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Abstract. The Empirical Orthogonal Function (EOF) re-
trieval technique consists of calculating the eigenvectors of
the spectra to later perform a linear regression between these
and the atmospheric states, this first step is known as train-
ing. At a later stage, known as performing the retrievals,
atmospheric profiles are derived from measured atmospheric
radiances.

When EOF retrievals are trained with a statistically differ-
ent data set than the one used for retrievals two basic prob-
lems arise: significant biases appear in the retrievals and dif-
ferences between the covariances of the training data set and
the measured data set degrade them.

The retrieved profiles will show a bias with respect to the
real profiles which comes from the combined effect of the
mean difference between the training and the real spectra
projected into the atmospheric state space and the mean dif-
ference between the training and the atmospheric profiles.

The standard deviations of the difference between the re-
trieved profiles and the real ones show different behavior de-
pending on whether the covariance of the training spectra is
bigger, equal or smaller than the covariance of the measured
spectra with which the retrievals are performed.

The procedure to correct for these effects is shown both
analytically and with a measured example. It consists of first
calculating the average and standard deviation of the differ-
ence between real observed spectra and the calculated spec-
tra obtained from the real atmospheric state and the radiative
transfer model used to create the training spectra. In a later
step, measured spectra must be bias corrected with this av-
erage before performing the retrievals and the linear regres-
sion of the training must be performed adding noise to the
spectra corresponding to the aforementioned calculated stan-
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dard deviation. This procedure is optimal in the sense that
to improve the retrievals one must resort to using a different
training data set or a different algorithm.

1 Introduction

Temperature and water vapour are basic meteorological pa-
rameters of high importance for weather forecasting as well
as atmospheric chemistry studies. Observations from high-
spectral-resolution infrared sounding instruments on board
of satellites can provide unprecedented accuracy and verti-
cal resolution of temperature and water vapour profiles. It
is, however, not trivial to retrieve the full information con-
tent from radiation measurements. Accordingly, improved
retrieval algorithms are desirable to achieve optimal per-
formance of existing and future instrumentation, such as
ground-based Fourier Transform InfraRed (FTIR) spectrom-
eters (Schneider et al., 2005) or the satellite-based Advanced
Microwave Sounding Unit (AMSU) (Houshangpour et al.,
2005).

A series of European satellites, known as Metop, will
be launched in the frame of the EUMETSAT Polar System
(EPS) in low Earth orbits. The first launch of the Metop
satellites is planned for 2006 and will carry the Infrared At-
mospheric Sounding Interferometer (IASI). IASI is a high-
spectral-resolution infrared sounding instrument developed
by the Centre National d’Etudes Spatiales (CNES) and based
on a Fourier transform spectrometer. IASI spectra are repre-
sented by 8461 spectral samples, between 3.62 and 15.5 µm,
with a spectral resolution of 0.5 cm−1 after apodisation. Its
spatial resolution is 25 km at nadir with an IFOV (Instan-
taneous Field of View) size of 12 km at a satellite altitude
of 819 km. As part of EPS, EUMETSAT is developing the
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Table 1. Variable synopsis.XT : modified “Sampled database of
60-level atmospheric profiles from the ECMWF analyses” (Cheval-
lier, 2002). FM : radiative transfer model RTTOV8 (Saunders,
2004). YT : spectra derived from the modified ECMWF sample
(Chevallier, 2002) and RTTOV8. R: EOF retrieval.XA: ECMWF
analyses (ERA40).FA: radiative transfer of the real atmosphere
and instrument.YA: AIRS measured spectra.YC : calculated spec-
tra from ECMWF analyses and RTTOV8.

Training data
XT −→

FM −→ YT −→
R

−→ XRT

Real data
XA −→

FA−→ YA −→
R

−→ XRA

Calculated spectra
XA −→

FM −→ YC

operational IASI Level 2 Product Processing Facility (IASI
L2 PPF), which will generate atmospheric state retrievals
from the IASI radiance spectra (Schl̈ussel et al., 2005).

One of the retrieval techniques available in the IASI L2
PPF is based on Empirical Orthogonal Functions (EOF),
which is a valuable and very computer efficient method. It
consists in performing a linear regression of the principal
components or EOF of the measured brightness temperature
spectra and the atmospheric state parameters. In this paper,
the particular EOF retrieval method developed for the IASI
L2 PPF will be reviewed analytically and tested with real
data available from the AIRS instrument.

AIRS is a high-spectral-resolution infrared sounder
launched in May 2001 on board the NASA Aqua satellite
(Aumann et al., 2003). It has a spectral coverage from 3.7
to 15.4 µm with a spectral resolution of 1200 (λ/1λ) and a
total of 2378 channels. Its spatial resolution is about 28 km
at nadir with an IFOV size of 14 km.

