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Abstract. The sensitivity of ground-based instruments mea-gas in the atmosphere, and in particular its concentration and
suring in the infrared with respect to tropospheric waterevolution in the upper troposphere and lower stratosphere
vapour content is generally limited to the lower and mid- (UT/LS) are of great scientific interest for climate modelling
dle troposphere. The large vertical gradients and variabili-(Harries 1997 Spencer and Braswelll997). Currently

ties avoid a better sensitivity for the upper troposphere/lowerthere is no outstanding routine technique for measuring wa-
stratosphere (UT/LS) region. In this work an optimised re- ter vapour in the UT/LS. The quick changes of atmospheric
trieval is presented and it is demonstrated that compared tavater vapour concentrations with time, their large horizontal
a commonly applied method, it improves the performance ofgradients, and their decrease of several orders of magnitude
the FTIR technique. The reasons for this improvement andwith height makes their accurate detection a challenging task
the possible deficiencies of the method are discussed. Onlfor any measurement technique. Traditionally tropospheric
by applying the method proposed here and using measurevater vapour profiles are measured by synoptical meteoro-
ments performed at mountain observatories can water vapouogical radiosondes. However, this method has some defi-
variabilities in the UT/LS be detected in a self-consistentciencies at altitudes above 6—-8 km, which are mainly due to
manner. The precision, expressed as noise to signal ratiayncertainties in the pre-flight calibration and temperature de-
is estimated at 45%. In the middle and lower tropospherependenceNliloshevich 2001, Leiterer et al. 2004. Other
precisions of 22% are achieved. These estimations are corapplied techniques are remote sensing from the ground by
firmed by a comparison of retrieval results based on realLidar or Microwave instruments. Both are limited in their
FTIR measurements with coinciding measurements of synsensitivity: the Lidar generally to below 8-10 km, and the
optical meteorological radiosondes. microwave measurements to above 15 IBPARCG 2000.
Satellite instruments also struggle to reach below this alti-
tude. In this context the suggested formalism of retrieving
upper tropospheric water vapour amounts from ground-based
FTIR measurements aims to support efforts to obtain qual-

The composition of the Earth’s atmosphere has been pro'—ty UT/LS water vapour data for research. To our know-

. . “edge, it is the first time that water vapour profiles measured
foundly modified throughout the last decades mainly by hu.by this technique are presented. A great advantage is that

man activities. Prominent examples are the stratosphen%igh quality ground-based FTIR measurements have already

ozone depletion and the upward trend in the concentratio . s
of greenhouse gases. While studies about the stratosphe;h:een performed during the last 10-15 years within the Net

composition have progressed rather well, there still exists a\évork for Detection of Stratospheric Changeufylo, 1991,
considerable deficiency for data from the free troposphere
Knowing the composition and evolution of these altitude re-
gions is essential for the scientific verification of the Kyoto oY o
and Montreal Protocols and Amendments and for global cli- TNe structure of the article is as follows: first it is ar-

mate modelling. Water vapour is the dominant greenhous@ued how the suggested optimisation acts in the context of
inversion theory. Its advantages and deficiencies compared

Correspondence tavl. Schneider to a method, commonly used for trace gas retrievals, are dis-
(matthias.schneider@imk.fzk.de) cussed. In the third section an error assessment adds precise

1 Introduction

00Q NDSC, web sitg. Therefore a long-term record of wa-
ter vapour could be made available, with both temporal and
to some extent, spatial coverage.
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study of the a-priori state. In the following it is discussed
?5”;’?21 whether the extensive a-priori information can be used to op-

