiles. It
mean difference between the training and the real spectr&s’ however, not trivial to retrieve the full information con-
projected into the atmospheric state space and the mean dif€nt from radiation measurements. Accordingly, improved
ference between the training and the atmospheric profiles. fetrieval algorithms are desirable to achieve optimal per-
The standard deviations of the difference between the reformance of existing and future instrumentation, such as
trieved profiles and the real ones show different behavior deground-t;]asgd FounTr TransfoI:m '”fr"’l‘lRed (FTIR) spectrom-
pending on whether the covariance of the training spectra i£t€rs 6chneider et 12003 or the satellite-based Advanced
bigger, equal or smaller than the covariance of the measurelficrowave Sounding Unit (AMSU) Houshangpour et al.
spectra with which the retrievals are performed. 2003. _ _ _
The procedure to correct for these effects is shown both A Series of European sateliites, known as Metop, will
analytically and with a measured example. It consists of first?€ launched in the frame of the EUMETSAT Polar System
calculating the average and standard deviation of the differ(EPS) in low Earth orbits. The first launch of the Metop
ence between real observed spectra and the calculated spexdtellites is planned for 2006 and will carry the Infrared At-
tra obtained from the real atmospheric state and the radiativE"0SPheric Sounding Interferometer (IASI). IASI is a high-
transfer model used to create the training spectra. In a latefPectral-resolution infrared sounding instrument developed

step, measured spectra must be bias corrected with this a2y the Centre National d’Etudes Spatiales (CNES) and based

erage before performing the retrievals and the linear regres?" @ Fourier transform spectrometer. IASI spectra are repre-

sion of the training must be performed adding noise to theS€Nted by 8461 spectral samples, between 3.62 a5y

. . 1 . .
spectra corresponding to the aforementioned calculated staf¥ith @ spectral resolution of.5cm after apodisation. Its
spatial resolution is 25km at nadir with an IFOV (Instan-

Correspondence taX. Calbet taneous Field of View) size of 12km at a satellite altitude
(xavier.calbet@eumetsat.int) of 819km. As part of EPS, EUMETSAT is developing the
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Table 1. Variable synopsis.X7: modified “Sampled database of ibratgd a_nd validgted with one set (,)f atmospheric profiles,
60-level atmospheric profiles from the ECMWF analys@tigval-  that is, either radiosondes or numerical model analyses, but

lier, 2003. F),: radiative transfer model RTTOVSS@unders ~ Not both at once. The second condition is that the “total”
2004. Yr: spectra derived from the modified ECMWF sample noise of the measurements has gaussian statistics. By “total”
(Chevallief 2002 and RTTOVS8. R: EOF retrievalX ,: ECMWF noise it is meant the observed minus “calculated” measure-
analyses (ERA40).F4: radiative transfer of the real atmosphere ment standard deviation as shown in FI. This “total”

and instrumentY4: AIRS measured spectrdc: calculated spec-  noise includes the instrumental noise, the forward radiative

tra from ECMWF analyses and RTTOVS. transfer model errors and the representativeness of the data
used as the real atmospheric profiles. Once these two con-
Training data ditions are met, the analytical results show which bias cor-
xr —f— yp SR Xpr rections and noise figures are the optimal ones in the EOF
Real data retrievals.
X4 —M— ¥4 —F— Xp The second part of the paper (Sect. 6 and throughout

Calculated spectra

F Sects. 2 to 5) verifies the analytical results with a real world
X4 —"M— Y

example, the EOF retrievals of the IASI L2 PPF using real
AIRS spectra. In this particular example, AIRS bright-
ness temperatures are the measured quantities and the atmo-
spheric profiles are calibrated and validated against ECMWF
operational IASI Level 2 Product Processing Facility (IASI analyses. It has been verified (not shown in this paper) that
L2 PPF), which will generate atmospheric state retrievalsthe noise of the observed minus calculated brightness tem-
from the IASI radiance spectr&¢hlissel et al.2003. peratures do show gaussian statistics, and hence the analyt-

One of the retrieval techniques available in the IASI L2 jcal optimal bias and standard deviation corrections can be
PPF is based on Empirical Orthogonal Functions (EOF),applied.
which is a valuable and very computer efficient method. It
consists in performing a linear regression of the principal
components or EOF of the measured brightness temperaturé EOF retrievals
spectra and the atmospheric state parameters. In this paperh ) . -
the particular EOF retrieval method developed for the IAS| 1 n€ IASI L2 PPF EOF retrieval consists of two distinct parts.