The EOF retrieval method has been studied before with
synthetically generated data (e.g.Huang and Antonelli,
2001), but further problems arise when used with real data
as is acknowledged byZhou et al.(2002). Namely, the exis-
tence of a significant bias between the measured and modeled
derived radiance and the dominant influence of the radiative
transfer model errors on the observational error analysis.

To make this paper more readable, the real world example
data is presented throughout the analytical demonstrations,
but conceptually this paper could be divided in two separate
parts. The first one (Sects. 2 to 5) deals with the analytical
derivation of the best parameters to be used in EOF retrievals.
The demonstration is general enough to account for different
types of EOF retrievals using the same algorithm as shown
in this paper. It can be applied whether radiances or bright-
ness temperature measurements are used. The method can
also be applied whether it is calibrated and validated using
numerical model analyses or using radiosonde data. The first
condition to apply the analytical results is that it is only cal-

ibrated and validated with one set of atmospheric profiles,
that is, either radiosondes or numerical model analyses, but
not both at once. The second condition is that the “total”
noise of the measurements has gaussian statistics. By “total”
noise it is meant the observed minus “calculated” measure-
ment standard deviation as shown in Fig.12. This “total”
noise includes the instrumental noise, the forward radiative
transfer model errors and the representativeness of the data
used as the real atmospheric profiles. Once these two con-
ditions are met, the analytical results show which bias cor-
rections and noise figures are the optimal ones in the EOF
retrievals.

The second part of the paper (Sect. 6 and throughout
Sects. 2 to 5) verifies the analytical results with a real world
example, the EOF retrievals of the IASI L2 PPF using real
AIRS spectra. In this particular example, AIRS bright-
ness temperatures are the measured quantities and the atmo-
spheric profiles are calibrated and validated against ECMWF
analyses. It has been verified (not shown in this paper) that
the noise of the observed minus calculated brightness tem-
peratures do show gaussian statistics, and hence the analyt-
ical optimal bias and standard deviation corrections can be
applied.

2 EOF retrievals

The IASI L2 PPF EOF retrieval consists of two distinct parts.
The first one of them is the “training” process in which the
retrieval parameters are determined. The second one consists
in performing retrievals with the available data using these
parameters, validating the theoretical approach. These parts
will be explained briefly in the next two subsections. Table1
summarizes all the main variables used in this paper.

2.1 Training EOF retrievals

The EOF retrievals can be trained with synthetically gen-
erated data derived from a representative sample of atmo-
spheric states. In the IASI L2 PPF case, the profiles used
for training are a modification of the “Sampled database of
60-level atmospheric profiles from the ECMWF analyses”
(Chevallier, 2002), and will be denoted byXT ,ki . The corre-
sponding AIRS spectra,YT ,ji , are calculated from these pro-
files using the RTTOV-8 (Saunders, 2004) radiative transfer
model,FM ,

YT ,ji = FM(XT ,ki), (1)

where,

i = 1 . . . nT (Item number),

j = 1 . . . m (Channel number),

k = 1 . . . q (Atmospheric state parameter number),

the subindexM stands for “model”, the subindexT for
“training” data,nT is the number of items or training sample
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Fig. 1. Mean (solid line) and mean± one standard deviation (dashed line) of the temperature profile of the modified “Sampled database of
60-level atmospheric profiles from the ECMWF analyses” (Chevallier, 2002) (bottom) and their corresponding spectra statistics calculated
using RTTOV-8 (top).

size,m is the number of channels in the infrared spectrum
andq is the number of atmospheric state parameters.

Figure 1 illustrates the mean and mean± one standard
deviation of the temperature profiles of these sample analyses
and of their corresponding spectra obtained using RTTOV-
8. Figure2 shows a particular example of this dataset. The
whole EOF retrieval process has been applied from surface
pressure up to the highest RTTOV-8 level, 0.1 hPa. Since we
are interested mainly in tropospheric retrievals only the data
below 100 hPa is shown.

To obtain the EOF, the covariance matrix of the spectra
must be calculated,

CT ,j l =

nT∑
i=1

(YT ,ji − YT ,j )(YT ,li − YT ,l), (2)

whereYT ,j is the average of the brightness temperature for
all samples,nT .

The covariance matrix can be diagonalized in the form,

m∑
j=1

CT ,ij ejk = σ 2
T ,keik, (3)

whereeik are the eigenvectors and the eigenvalues are de-
fined asσ 2

T ,k for convenience. The eigenvaluesσ 2
T ,k will be

ordered from higher to lower values as thek index increases.

The principal components or EOF scores of the spectra can
now be calculated with,

ZT ,ik =

m∑
j=1

ej i(YT ,jk − YT ,j ), (4)

where,

k = 1 . . . n (Item number),

i = 1 . . . p (Eigenvector number),

and the valuep is the number of eigenvectors used, which
can run from 1 to the total number of channels,m.

Finally, to be able to perform the retrievals, a linear regres-
sion with the atmospheric states is done,

XT ,ki =

p∑
j=1

βkjZT ,ji + XT ,k, (5)

whereXT ,k is the atmospheric state average of all samples,
nT .