timise the performance of the retrieval. The study of a-priori
data is done for the island of Tenerife, where ptu-sondes are
launched twice daily (at 00:00 and 12:00 UT) within the
global radiosonde network and where an FTIR instrument
has been operating since 1999 at a mountain observatory
(Izaha Observatongchneider et al2005.
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The study is based on the daily 12:00 UT soundings per-
Fig. 1. Description of a-priori state. Left panel: correlation matrix. forrT_led. from 1999 to 2003. It has been qbserved that an
Right panel: black line: mean state; red line: standard deviation ofN-Situ instrument — located at the mountain observatory —
mean state. and the sonde, when measuring at the observatory’s alti-
tude, detect quite different humidities because of their dif-
ferent locations, i.e. on the surface and in the free tropo-
quantitative estimations about the expected improvements tgphere (see Seet). For this reason the analysed profiles are
these qualitative considerations. It is also shown how possibuilt up by a combination of the in-situ measurements at the
ble deficiencies of the optimised method can be eliminatedinstrument’s site (for the lowest grid point; applied sensor:
Finally, these estimations are validated by a comparison oRotronic MP100H), and sonde measurements (for all other
retrieval results based on real measurements with coincidingrid points below 16 km). For higher altitudes a mean mix-
in-situ measurements. ing ratio of 25 ppmv and covariances like those at 16 km are
applied. The left panel of Fid. shows the correlation matrix
'y determined from these a-priori profiles. Here correlation
matrices are presented instead of the commonly shown co-
variance matrixes. The reason is that they can be more eas-
ily presented. Their elements are all of the same order of
magnitude (betweer1 and 1), whereas in the case of water
vapor the elements of the covariance matrices extend over 8
orders of magnitude. Figure demonstrates how variabili-
ties at different altitudes typically correlate with each other.
y=y+¢ =Kx (1) In the real atmosphere the mixing ratios for different alti-
o - ] ) tudes show correlation coefficients of at leadt Within a
the matrixK is ill-conditioned. Its effective rank is smaller layer of around & km. The a-priori covariance matri,
than_the dlmenS|on of state space, |.e.'|t is smgulgr and canngt” - culated fromT' by Sa=ZalaZa’, whereZ, is a di-
be simply inverted. To come to an unique solutioncothe  540nal matrix containing the a-priori variabilities at a certain
state space is constrained by requiring: altitude. These variabilities are depicted as a red line in the
Bx — Bx ) right panel of Fig.l. The black line shows the mean mixing
- a . . . .
ratios. The determined mean and covariances only describe
wherex, is a “typical” or a-priori state and the matrig the whole ensemble completely if mixing ratios are normally
determines the kind of required similarity ofwith x,. This distributed. This is generally assumed and often justified by
equation constrains the solution independently from the meathe fact that entropy is then maximised: if only the mean and
surement, i.e. before the measurement is made. TheBfore the covariance are known a supposed normal distribution is
andx, contain the kind of information known about the state thus the least restricting assumption about the a-priori state
prior to the measurement. Subsequently, assuming Gaussid®ect. 10.3.3.2 irRodgers 2000. However, this does not
statistics for the error term in Eql)and the a-priori distri-  necessarily reflect the real situation!
bution in Eq. @) leads to the cost function: A further examination of the sonde data reveals that the
mixing ratios at a certain altitude are not normally but log-
normally distributed. Their pdf is:

2 Optimised water vapour retrieval

An inversion problem is generally under-determined. Many
state vectorsx() are consistent with the measurement vector
(). If one also considers measurement noisg, (there is

an even wider range of possible solutions witkjn in ac-
cordance to the measurement vector: in the equation,

o 2(y —Ko)T(y —Kx) + (x —x)"BTB(x —x0)  (3)

The most probable s_tate |s the one which_ minimises BQ. ( 1 (Inx — Inx,)?

Here (¢!¢,)~" was identified byo=2. It is obvious that ~ Pr = exp— 02 (4)
the applied a-priori informationB and x,) influences the xo /2w o

solution. For water vapour the large amount of synopti- with a shape parameter ranging from 115 ppmv in the
cal meteorological sonde (ptu-sonde) data allows a detaileaniddle troposphere t0.85 ppmv above 10 km, and a median
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x, between 5000 ppmv close to the surface aftdgpmv in 99.9 -
the stratosphere. The only exception of this distribution is the
first =100 m above the surface, where the mixing ratios are
more normally distributed. It is possible to sample all this

additional information in a simple mean state vector and a
covariance matrix. This is achieved by transforming the state

theoretical x° cdf

m ’ cdf for assumption of
normal distributed vmrs

O x? cdf for assumption of

log-normal distributed

probability [%6]

on a logarithmic scale, which transforms the log-normal pdf 1 vmrs

to a normal pdf. A normal pdf can be completely described 01 Lmromr——————————————————————
by its covariance and its mean. #2-test reveals how the 0 10 20 %0 40 %0
description of the a-priori state is improved by this transfor- X’

mation. This test determines the probability of a particular
random vector of belonging to an assumed normal distribu+ig. 2. X2 test for different of a-priori assumptions. Black line:
tion. If a vectorx is supposed to be a member of a (;,aussiantheoreticalX2 cumulative distribution function (cdf); black filled

ensemble with the mear, and covariance the quantity squares:x 2 cdf of ensemble for assumed normal pdf on a linear
considered is: scale; red circlesy? cdf of ensemble for assumed normal pdf on a

logarithmic scale.
x2=x—x)"SHx —xq) (5)

The x 2 test clearly rejects a normal distribution of the mixing optimal solution.
ratios. This can be seen by comparing the theoretical cumul
tive distribution function (cdf) of 2 with the one determined

It is not related to the a-posteriori pdf in
%he Bayesian sense. On a linear scale the a-priori state is log-