L2 PPF will be reviewed analytically and tested with real The first one of them is the "training” process in which the
data available from the AIRS instrument. retrieval parameters are determined. The second one consists

AIRS is a high-spectral-resolution infrared sounder in performing retrievals with the available data using these
launched in May 2001 on board the NASA Aqua satellite parameters, validating the theoretical approach. These parts

(Aumann et al.2003. It has a spectral coverage from 3.7 will be explained briefly in the next two subsections. Table
to 154 um with a spectral resolution of 1209/A1) and a summarizes all the main variables used in this paper.
total of 2378 channels. Its spatial resolution is about 28 km - ;

L . 2.1 Training EOF retrievals
at nadir with an IFOV size of 14 km. g

The EOF retrieval method has been studied before withThe EOF retrievals can be trained with synthetically gen-
synthetically generated data (e.pluang and Antonelli  erated data derived from a representative sample of atmo-
2001, but further problems arise when used with real datagpheric states. In the IASI L2 PPF case, the profiles used
as is acknowledged b¥hou et al.(2009. Namely, the exis-  for training are a modification of the “Sampled database of
tence of a significant bias between the measured and modelegh-level atmospheric profiles from the ECMWF analyses”
derived radiance and the dominant influence of the radiativqChevallie; 2002, and will be denoted b7 1;. The corre-
transfer model errors on the observational error analySiS. Sponding AIRS spectra/;T,jl., are calculated from these pro-

To make this paper more readable, the real world exampléiles using the RTTOV-8%aunders2004) radiative transfer
data is presented throughout the analytical demonstrationsnodel, Fy,,
but conceptually this paper could be divided in two separate
parts. The first one (Sects. 2 to 5) deals with the analytical!7.ji = Fm (XT1.xi), 1)
derivation of the best parameters to be used in EOF retrievalgNhere’

The demonstration is general enough to account for different

types of EOF retrievals using the same algorithm as showni = 1...ar (Item numbey,

in this paper. It can be applied whether radiances or bright-j = 1...m (Channel number

ness temperature measurements are used. The method can_
also be applied whether it is calibrated and validated using
numerical model analyses or using radiosonde data. The firdhe subindexM stands for “model”, the subindeX for
condition to apply the analytical results is that it is only cal- “training” data,nr is the number of items or training sample

1...q (Atmospheric state parameter numper

Atmos. Chem. Phys., 6, 83846, 2006 www.atmos-chem-phys.net/6/831/2006/
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Mean and mean+standard deviation of the training set
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Fig. 1. Mean (solid line) and meatt one standard deviation (dashed line) of the temperature profile of the modified “Sampled database of
60-level atmospheric profiles from the ECMWF analysé3hévallier 2002 (bottom) and their corresponding spectra statistics calculated
using RTTOV-8 (top).

size,m is the number of channels in the infrared spectrum The principal components or EOF scores of the spectra can
andgq is the number of atmospheric state parameters. now be calculated with,
Figure 1 illustrates the mean and mean one standard m
deviation of the temperature profiles of these sample analyseg; ;, = Z eji(Yr jk — Y71.}),
and of their corresponding spectra obtained using RTTOV-
8. Figure2 shows a particular example of this dataset. The
whole EOF retrieval process has been applied from surfacé/ here,
pressure up to the highest RTTOV-8 levell BPa. Sincewe ; — 1.
are interested mainly in tropospheric retrievals only the data
below 100 hPa is shown.
To obtain the EOF, the covariance matrix of the spectraand the valuep is the number of eigenvectors used, which
must be calculated, can run from 1 to the total number of channeis,
Finally, to be able to perform the retrievals, a linear regres-
sion with the atmospheric states is done,

4

j=1

.n (Item numbey,
.. p (Eigenvector numbey

nr
Crji= Z(YT,ji —Yr )Y —Yr)0), (2)

i=1

P
whereYr ; is the average of the brightness temperature forXT.ki = Z BrjZr ji + X1ks (®)
all samplesgz. j=1

The covariance matrix can be diagonalized in the form, where X7 is the atmospheric state average of all samples,

nr.

m
2
Z Crijejk = OF y€iks
Jj=1

©)

The linear regression coefficients can be calculated by
least square minimization,

wheree;; are the eigenvectors and the eigenvalues are de-
fined asaT ; for convenience. The elgenvalue,%k will be
ordered from higher to lower values as thimdex increases.

www.atmos-chem-phys.net/6/831/2006/
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Example of a training sample profile and its spectrum
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Fig. 2. Example of a particular training sample (bottom). The temperature (solid line) and dew point temperature (dashed line) are shown as
well as its corresponding brightness temperature spectrum calculated using RTTOV-8 (top).
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Fig. 3. Retrieval profile of the particular training example in Fy.
using 200 eigenvectors. The temperature (solid line) and dew point. _ 1
temperature (dashed line) of the original training profile are shown,

as well as the retrieved temperature (dash-dotted line) and dew poir(f =1..49

temperature (dotted line).