The linear regression coefficients can be calculated by
least square minimization,

βkj =
1

σ 2
T ,j

nT∑
i=1

(XT ,ki − XT ,k)ZT ,ji . (6)

www.atmos-chem-phys.net/6/831/2006/ Atmos. Chem. Phys., 6, 831–846, 2006
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Fig. 2. Example of a particular training sample (bottom). The temperature (solid line) and dew point temperature (dashed line) are shown as
well as its corresponding brightness temperature spectrum calculated using RTTOV-8 (top).

Fig. 3. Retrieval profile of the particular training example in Fig.2
using 200 eigenvectors. The temperature (solid line) and dew point
temperature (dashed line) of the original training profile are shown,
as well as the retrieved temperature (dash-dotted line) and dew point
temperature (dotted line).

2.2 Performing EOF retrievals

The retrieval method can be tested, for comparison purposes,
with the same training cases. They will de defined as,

XRT,ki =

p∑
j=1

βkj

m∑
l=1

elj (YT ,li − YT ,l) + XT ,k, (7)

where the subindexRT stands for “retrieval of the training”
cases. A training profile retrieval, using the data from the
example in Fig.2, is shown in Fig.3.

The real spectra can be derived from the atmospheric states
by measuring them in a real atmosphere,

YA,ji = FA(XA,ki), (8)

where,

i = 1 . . . nA (Item number),

j = 1 . . . m (Channel number),

k = 1 . . . q (Atmospheric state parameter number),

the subindexA stands for “atmospheric” real cases,nA is the
number of measurements,m is the channel number in the
infrared spectrum,q is the total number of atmospheric pa-
rameters andFA represents the whole real system including
the atmosphere and the measuring instrument.

Atmos. Chem. Phys., 6, 831–846, 2006 www.atmos-chem-phys.net/6/831/2006/
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Fig. 4. AIRS measured brightness temperature mean (solid line) and mean± one standard deviation (dashed line) of 8650 clear sky
measurements during nighttime over ocean of the day 6 October 2003 (top). Also shown are the statistics of the corresponding ECMWF
(ERA40) temperature analyses to those measurements (bottom).

In this paper, the real atmospheric measurements,YA, are
the 8650 clear sky spectra from AIRS taken during 24 h of
nighttime over ocean of a randomly chosen day, namely 6
October 2003. For the detection of clear-sky situations a
number of threshold tests are applied as proposed byLutz
(2002) andLutz et al.(2003), which are summarized in Ta-
ble 2. The tests are very restrictive to assure that the amount
of undetected cloud contamination remains negligible. Fur-
ther restrictions consist of (Table2):

– Nighttime measurements to avoid solar contamination
of the spectra.

– Latitudes equatorward of 50◦ to avoid cold surfaces
where cloud detection is difficult.

– Small scan angles (<15◦).

The closest, in space and time, ECMWF analyses of each one
of the spectra is assumed to be the “real” atmospheric state,
XA. These analyses have been extracted from the ECMWF
40-year re-analysis project (ERA40). Figure4 illustrates the
mean and mean± one standard deviation of the AIRS spec-
tra dataset and of their corresponding ECMWF temperature
analyses. Figure5 shows one particular example of the real
atmospheric dataset.

Table 2. Scene selection. T (10.8µm), for example, is the
brightness temperature of an AIRS channel that lies in that wave-
length (10.8µm). SST is the sea surface temperature derived from
ECMWF analysis.

Cloud detection

−1 K<T (3.9µm)−T (10.8µm) <3 K
T (10.8µm)>276 K

T (11.0µm)>SST −2.2 K
T (4.0µm)−T (11.0µm)>12 K
T (9.3µm)−T (11.0µm)<0 K
T (11.0µm)−T (12.0µm)<1 K
T (11.0µm)−T (13.6µm)>18 K

Others

|Solar zenith angle|>100◦

|Latitude|<50◦

|Scan angle|<15◦

The retrievals of the real atmospheric states,XRA,ki , can
now be performed by using the linear regression as before,

XRA,ki =

p∑
j=1

βkj

m∑
l=1

elj (YA,li − YT ,l) + XT ,k. (9)

www.atmos-chem-phys.net/6/831/2006/ Atmos. Chem. Phys., 6, 831–846, 2006
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Fig. 5. Example of a particular real data sample. The measured AIRS spectra is shown (top), as well as the closest in space and time ECMWF
temperature (solid line) and dew point temperature (dashed line) analysis (bottom).

Fig. 6. Retrieval profile of the particular real AIRS data example in
Fig. 5 using 40 eigenvectors. The temperature (solid line) and dew
point temperature (dashed line) of the ECMWF analysis are shown,
as well as the retrieved temperature (dash-dotted line) and dew point
temperature (dotted line). No bias correction or noise added to the
training data set has been used in this case.