. ) normally distributed. Therefore, seen from a statistical point
by Eq. 6). Figure2 demonstrates that the theoretioe ¢ view, the second term of the cost function over-constrains

cdf differs clearly from the cdf obtained from the ensemble’s ate5 ahove the mean and under-constrains states below the

state vectors if they are assumed to be normally distributeq,oqian. As a consequence, the probability of states above the

(difference between black line and black squares). More than, o4, is underestimated and below the median overestimated
95% of the ensemble’s state vectors are not consistent With e yerestimation is greater the further away it is from the

this assumption. On the other hand, a prior log-normal pdf iScere of the a-priori distribution. Thus, if compared to a
well confirmed. If the mixing ratios and the covariances are ., yect maximum a-posteriori solution, the retrieval tends to
transformed to a logarithmic scale, only approximately 10%,,qerestimate the values of the real state both far above and
of the ensemble’s states fail the test (compare black line ang, . ,o10w the mean state.

red circles). . A .
) However, the transformation on a logarithmic scale in-

troduces some other problems: it significantly increases the
non-linearity of the forward model, which requires decreas-

This section discusses the differences between an inversiofd the differences between each iteration step, thus lower-
performed on a linear scale, which is the method commonlying the speed of convergence. This difficulty is overcome
used for trace gas retrievals, and one performed on a logarith¥ithin the inversion code PROFFIT by using a refined min-
mic scale. The |Ogarithmic retrieval is Occasiona”y app“ed imisation Scheme. A further dl’aWbaCk iS that, in the retrans-
as a positivity constraint, since it avoids negative componentdormed linear scale the constraints now depend on the solu-
in the solution vector. In the case of water vapour it hastion, which may cause misinterpretations of the spectra. To
a further advantage. It converts the state for which By. ( @ssess whether the linear or logarithmic retrieval performs
minimises in a statistically optimal solution: on a logarith- better both retrieval approaches are extensively examined
mic scale the a-priori state can be described correctly in thdirst by a theoretical (Sec8) and second by an empirical
form of a mean and covariance. Under these circumstancedalidation (Sect4).
substitutingB” B andx, in Eq. (3) by the inverse of the loga-
rithmic a-priori covarianceS; 1) and the median state vec- 2.3 Applied inversion code and spectral region
tor, leads to a cost function, which is directly proportional to
the negative logarithm of the a-posteriori probability density PROFFIT Hase et al.2004) is the inversion code used. It ap-
function (pdf) of the Bayesian approach. This posterior pdfplies the Karlsruhe Optimised and Precise Radiative Trans-
is the conditional pdf of the state given the measurement, ofer Algorithm (KOPRA,Hopfner et al. 1998 Kuntz et al,
in other words, the a-priori pdf of the state updated by the1998 Stiller et al, 1998 as the forward model, which was
information given in the measurement. The minimisation of developed for the analysis of MIPAS-Envisat limb sounder
Eq. (3) thus yields the maximum a-posteriori solution, i.e. it spectra. PROFFIT enables the inversion on a linear and log-
is the most probable state given the measurement. arithmic scale. Hence, in the case of water vapour, it enables
To the contrary, on a linear scale setti®§B asS, > and  the correct application of prior information to obtain a statis-
x, as mean state in Eq3) does not lead to a statistically tically optimal solution. PROFFIT does not employ a fixed

2.2 Discussion of two retrieval methods
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mezsurement E i.e. the difference between the retrieved and the real state
i, 3 (X—x) — the error — can be linearised about a mean profile
2 o/ x4, the estimated model parametegis and the measured
v . spectrumy. Herel is the identity matrix,A the averaging
b kernel matrix,G the gain matrix, ant , a sensitivity matrix
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Fig. 3. Spectral regions applied for retrieval. Plotted is the situation AI[F (X, p, p]
for a real measurement taken on 10 March of 2003 (solar elevatios = —————

angle 50). Black line: measured spectrum; red line: simulated Aaf
spectrum; green line: difference between simulation and measureg _ oF (x, p)
ment. - ox
A oF (x, p
Kp = F(x, p) @)
op

a-priori value for the measurement noisedf Eq. 3). This

value is taken from the residuals of the fit itself, performing wherebyK is the Jacobian. Equatio8)identifies three prin-

an automatic quality control of the measured spectra. l:ur'ciple error sources. These are the inherent finite vertical res-

thermore, if the observed absorptions depend on tempergg yinn the input parameters applied in the inversion proce-
ture, PROFFIT allows the retrieval of temperature prc’ﬁles'dure, and the measurement noise. This analytic error estima-