Atmos. Chem. Phys., 6, 83846, 2006

2.2 Performing EOF retrievals

The retrieval method can be tested, for comparison purposes,
with the same training cases. They will de defined as,

m

P
XRr ki = Z Brj Z eij(Yrui —Yro) + Xr ik, (7)
=1 =1

where the subindeRT stands for “retrieval of the training”
cases. A training profile retrieval, using the data from the
example in Fig2, is shown in Fig3.

The real spectra can be derived from the atmospheric states
by measuring them in a real atmosphere,

Yaji = Fa(Xa ki), 8
where,
i=1...naq (Item numbey,

..m  (Channel numbeér
(Atmospheric state parameter numper

the subindex stands for “atmospheric” real casas, is the
number of measurements, is the channel number in the
infrared spectrumy is the total number of atmospheric pa-
rameters and’4 represents the whole real system including
the atmosphere and the measuring instrument.

www.atmos-chem-phys.net/6/831/2006/
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Mean and mean+standard deviation of the real data
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Fig. 4. AIRS measured brightness temperature mean (solid line) and eame standard deviation (dashed line) of 8650 clear sky
measurements during nighttime over ocean of the day 6 October 2003 (top). Also shown are the statistics of the corresponding ECMWF
(ERA40) temperature analyses to those measurements (bottom).

In this paper, the real atmospheric measurememtsare Table 2. Scene selection. T7(10.8um), for example, is the
the 8650 clear sky spectra from AIRS taken during 24 h ofighiess temperature of an AIRS channel that lies in that wave-

nighttime over ocean of a randomly chosen day, namely Gength (108 xm). SST is the sea surface temperature derived from
October 2003. For the detection of clear-sky situations aECMWEF analysis.

number of threshold tests are applied as proposetuby
(2002 andLutz et al.(2003, which are summarized in Ta-
ble 2. The tests are very restrictive to assure that the amount
of undetected cloud contamination remains negligible. Fur-
ther restrictions consist of (TabB:

Cloud detection

—1K<T@E9um—-7T(10.8um) <3K
T(10.8um)>276K
T(11L0um)>SST —2.2K
T@A.0um)—T(A1L0um)>12K
T9.3um)—T(1L0um)<0K
T(AL0um)—T(120um)<1K
T(A10um)—T(13.6 um)>18K

— Nighttime measurements to avoid solar contamination
of the spectra.

— Latitudes equatorward of 80to avoid cold surfaces
where cloud detection is difficult. Others

|Solar zenith angle-100°
|Latitudd <50°
|Scan anglp<15°

— Small scan angles<15°).

The closest, in space and time, ECMWF analyses of each one
of the spectra is assumed to be the “real” atmospheric state,
X 4. These analyses have been extracted from the ECMWF
40-year re-analysis project (ERA4Q). Figutélustrates the The retrievals of the real atmospheric stat¥g i, can
mean and meat one standard deviation of the AIRS spec- gy he performed by using the linear regression as before,
tra dataset and of their corresponding ECMWF temperature

. . 14 m
analyses. Figuré shows one particular example of the real XRak = Zﬂk-/ Zelj(YA,li — Y1) + X7x. (9)
atmospheric dataset. -1 =

www.atmos-chem-phys.net/6/831/2006/ Atmos. Chem. Phys., 688812006
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Fig. 5. Example of a particular real data sample. The measured AIRS spectra is shown (top), as well as the closest in space and time ECMWF

X. Calbet and P. Sdidsel: Optimal EOF retrieval parameters

Example of a real profile and its spectrum
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3 Statistics of the retrievals

To determine the performance of the retrievals a comparison
with some known truth must be made. In the case of the
retrievals performed on the same training cases the obvious
choice for comparison are the original profiles. In the case of
the measured AIRS spectra, the retrievals will be compared
with ECMWF analysesX 4). For most retrieved parameters,
it is usually the case that the difference between the retrieved
profiles and the original or real ones has a Gaussian distri-
bution. Because of this, a good choice to characterize the
statistics of the retrievals is to calculate the mean and stan-
dard deviation of this difference.