An example of a retrieval preformed from the AIRS spectrum
example shown in Fig.5 is illustrated in Fig.6.

3 Statistics of the retrievals

To determine the performance of the retrievals a comparison
with some known truth must be made. In the case of the
retrievals performed on the same training cases the obvious
choice for comparison are the original profiles. In the case of
the measured AIRS spectra, the retrievals will be compared
with ECMWF analyses (XA). For most retrieved parameters,
it is usually the case that the difference between the retrieved
profiles and the original or real ones has a Gaussian distri-
bution. Because of this, a good choice to characterize the
statistics of the retrievals is to calculate the mean and stan-
dard deviation of this difference.

The mean of the difference or biases of the training cases
is,

XRT,k − XT ,k. (10)

With the real cases, the bias is,

XRA,k − XA,k. (11)

The square of the standard deviation or the covariance of the
retrieved versus the original profiles is,

S2
RT,k ≡

1

nT

nT∑
i=1

(XRT,ki − XT ,ki)
2, (12)

Atmos. Chem. Phys., 6, 831–846, 2006 www.atmos-chem-phys.net/6/831/2006/
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Fig. 7. Bias (dotted line) and standard deviation (solid line) of the
retrievals performed on the training profiles using 200 eigenvectors
for temperature (left) and dew point temperature and relative hu-
midity (right).
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Fig. 7. Bias (dotted line) and standard deviation (solid line) of the retrievals performed on the training profiles using 200 eigenvectors for
temperature (left) and dew point temperature and relative humidity (right).

for the training cases and,

S2
RA,k ≡

1

nA

nA∑
i=1

(
XRA,ki − XA,ki

)2
, (13)

for the real measured ones.
Figure 7 shows the computed statistics for the training

cases. A zero bias is shown and a standard deviation between
2 K for the lower levels and 1 K for the upper ones.

Figure8 shows the same statistics for the real data, that
is, AIRS EOF retrievals compared with ECMWF analyses.
The most significant feature in this graph is the large bias
shown in the retrievals, which degrades their performance
considerably. The standard deviation is within reasonable
limits and is similar to the training cases of Fig.7.

4 Analytical derivation of the statistics of the retrievals

To understand the large bias observed in Fig.8, an analytical
derivation of the bias and standard deviation will be shown
in this section. The bias of the training cases can be readily
calculated obtaining the result,

XRT,k − XT ,k = 0, (14)

with,

k = 1 . . . q (Atmospheric state number). (15)

In the case of the real cases, the bias result is,

XRA,k − XA,k =

p∑
j=1

βkj

m∑
l=1

ekj (YA,l − YT ,l) + (XT ,k − XA,k), (16)

with,

k = 1 . . . q (Atmospheric state number) (17)

This important result shows that the biases of the retrievals
are a sum of two terms. One is the second parenthesis in
the right hand side of Eq. (16), which is the bias of the dif-
ference between the modeled atmospheric profiles used for
training and the real atmospheric profiles. Another one is the
first parenthesis in the right hand side of Eq. (16), which is
the bias of the difference between the real atmospheric spec-
tra and the modeled one used for training, transfered to the
atmospheric profile space by the inversion process.

The training standard deviation can be resolved to give,

S2
RT,k =

1

nT

[
nT∑
i=1

(XT ,ki − XT ,k)
2
−

www.atmos-chem-phys.net/6/831/2006/ Atmos. Chem. Phys., 6, 831–846, 2006
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Fig. 8. Bias (dotted line) and standard deviation (solid line) of the
retrievals performed on the real AIRS spectra when compared to
collocated ECMWF analyses (ERA40) using 40 eigenvectors for
temperature (left) and dew point temperature and relative humidity
(right). The AIRS data consists in 8650 clear sky spectra taken
during 24 h on 6 October 2003 during nighttime over ocean. No
bias correction or noise added in the linear regression has been used
in this case.
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Fig. 8. Bias (dotted line) and standard deviation (solid line) of the retrievals performed on the real AIRS spectra when compared to collocated
ECMWF analyses (ERA40) using 40 eigenvectors for temperature (left) and dew point temperature and relative humidity (right). The AIRS
data consists in 8650 clear sky spectra taken during 24 h on 6 October 2003 during nighttime over ocean. No bias correction or noise added
in the linear regression has been used in this case.
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Fig. 9. Analytically derived curved for the bias (dotted line) and
standard deviation (solid line with circles) of the retrievals of the
training case as a function of the number of eigenvectors.
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Fig. 9. Analytically derived curved for the bias (dotted line) and
standard deviation (solid line with circles) of the retrievals of the
training case as a function of the number of eigenvectors.

p∑
j=1

1

σ 2
T ,j

(
nT∑
i=1

(XT ,ki − XT ,k)ZT ,ji

)2
 , (18)

with,

k = 1 . . . q (Atmospheric state number). (19)

From this equation we immediately see, as is shown in Fig.9,
that as we increase the number of eigenvectors, the standard
deviation of the retrieval error will decrease monotonically.
Its minimum value, which should be greater than zero, is
reached when we use the maximum number of eigenvectors,
p=m.