The mean of the difference or biases of the training cases
is,

Xrrke — X7 k0 (10)

Fig. 5 using 40 eigenvectors. The temperature (solid line) and dewWith the real cases, the bias is,

point temperature (dashed line) of the ECMWF analysis are shown

as well as the retrieved temperature (dash-dotted line) and dew p0|n¥RA k= XAk (11)

temperature (dotted line). No bias correction or noise added to th

training data set has been used in this case.

eI'he square of the standard deviation or the covariance of the
retrieved versus the original profiles is,

An example of a retrieval preformed from the AIRS spectrum 52 — i %(XRT i — X7ai)? (12)
example shown in Figp is illustrated in Fig8. ” e

Atmos. Chem. Phys., 6, 83846, 2006
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Training retrieval statistics AgH <%>1 0 15
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Fig. 7. Bias (dotted line) and standard deviation (solid line) of the retrievals performed on the training profiles using 200 eigenvectors for
temperature (left) and dew point temperature and relative humidity (right).

for the training cases and, with,
, 1 4 5 k=1...q (Atmospheric state numbger (15)
S = — X i — XAki) 13 . .
RAK ; (Xraki = Xaki) (13) In the case of the real cases, the bias result is,
for the real measured ones. Xrak = Xak =
Figure 7 shows the computed statistics for the training L ' = e o —-—
cases. A zero bias is shown and a standard deviation betweea Prj ; e (Va1 = Y1) + X1k = Xa k), (16)
2 K for the lower levels and 1K for the upper ones. ]__ a
Figure 8 shows the same statistics for the real data, thatwith,
is, AIRS EOF retrievals compared with ECMWF analyses.; _ 1 ..q¢ (Atmospheric state number (17)

The most significant feature in this graph is the large bias

shown in the retrievals, which degrades their performancelhis important result shows that the biases of the retrievals
considerably. The standard deviation is within reasonableare a sum of two terms. One is the second parenthesis in
limits and is similar to the training cases of Fiy. the right hand side of Eq16), which is the bias of the dif-
ference between the modeled atmospheric profiles used for
training and the real atmospheric profiles. Another one is the
first parenthesis in the right hand side of Ef6)( which is

the bias of the difference between the real atmospheric spec-
To understand the large bias observed in Bj@n analytical  tra and the modeled one used for training, transfered to the
derivation of the bias and standard deviation will be shownatmospheric profile space by the inversion process.

in this section. The bias of the training cases can be readily The training standard deviation can be resolved to give,

calculated obtaining the result, "
2 1IN Yo)2
Skrk = — Z(XT,ki = X1 —
(R =

4 Analytical derivation of the statistics of the retrievals

Xrrk— X176 =0, (14)

www.atmos-chem-phys.net/6/831/2006/ Atmos. Chem. Phys., 688812006
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Real data retrieval statistics
(no bias, no noise, 40 eigen)
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Fig. 8. Bias (dotted line) and standard deviation (solid line) of the retrievals performed on the real AIRS spectra when compared to collocated
ECMWEF analyses (ERA40) using 40 eigenvectors for temperature (left) and dew point temperature and relative humidity (right). The AIRS
data consists in 8650 clear sky spectra taken during 24 h on 6 October 2003 during nighttime over ocean. No bias correction or noise addec
in the linear regression has been used in this case.

Theoretical training retrieval statistics With,

B T

k=1...q (Atmospheric state number (19)

From this equation we immediately see, as is shown in%ig.
that as we increase the number of eigenvectors, the standard
deviation of the retrieval error will decrease monotonically.

& Its minimum value, which should be greater than zero, is
S reached when we use the maximum number of eigenvectors,
é p=m.
The solution to the real cases is a more complicated ex-
pression,
[ 1 ) 1 JA 5
0.0} | N =— > (Xaxi—Xr4)
0 20 40 60 80 100
Number of eigenvectors i 1 XP:IB Xp:ﬂ iz 7
— kj ki A jiLAl
. . . . . a3 = e
Fig. 9. Analytically derived curved for the bias (dotted line) and
standard deviation (solid line with circles) of the retrievals of the 2 & A R
training case as a function of the number of eigenvectors. " na Z Bri Z(XA””' — X124, jis (20)
=1 =1
)4 nr 2 with,
i Xrui — X170 ZT. 04 (18)
Z; o2 | 2;( T ki Tk ET, ji ’ k=1...q (Atmospheric state number (21)
J= ] 1=