The solution to the real cases is a more complicated ex-
pression,

S2
RA,k =

1

nA

nA∑
i=1

(XA,ki − XT ,k)
2

+
1

nA

p∑
j=1

βkj

p∑
l=1

βkl

nA∑
i=1

ZA,jiZA,li

−
2

nA

p∑
j=1

βkj

nA∑
i=1

(XA,ki − XT ,k)ZA,ji, (20)

with,

k = 1 . . . q (Atmospheric state number). (21)
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To get a grasp of this equation, some simplifications must
be made. Assuming that the covariance matrix of the EOF
scores of the real cases is also diagonal,

nA∑
i=1

ZA,jiZA,ki = σ 2
A,j δjk, (22)

and that the cross-covariance matrix of the measured spectra
and the modeled spectra is the same,

nA∑
i=1

(XA,ki − XT ,k)ZA,ji =

nT∑
i=1

(XT ,ki − XT ,k)ZT ,ji, (23)

the following result is obtained,

S2
RA,k =

1

nA

nA∑
i=1

(XA,ki − XT ,k)
2
−

p∑
j=1

(
nT∑
i=1

(XT ,ki − XT ,k)ZT ,ji

)2

σ 2
T ,j

[
1 −

σ 2
A,j − σ 2

T ,j

σ 2
T ,j

]
.(24)

with,

k = 1 . . . q (Atmospheric state number). (25)

The behavior of this covariance as a function of the number
of eigenvectors is shown in Fig.10. Three different cases can
be distinguished,

1. Exact match of modeled covariance and measured
covariance, σ 2

T ,j=σ 2
A,j . This case has the same solu-

tion as in the purely training case, Eq. (18). The results
are shown in Fig.10. The retrieved errors tend to de-
crease as the number of eigenvectors increase.

2. Modeled covariance bigger than real covariance,
σ 2

T ,j>σ 2
A,j . In this case the retrieved errors also tend

to decrease as the number of eigenvectors increase, as is
shown in Fig.10, but the overall errors are bigger than
in the previous case.

3. Modeled covariance smaller than real covariance,
σ 2

T ,j<σ 2
A,j . The behavior of this case, Fig.10, is seen

by assuming thatσ 2
A,j−σ 2

T ,j is approximately constant
as a function of the eigenvalue indexj , on the basis that
this difference will effectively be a residual noise of the
measurements,Y , and recalling that the eigenvalues de-
crease with increasing indexj . In this case, the errors
in the retrievals decrease as the number of eigenvectors
increases and then shows a minimum at the eigenvalue
indexk such that,

σ 2
T ,k = σ 2

A,k − σ 2
T ,k (26)

before increasing afterwards.

X. Calbet and P. Schlüssel: Optimal EOF retrieval parameters 19

Fig. 10. Analytically derived curved for the standard deviation of
the retrievals as a function of the number of eigenvectors of the
real atmospheric cases. Three cases are shown: when the standard
deviation of the real atmospheric states, σ2

A, is bigger (x signs), the
same (circles) or smaller (plus signs) than the standard deviation of
the training cases, σ2

T .
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Fig. 10. Analytically derived curved for the standard deviation of
the retrievals as a function of the number of eigenvectors of the
real atmospheric cases. Three cases are shown: when the standard
deviation of the real atmospheric states,σ2

A
, is bigger (x signs), the

same (circles) or smaller (plus signs) than the standard deviation of
the training cases,σ2

T
.

To calculate the optimal retrievals in the general case,
Eq. (20), the smallest possible standard deviation of the dif-
ferences between the retrieved and observed profiles should
be obtained. This can be done by finding its minimum,

∂S2
RA,k

∂βkr

= 0, (27)

which gives as a result,

nT∑
i=1

(XT ,ji − XT ,j )(YT ,ki − YT ,k) =

nA∑
i=1

(XA,ji − XT ,j )(YA,ki − YT ,k),

nT∑
i=1

(YT ,ji − YT ,j )(YT ,ki − YT ,k) =

nA∑
i=1

(YA,ji − YT ,j )(YA,ki − YT ,k). (28)

This result for the general case confirms what was previously
obtained in the particular case of Eq. (24), Fig. 10, when
σ 2

T ,j=σ 2
A,j .

5 Estimation of the optimal parameters

The result from optimal parameters of Eq. (28) provides what
is the ideal situation when performing retrievals. In real cases
this is not normally the case and there is usually a significant

www.atmos-chem-phys.net/6/831/2006/ Atmos. Chem. Phys., 6, 831–846, 2006



840 X. Calbet and P. Schlüssel: Optimal EOF retrieval parameters

Fig. 11.Bias (top) and standard deviation (bottom) of the difference between the measured AIRS brightness temperature and the “calculated”
ones with the ECMWF analyses and RTTOV8.

difference between the modeled and the real covariance ma-
trices caused by both instrumental noise and model noise. In
which way can we estimate the retrieval parameters so that
we get the best possible retrievals with a given set of radiative
transfer model and observations?