Atmos. Chem. Phys., 6, 83846, 2006 www.atmos-chem-phys.net/6/831/2006/
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To get a grasp of this equation, some simplifications must Theoretical real data retrieval statistics
be made. Assuming that the covariance matrix of the EOF JT T T T ]
scores of the real cases is also diagonal, - .
| O — o < 0y
nA 2 r 6—6—=o UTZ = (TAZ (optimal)
Z Zp,jiZaki =04 8k, (22) Sr o > 0

i=1

N

and that the cross-covariance matrix of the measured spectrag
and the modeled spectra is the same, 7

na nr L
> Xani — X100 Zaji = Y _(Xrai — Xr.0Zrjir  (23) i
i=1 i=1 :

the following result is obtained, ol ]
L L L L | L L L L | L L L L | L L L L
1 o4 0 50 100 150 200
v Number of ei t
S]%Ayk — a Z(XA,ki . XT.k)z_ umber ot eigenvectors
i=1
' 5 Fig. 10. Analytically derived curved for the standard deviation of
ua N the retrievals as a function of the number of eigenvectors of the
» Z(Xr,ki — X127 ji o2 _ g2 . real atmospheric cases. Three cases are shown: when the standard
i=1 1— AJ T.j 24 deviation of the real atmospheric state%, is bigger (x signs), the
7 7 (24) . ; n
=1 or,;j or,; same (circles) or smaller (plus signs) than the standard deviation of
the training cases;?.
with,
k=1...q (Atmospheric state numbger (25)

To calculate the optimal retrievals in the general case,

The behavior of this covariance as a function of the numberEd- €0), the smallest possible standard deviation of the dif-

of eigenvectors is shown in Fig0. Three different cases can ferences between the retrieved and observed profiles should
be distinguished be obtained. This can be done by finding its minimum,

1. Exact match of modeled covariance and measured 3512%;( —0 27
covariance o7 ;=o% ;. This case has the same solu- gg,, ~ 27)
tion as in the purely training case, E48|. The results ) _
are shown in Fig10. The retrieved errors tend to de- Which gives as a resullt,

crease as the number of eigenvectors increase.

nr
. . . Xt ii—X7.1)XYTKi =Y =
2. Modeled covariance bigger than real covariance Z( Lt 7)Y ki = Y14
2 _ 2

. . 1=
oTé.>aA ;- In this case the retrieved errors also tend 4
to decrease as the number of eigenvectors increase, as is Z(XA,ji — X7 )(Yaki — Y7.0)

shown in Fig.10, but the overall errors are bigger than i1
in the previous case. nr
) _ Z(YT,ji —Yr, ) Y1 — Yrp) =
3. Modeled covariance smaller than real covariance )
of j<o§ ;. The behavior of this case, Fig0, is seen na L L
by assuming that2 . —o? . is approximately constant > Yaji = Y1 )Yaki = Y1.0). (28)
as a function of the eigenvalue indgxon the basis that i=1

this difference will effectively be a residual noise of the Tpjs result for the general case confirms what was previously

measurements;, and recalling that the eigenvalues de- gpiained in the particular case of EQ4J, Fig. 10, when
crease with increasing index In this case, the errors 2 _ 2 -
in the retrievals decrease as the number of eigenvectorsT’-’ AJ

increases and then shows a minimum at the eigenvalue

indexk such that, 5 Estimation of the optimal parameters
o% = ofﬁ «— 0%’ & (26) The result from optimal parameters of EB8) provides what

is the ideal situation when performing retrievals. In real cases
before increasing afterwards. this is not normally the case and there is usually a significant

www.atmos-chem-phys.net/6/831/2006/ Atmos. Chem. Phys., 688812006
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Mean of the BT difference, AIRS — (RTTOV8+ECMWF')
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Fig. 11.Bias (top) and standard deviation (bottom) of the difference between the measured AIRS brightness temperature and the “calculated”
ones with the ECMWEF analyses and RTTOVS.

difference between the modeled and the real covariance maBoth statistics are shown in Figjl. In Fig.12the instrumen-
trices caused by both instrumental noise and model noise. Ital noise is compared with the standard deviation of Bi). (
which way can we estimate the retrieval parameters so that To calculate analytically the covariances of this difference
we get the best possible retrievals with a given set of radiativat should be noted that since the “calculated” profiles are de-
transfer model and observations? rived using the radiative transfer modély, it is reasonable
to assume that their covariances are similar,
5.1 Estimation of the biases and covariance matrix correc-_____
tions YC YC ~ YT YT. (32)

N : . . On the other hand, since the “calculated” profiles are derived
A good estimation of the bias and covariance matri COMECom the real atmospheric states, their mean should be simi-
tion to the training and measured cases can be obtained

calculating the mean and covariance of the difference be-
tween the measured spectra and the “calculated” one, de¥c j =~ Y4 k. (33)

noted byYc ;. Given a set of measuremerXs ;; andYy x;, i . . .
the calculated spectra can be derived from the set of atmo\-NIth this in mlnldtorlﬁ canIaSISl:n’ée that thle measmé:jeddrad_l-
spheric profiles and the radiative transfer model used by, ances are equal to the caiculated ones pius an added noise

term,
Yo = FM(XA,ji)~ (29) Yaji=7Ycji+ uji, (34)
The bias of the difference between the real measured spectigch that the noise term is independent of the calculated
and the calculated one can now be obtained by, value, in the sense that,
Yak —Yck, (30) N

nA

Z(Yc,ji —Ye ki = ZMji(Yc,ki —Ycj)=0. (35
and the standard deviation by, i=1 i=1
This assumption can hold if the added noise is random or it is

1 na P . “ " . g
. Z [Yasi — Yeri — Tax—Ye . (31) systematic b_ut well behaved” in the sense that satisfies the
na = above equation.
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Standard deviation of AIRS — (RTTOV8+ECMWF) and instrumental noise
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Fig. 12. “Total error”, equivalent to the standard deviation of the difference between the measured AIRS brightness temperature and the
“calculated” ones with the ECMWEF analyses and RTTOV8 (squares) and instrumental noise for the temperature profbgadtsig.

The final covariance of the differences can be calculatedand by assuming that the retrieval is nearly the inverse of the

by using Egs.2) and 34),
na

> (Yaji = Yeji — Vaj — Ye j))-
i=1
Yaki —Yeri — Yax —Yer) =
na nm
Z Ya,ji¥aki — Z Y7 ji¥Y1 ki- (36)
i=1 i=1

5.2 Performing bias and covariance matrix corrections

forward model,

p

Z Brj Z exj Fy = Identity. (39)
=1

j=1
The final resulting biases are nearly zero,
)A(RA,]( — XA,k ~ 0. (40)

The covariance corrections will be applied on the spectra of
the training cases, adding to them a random noise compo-

It is now possible to correct the observations and the traininghent,

sample to obtain the best possible EOF retrievals given thei;

available data and radiative transfer model.

T.ki = YT ki + €kis (41)

Modifying the measured radiances by subtracting the bi-where the covariance matrix of the added eregy, is the

ases calculated using EQQ],
Yaxi =Yaxi — Yak — Ycr (37)

the bias of the retrievals using these valuﬁﬁ,A,j,-, can be
obtained by,

Xpak — Xak =

4 m
D B Y e (Fu(Xan) — Fu(Xr0)+

=1 =1
(X716 — Xax), (38)

www.atmos-chem-phys.net/6/831/2006/

same as the one in EQ6),

ny
E €, j€ik =
i=1

na

Z (Yaji—Yc,ji—(Yaj—Yc, )
i=1

(Yaki —Yeri — Yax —Ycr))- (42)
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Fig. 13. Bias (dotted line) and standard deviation (solid line) of the retrievals performed on the real bias corrected AIRS spectra when
compared to collocated ECMWF analyses using 40 eigenvectors for temperature (left) and dew point temperature and relative humidity

(right).

Calculating the covariance of the new training spectra by
using Eq. 86) gives,

Real data retrieval example (bias, no noise, 40 eigen)

100

! Temperature - nr A ~ A ~
VR 2 (Frji = ¥r (i = Vr =
/ Retrieved dew point i=1

nA

Z(YA,ji —Yr ))Yaki — Y1), (43)

i=1
which is the same as the optimal covariance for the retrievals,
Eq. 28). Assuming that the cross-covariances of atmo-
spheric states and spectra are approximately equal for the
modeled and measured case, that is, the first equation of the
set of Eqs. 28) holds, then the conditions for an optimal EOF
retrieval would have been reached.

p (hPa)
200

500

1000

T, Tdew (oc)

6 Real case calculation of the statistics of the retrievals

Fig. 14. Retrieval profile of the particular real AIRS data example in using the optimal parameters

Fig. 5 using 40 eigenvectors. The temperature (solid line) and dew
point temperature (dashed line) of the ECMWF analysis are shown|t is now possible to calculate the statistics of the training and

as well as the retrieved temperature (dash-dotted line) and dew poirthe real data retrievals with the corrected parameters and data

temperature (dotted line). Bias _cerrection_has_ been applied but ngq compare them with the theory. The biases and standard de-

noise has been added to the training data in this case. viations calculated for the training cases have been shown in
Fig. 7. In Fig. 18 the mean bias and standard deviation of
the temperature profiles below 300 hPa versus the number of
eigenvectors used is plotted. In this figure a zero bias and a
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Real data retrieval statistics
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Fig. 15. Bias (dotted line) and standard deviation (solid line )of the retrievals performed on the real bias corrected AIRS spectra when
compared to collocated ECMWF analyses using 200 eigenvectors for temperature (left) and dew point temperature and relative humidity
(right). In this case the optimal noise has been added to the training profiles for the linear regression.

standard deviation that approaches a certain value asymptotleviation has improved and now lies between 1 aB&Kl A
ically as the number of eigenvectors increases is shown. Thiparticular retrieval is shown in Fig.6, which corresponds to
result coincides with the analytical derivation of E48)((and the data example of Fig.