5.1 Estimation of the biases and covariance matrix correc-
tions

A good estimation of the bias and covariance matrix correc-
tion to the training and measured cases can be obtained by
calculating the mean and covariance of the difference be-
tween the measured spectra and the “calculated” one, de-
noted byYC,ki . Given a set of measurementsXA,ji andYA,ki ,
the calculated spectra can be derived from the set of atmo-
spheric profiles and the radiative transfer model used by,

YC,ki = FM(XA,ji). (29)

The bias of the difference between the real measured spectra
and the calculated one can now be obtained by,

YA,k − YC,k, (30)

and the standard deviation by,

1

nA

nA∑
i=1

[
YA,ki − YC,ki − (YA,k − YC,k)

]2
. (31)

Both statistics are shown in Fig.11. In Fig.12the instrumen-
tal noise is compared with the standard deviation of Eq. (31).

To calculate analytically the covariances of this difference
it should be noted that since the “calculated” profiles are de-
rived using the radiative transfer model,FM , it is reasonable
to assume that their covariances are similar,

YCYC ' YT YT . (32)

On the other hand, since the “calculated” profiles are derived
from the real atmospheric states, their mean should be simi-
lar,

YC,k ' YA,k. (33)

With this in mind one can assume that the measured radi-
ances are equal to the calculated ones plus an added noise
term,

YA,ji = YC,ji + µji, (34)

such that the noise term is independent of the calculated
value, in the sense that,

nA∑
i=1

(YC,ji − YC,j )µki =

nA∑
i=1

µji(YC,ki − YC,j ) = 0. (35)

This assumption can hold if the added noise is random or it is
systematic but “well behaved” in the sense that satisfies the
above equation.
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Fig. 12. “Total error”, equivalent to the standard deviation of the difference between the measured AIRS brightness temperature and the
“calculated” ones with the ECMWF analyses and RTTOV8 (squares) and instrumental noise for the temperature profile of Fig.5 (dots).

The final covariance of the differences can be calculated
by using Eqs. (32) and (34),
nA∑
i=1

(
YA,ji − YC,ji − (YA,j − YC,j ))·

(YA,ki − YC,ki − (YA,k − YC,k)
)

'

nA∑
i=1

YA,jiYA,ki −

nM∑
i=1

YT ,jiYT ,ki . (36)

5.2 Performing bias and covariance matrix corrections

It is now possible to correct the observations and the training
sample to obtain the best possible EOF retrievals given the
available data and radiative transfer model.

Modifying the measured radiances by subtracting the bi-
ases calculated using Eq. (30),

ŶA,ki = YA,ki − YA,k − YC,k, (37)

the bias of the retrievals using these values,X̂RA,ji , can be
obtained by,

X̂RA,k − XA,k =

p∑
j=1

βkj

m∑
l=1

ekj (FM(XA,k) − FM(XT ,k))+

(XT ,k − XA,k), (38)

and by assuming that the retrieval is nearly the inverse of the
forward model,

p∑
j=1

βkj

m∑
l=1

ekjFM ' Identity. (39)

The final resulting biases are nearly zero,

X̂RA,k − XA,k ' 0. (40)

The covariance corrections will be applied on the spectra of
the training cases, adding to them a random noise compo-
nent,

ŶT ,ki = YT ,ki + εki, (41)

where the covariance matrix of the added error,εki , is the
same as the one in Eq. (36),

nM∑
i=1

εi,j εi,k =

nA∑
i=1

(
YA,ji − YC,ji − (YA,j − YC,j ))·

(YA,ki − YC,ki − (YA,k − YC,k)
)
. (42)
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Fig. 13. Bias (dotted line) and standard deviation (solid line) of the
retrievals performed on the real bias corrected AIRS spectra when
compared to collocated ECMWF analyses using 40 eigenvectors for
temperature (left) and dew point temperature and relative humidity
(right).
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Fig. 13. Bias (dotted line) and standard deviation (solid line) of the retrievals performed on the real bias corrected AIRS spectra when
compared to collocated ECMWF analyses using 40 eigenvectors for temperature (left) and dew point temperature and relative humidity
(right).

Fig. 14.Retrieval profile of the particular real AIRS data example in
Fig. 5 using 40 eigenvectors. The temperature (solid line) and dew
point temperature (dashed line) of the ECMWF analysis are shown,
as well as the retrieved temperature (dash-dotted line) and dew point
temperature (dotted line). Bias correction has been applied but no
noise has been added to the training data in this case.