Fig. 9. Figure 19 shows the mean bias and standard deviation of

The biases and standard deviations of the real world unthe temperature profiles below 300 hPa versus the number
corrected measurements has been shown irBFig.Fig.17  of eigenvectors used for the real atmospheric measurements.
the biases for the temperature profiles have been split in tdResults for four different noise types used in the linear re-
the two sums of Eq.16). Both terms, the bias between gression of the training are shown. This figure shows a very
the modeled training atmospheric profiles and the real atsimilar behavior to the three cases of the theoretical curve
mospheric profilesX7 i —Xx, and the bias between the 0f Fig. 10, i.e., when the covariance of the real atmospheric
modeled training spectra and the real atmospheric spectrfates is bigger, the same, or smaller than the covariance of
projected to the atmospheric profile space by the inversionthe training cases, respectively.

Zle B Yy €kj(YA,z—W,1), show a significant contribu- In the end, the optimal standard deviation used for the re-
tion to the overall detected biakgs r—X A ¢ trievals is really showing the “total error” introduced in the

. : . retrieval, including instrument noise and calibration, radia-
B ety 1 Uansler ol atorsanderors n e measur o
expe;cted from Eq.40). These results are showngin FItB y spheric states (ECMWF analyses). In Fi@ this error is
S - lotted together with the instrumental noise. It is shown that
The standard deviation lies between 1 arviKL A particular b 9

i ) - . the “total error” in most wavenumbers is much larger than
retrieval is sh_own in Figl4, which corresponds to the data the instrumental noise.
example of Fig5.

When the optimal noise from EqtJ) is added to the linear
regression of the training, the retrievals are further improved
as was expected. This is shown in Figh. The standard
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Real data retrieval example (bias, noise, 200 eigen) Temperature profile bias
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100
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Dew point e
Retrieved temperature = - ----i--mimmmo
Retrieved dew point
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200
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Fig. 16. Retrieval profile of the particular real AIRS data example in Fi9- 17. Biases of the temperature profile (solid line is the to-
Fig. 5 using 200 eigenvectors. The temperature (solid line) and dewf@! bias) for the real measurements. Both sums of Ef) are
point temperature (dashed line) of the ECMWEF analysis are shown,Shown: the bias betweer_1 the modeled training atmosp_herlc profiles
as well as the retrieved temperature (dash-dotted line) and dew poird"d the real atmospheric profile¥; ,—X4 x (dashed line), and

temperature (dotted line). Bias correction and noise added to th&h€ bias of the modeled training spectra and the real atmospheric
training data set has been applied in this case. spectra projected to the atmospheric profile space by the inversion,

Zle Brj Y11 exj(Ya 1 —Y7,p) (dotted line).

7 Conclusions

come from instrument noise, errors in the radiative transfer
model and poor representativeness of the atmospheric states

Given the specific algorithm shown in this paper, which con-(ECWMF analyses in this case). It is very difficult, if not

sists of fitting a linear regression to the EOF components of MPossible, to discriminate between these three and to detect

synthetic spectral data, and a given amospheric data set, _Whlc_h source is the most significant one with the data used

has been proven analytically that the optimal retrieval is ob-n this paper.

tained by performing the following steps: The bias correction is critical for the success of the EOF
retrievals. If these bias corrections are not applied, signif-

1. Obtain from the real atmospheric profiles and the ra-jcant piases appear in the retrievals degrading them signifi-
diative transfer model (in our case ECMWF analysescan“y (compare Figs and13).

and RTTOV-8) the “calculated” spectra. These spectra

Adding the optimal noise to the EOF retrievals is not
are then subtracted from the observed measured Spe(c::'ritical and reasonable retrievals can be obtained without it
tra (AIRS). Finally the mean of this difference and its

standard deviation is calculated (Fig. 13). Although its addition.improves the retrieval b)_/ a

' noticeable amount (compare with Fip). An added benefit

2. When performing the linear regression of the training to the use of the optimal noise is that the number of eigen-
data a Gaussian noise component should be added to théctors is not critical as long as it is high enough to reach
training spectra with a standard deviation that matcheghe plateau observed in Fig9. This is not the case when
the one above, that is, the one obtained from the differ-a smaller than optimal noise is added and thus the optimal
ence of observations minus “calculated” spectra. number of eigenvectors must be found (B§and Fig.10).