Calculating the covariance of the new training spectra by
using Eq. (36) gives,

nT∑
i=1

(ŶT ,ji − ŶT ,j )(ŶT ,ki − ŶT ,k) '

nA∑
i=1

(YA,ji − YT ,j )(YA,ki − YT ,k), (43)

which is the same as the optimal covariance for the retrievals,
Eq. (28). Assuming that the cross-covariances of atmo-
spheric states and spectra are approximately equal for the
modeled and measured case, that is, the first equation of the
set of Eqs. (28) holds, then the conditions for an optimal EOF
retrieval would have been reached.

6 Real case calculation of the statistics of the retrievals
using the optimal parameters

It is now possible to calculate the statistics of the training and
the real data retrievals with the corrected parameters and data
to compare them with the theory. The biases and standard de-
viations calculated for the training cases have been shown in
Fig. 7. In Fig. 18 the mean bias and standard deviation of
the temperature profiles below 300 hPa versus the number of
eigenvectors used is plotted. In this figure a zero bias and a
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Fig. 15. Bias (dotted line) and standard deviation (solid line )of the
retrievals performed on the real bias corrected AIRS spectra when
compared to collocated ECMWF analyses using 200 eigenvectors
for temperature (left) and dew point temperature and relative hu-
midity (right). In this case the optimal noise has been added to the
training profiles for the linear regression.
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Fig. 15. Bias (dotted line) and standard deviation (solid line )of the retrievals performed on the real bias corrected AIRS spectra when
compared to collocated ECMWF analyses using 200 eigenvectors for temperature (left) and dew point temperature and relative humidity
(right). In this case the optimal noise has been added to the training profiles for the linear regression.

standard deviation that approaches a certain value asymptot-
ically as the number of eigenvectors increases is shown. This
result coincides with the analytical derivation of Eq. (18) and
Fig. 9.

The biases and standard deviations of the real world un-
corrected measurements has been shown in Fig.8. In Fig.17
the biases for the temperature profiles have been split in to
the two sums of Eq. (16). Both terms, the bias between
the modeled training atmospheric profiles and the real at-
mospheric profiles,XT ,k−XA,k, and the bias between the
modeled training spectra and the real atmospheric spectra
projected to the atmospheric profile space by the inversion,∑p

j=1 βkj

∑m
l=1 ekj (YA,l−YT ,l), show a significant contribu-

tion to the overall detected bias,XRA,k−XA,k.
When the bias corrections of Eq. (37) are applied to the

data, the final bias of the retrievals is reduced significantly as
expected from Eq. (40). These results are shown in Fig.13.
The standard deviation lies between 1 and 1.7 K. A particular
retrieval is shown in Fig.14, which corresponds to the data
example of Fig.5.

When the optimal noise from Eq. (41) is added to the linear
regression of the training, the retrievals are further improved
as was expected. This is shown in Fig.15. The standard

deviation has improved and now lies between 1 and 1.5 K. A
particular retrieval is shown in Fig.16, which corresponds to
the data example of Fig.5.

Figure19 shows the mean bias and standard deviation of
the temperature profiles below 300 hPa versus the number
of eigenvectors used for the real atmospheric measurements.
Results for four different noise types used in the linear re-
gression of the training are shown. This figure shows a very
similar behavior to the three cases of the theoretical curve
of Fig. 10, i.e., when the covariance of the real atmospheric
states is bigger, the same, or smaller than the covariance of
the training cases, respectively.

In the end, the optimal standard deviation used for the re-
trievals is really showing the “total error” introduced in the
retrieval, including instrument noise and calibration, radia-
tive transfer model errors and errors in the measured atmo-
spheric states (ECMWF analyses). In Fig.12 this error is
plotted together with the instrumental noise. It is shown that
the “total error” in most wavenumbers is much larger than
the instrumental noise.
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Fig. 16.Retrieval profile of the particular real AIRS data example in
Fig. 5 using 200 eigenvectors. The temperature (solid line) and dew
point temperature (dashed line) of the ECMWF analysis are shown,
as well as the retrieved temperature (dash-dotted line) and dew point
temperature (dotted line). Bias correction and noise added to the
training data set has been applied in this case.

7 Conclusions

7.1 General

Given the specific algorithm shown in this paper, which con-
sists of fitting a linear regression to the EOF components of
synthetic spectral data, and a given amospheric data set, it
has been proven analytically that the optimal retrieval is ob-
tained by performing the following steps:

1. Obtain from the real atmospheric profiles and the ra-
diative transfer model (in our case ECMWF analyses
and RTTOV-8) the “calculated” spectra. These spectra
are then subtracted from the observed measured spec-
tra (AIRS). Finally the mean of this difference and its
standard deviation is calculated.

2. When performing the linear regression of the training
data a Gaussian noise component should be added to the
training spectra with a standard deviation that matches
the one above, that is, the one obtained from the differ-
ence of observations minus “calculated” spectra.

3. When performing the retrievals, the measured spectra
(AIRS) should be bias corrected with the aforemen-
tioned value, that is, the average of the difference be-
tween the observation minus the “calculated” spectra.

The reason for the existence of a bias arise from the fact
of using different sets of data for training and retrieval and
from a divergence between observed and calculated radiative
measurements with differing statistics. The origin of this
“total” noise, and thus its bias and standard deviation, can

Fig. 17. Biases of the temperature profile (solid line is the to-
tal bias) for the real measurements. Both sums of Eq. (16) are
shown: the bias between the modeled training atmospheric profiles
and the real atmospheric profiles,XT ,k−XA,k (dashed line), and
the bias of the modeled training spectra and the real atmospheric
spectra projected to the atmospheric profile space by the inversion,∑p

j=1 βkj

∑m
l=1 ekj (YA,l−YT ,l) (dotted line).

come from instrument noise, errors in the radiative transfer
model and poor representativeness of the atmospheric states
(ECWMF analyses in this case). It is very difficult, if not
impossible, to discriminate between these three and to detect
which source is the most significant one with the data used
in this paper.

The bias correction is critical for the success of the EOF
retrievals. If these bias corrections are not applied, signif-
icant biases appear in the retrievals degrading them signifi-
cantly (compare Figs.8 and13).

Adding the optimal noise to the EOF retrievals is not
critical and reasonable retrievals can be obtained without it
(Fig. 13). Although its addition improves the retrieval by a
noticeable amount (compare with Fig.15). An added benefit
to the use of the optimal noise is that the number of eigen-
vectors is not critical as long as it is high enough to reach
the plateau observed in Fig.19. This is not the case when
a smaller than optimal noise is added and thus the optimal
number of eigenvectors must be found (Eq.26and Fig.10).

The optimal bias corrections and added noise that have
been derived in this paper imply that to improve the EOF
retrievals one must resort to either changing the overall algo-
rithm or using other datasets, like for example, training the
retrievals with latitude classified data or obtaining the real at-
mospheric profiles from another source such as radiosondes.

One drawback of this technique is that the retrievals will
be fined tuned to whatever data we have used as real world
atmospheric profiles (ECMWF in this case). The retrievals
will try to resemble this real world data set.
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Fig. 18. Mean bias (dotted line) and standard deviation (solid line
with circles) of the temperature profiles below 300 hPa versus the
number of eigenvectors used when the training profiles are com-
pared with its retrievals.
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Fig. 18. Mean bias (dotted line) and standard deviation (solid line
with circles) of the temperature profiles below 300 hPa versus the
number of eigenvectors used when the training profiles are com-
pared with its retrievals.

This technique has been tested with real data from 24 h of a
randomly chosen data set (namely 8650 clear sky spectra on
6 October 2003 during nighttime and over ocean) and it has
been optimized for this same data set. It is not exactly known
how this technique can be extended to other dates, in the case
that, for example, the biases change slightly with time. This
effect could lead in the end to final biases when using the data
for climatological purposes. This effect could be specially
difficult to solve if the bias changes occur because of real
atmospheric variability.

7.2 Other algorithms

To overcome the problem of the bias and noise corrections
altogether an alternative EOF technique could be used, by
using the same training data set as the one to be retrieved.
The EOF retrieval could be trained with direct radiative mea-
surements and radiosonde profiles for example. In this case
the statistics of the training and retrieved data sets should be
the same showing none of the problems studied in this pa-
per. But if this ideal situation is not met and there is a sta-
tistical difference between the training dataset and the one
used for retrievals a bias will show up (Eq.16). In this case
part of the theoretical analysis derived in this paper could be
used. Biases corrections could be derived in a similar way as
shown here (Eq.37). If the standard deviations are also dif-
ferent, there will be a noise mismatch degrading the retrievals
(Eq.20). Standard deviation corrections could be applied by
adding noise to one of the real measurements until both co-
variances are matched (Eq.28).

Using real measurements for training is not exempt of
drawbacks. The first one of them is that normally the set
of satellite radiative data with collocated radiosondes mea-
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Fig. 19. Mean bias (dotted line) and standard deviation (solid line)
of the temperature profiles below 300 hPa of the real atmospheric
retrievals when compared to the real profiles. Four different types
of noise have been used in the linear regression of the training: no
noise (x signs), instrumental noise (squares), optimal noise (circles)
and twice the optimal noise (plus signs). Compare this figure with
the theoretically derived one Fig. 10.
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Fig. 19. Mean bias (dotted line) and standard deviation (solid line)
of the temperature profiles below 300 hPa of the real atmospheric
retrievals when compared to the real profiles. Four different types
of noise have been used in the linear regression of the training: no
noise (x signs), instrumental noise (squares), optimal noise (circles)
and twice the optimal noise (plus signs). Compare this figure with
the theoretically derived one Fig.10.

surements is usually scarce. This will give rise to probable
differences between the statistics of the training data set and
the retrieved one. Another one is that if the training data set
is obtained in a specific region of the planet, it will not be
global enough to perform universal retrievals, leading again
to biases.
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