The optimal bias corrections and added noise that have
een derived in this paper imply that to improve the EOF
retrievals one must resort to either changing the overall algo-
rithm or using other datasets, like for example, training the
retrievals with latitude classified data or obtaining the real at-

The reason for the existence of a bias arise from the facfnospheric profiles from another source such as radiosondes.
of using different sets of data for training and retrieval and One drawback of this technique is that the retrievals will
from a divergence between observed and calculated radiativee fined tuned to whatever data we have used as real world
measurements with differing statistics. The origin of this atmospheric profiles (ECMWEF in this case). The retrievals
“total” noise, and thus its bias and standard deviation, canwill try to resemble this real world data set.

7.1 General

3. When performing the retrievals, the measured spectrg,
(AIRS) should be bias corrected with the aforemen-
tioned value, that is, the average of the difference be-
tween the observation minus the “calculated” spectra.
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[ oo + Bias (2 x optimal noise)
b +——+——+ Sgs (2 x optimal noise)

Training retrieval statistics Real data retrieval statistics
! ————
S Xeommmen s x Bias (no noise) B
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Fig. 18. Mean bias (dotted line) and standard deviation (solid line Fig. 19. Mean bias (dotted line) and standard deviation (solid line)
with circles) of the temperature profiles below 300 hPa versus theof the temperature profiles below 300 hPa of the real atmospheric
number of eigenvectors used when the training profiles are comy+etrievals when compared to the real profiles. Four different types
pared with its retrievals. of noise have been used in the linear regression of the training: no
noise (x signs), instrumental noise (squares), optimal noise (circles)
and twice the optimal noise (plus signs). Compare this figure with
This technique has been tested with real data from 24 h of &he theoretically derived one Figo0.
randomly chosen data set (namely 8650 clear sky spectra on
6 October 2003 during nighttime and over ocean) and it has
been optimized for this same data set. It is not exactly knowrsurements is usually scarce. This will give rise to probable
how this technique can be extended to other dates, in the cag#ifferences between the statistics of the training data set and
that, for example, the biases change slightly with time. Thisthe retrieved one. Another one is that if the training data set
effect could lead in the end to final biases when using the datés obtained in a specific region of the planet, it will not be
for climatological purposes. This effect could be specially global enough to perform universal retrievals, leading again
difficult to solve if the bias changes occur because of realto biases.
atmospheric variability. )
Edited by: U. Bschl

7.2 Other algorithms

To overcome the problem of the bias and noise correctiondgkeferences

altogether an alternative EOF technique could be used, by ) i

using the same training data set as the one to be retrieve&“}:";mg;/ HE' Hwﬂ}ﬁ‘iwni' m Tﬁe\?;‘ég?nrb C|'_; ngdst;?]rgr'ar'\:'z' %’
The EOF retrieval cpuld be tralngd with direct radlatlve_mea— W, Srr;ith,‘W. L St‘aelin, D. H.. Strow,,L. L and Susskind,
sureme_ntg and radlos_or_lde proflles_for example. In this case 3. AIRS/AMSU/HSB on the Aqua Mission: Design, Science
the statistics of fche training and retrieved data _sets_ sho_uld be Objectives, Data Products, and Processing Systems, IEEE Trans.
the same showing none of the problems studied in this pa- Gepsci. Remote Sens., 41, 253-264, 2003.

per. But if this ideal situation is not met and there is a sta-cChevallier, F.: Sampled database of 60-level atmospheric profiles
tistical difference between the training dataset and the one from the ECMWF analyses, NWP SAF Technical Report No. 4,
used for retrievals a bias will show up (ELg). In this case 2002.

part of the theoretical analysis derived in this paper could beHoushangpour, A., John, V. O., and Buehler, S. A.: Retrieval of
used. Biases corrections could be derived in a similar way as UPPer tropospheric water vapor and upper tropospheric humid-
shown here (Eq37). If the standard deviations are also dif- 1Y from AMSU radiances, Atmos. Chem. Phys., 5, 2019-2028,
ferent, there will be a noise mismatch degrading the retrievals 005, )

(Eq. 20). Standard deviation corrections could be applied by, SRef-ID: 1680-7324/acp/2005-5-2019

ddi ise t fth | i til both uang, H. and Antonelli, P.: Application of Principal Component
a _Ing noise to one of the real measurements untit both co- Analysis to High-Resolution Infrared Measurement Compres-
variances are matched (Ezf).

sion and Retrieval, J. Appl. Meteorol., 40, 365-388, 2001.

Using real measurements for training is not exempt of| ytz, H. J.: Scenes Analysis from MODIS and Meteosat Obser-
drawbacks. The first one of them is that normally the set vations, Proceedings of the 2002 EUMETSAT Meteorological
of satellite radiative data with collocated radiosondes mea- Satellite Data Users’ Conference, pp. 8, 2002.
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