For both the linear and logarithmic retrieval, the same r€-tion may be applied if the inversion is performed on a linear

trieval setup |§ appllgd: thrge microwindows bgtwee'n llloscale. In this case, the constraints and consequéntiye
and 1122 cm- are fitted. Figure3 shows a typical situa-

constant within the uncertainty &f. However, if the inver-

tion for an evaluation of a real measurement. The black Imesion is performed on a logarithmic scale the constraints are

represents trzje ?easureTenththglfrfed dottetc)j line thebs'r?]u'a:]%%nstant on this scale, but variable on the retransformed lin-
spectrgm and the green line the difference between both. Thg, . o5 Changes of the state vector towards values above

the a-priori value are only weakly constrained, while changes
towards smaller values are more strongly constrained. As
a consequencé cannot necessarily be considered constant

ithin the uncertainty of the retrieved state and some model
ﬁ/arameters. The latter is particularly problematic for water

that two stronger lines (at 11Bland 11212 cm 1) and two
relatively weak lines (at 1118 and 11208 crm 1) lie within
these spectral regions, where additionallyi®©an important
absorber (numerous thin strong signatures). The profile o

Fhls species is ?ustgmltagegusly rhet”el;/Edr-] Olther mterfer-vapour_ The phase error of the instrumental line shape and
ing gases are CH N20, and CH, whereby the latter two the temperature profile have a large impact on the spectra.

are also si_multane_ously retrieved _by scali_ng their re_spectivel.his is due to the broad and strong absorption signatures of
climatological profiles, the former is kept fixed to a climato- water vapor. Consequently, all these errors can only be es-

logical profile. Spectroscopic line parameters are taken fromtimated by a full treatment. Two forward calculations are
the HITRAN 2000 databasBothman et al(2003, except performed for each error estimation and for all profiles of the

for Os, where parameters frovagner et al(2002) are ap- large ensemble of the a-priori profiles: a first calculation with

plied. correct parameters and a second with erroneous parameters.
Subsequently both spectra are retrieved with the correct pa-
rameter as input data. The parameter error is then given by
the difference of the two retrievals. The smoothing error is
the difference between the correct parameter retrieval and the
a-priori profile. In this work, all errors are estimated by this
full treatment for consistency reasons for both the linear and

3 Error analysis and sensitivity assessment

Assuming linearity for the forward moddéf and the inverse
modelI within the uncertainties of the retrieved state and the

model parameters it ispdgers2000: the logarithmic retrieval

N O0I[F(x, p), pl0F (x, p) Together with the error estimation a sensitivity assessment
rtoXx= ( dy ax ')(x ~ Xa) is performed. Generally the averaging kernels (columns of

Atmos. Chem. Phys., 6, 81830, 2006 www.atmos-chem-phys.net/6/811/2006/
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A) are used to estimate the sensitivity of the retrieval at cer4f the smoothing error alone is taken into account. The left
tain altitudes. They document by how much ppmv the re-panels show the linear retrieval, the right panels the loga-
trieved solution will change due to a variability of 1 ppmv in rithmic retrieval, the upper panels the whole ensemble, and
the real atmosphere. They may inform that 1 ppmv more athe middle and lower panels the LT slaritOx 10?1 cm2
5 km is reflected in the retrieval by an extra ol @pmv at  and LT slank5x10? cm—2 sub-ensembles. Considering
8 km. However, the typical real atmospheric variabilities at the whole ensemble the sensitivity is limited to altitudes be-
different altitudes are not considered and hence to what extow 8-9 km. Furthermore, the upper tropospheric mixing
tent the typical variability as retrieved at 8 km is disturbed by ratios of the linear retrieval tend to depend more on variabil-
typical variabilities at 5 km. This is a minor problem if the ities at lower altitudes. For example, the value retrieved at
mixing ratio variabilities have the same magnitude through-9 km is mainly influenced by the real atmospheric situation
out the atmosphere. The variabilities of water vapour de-at 7 km. This incorrect altitude attribution is less pronounced
crease by 3—4 orders of magnitude from the surface to thén the logarithmic retrieval. For the LT slaaflOx 10% cm—2
tropopause (see Fid), thus the interpretation of the averag- sub-ensemble the sensitivity is extended by 1-2 km towards
ing kernels is quite limited. Alternatively, one may produce higher altitudes. In this case, the observing system provides
adequately normed kernels to address this deficiency. Furgood information about the atmospheric water vapour vari-
thermore the averaging kernels depend strongly on the acabilities up to 10 km 4 at the diagonal aboveT). As before,
tual water vapor content, i.e. there is no typical kernel andfor the linear retrieval, the amounts at higher altitudes are
non-linearities play an important role. For all these reasonsstrongly disturbed by the real states at lower altitudes, while,
here a full treatment, consisting of forward calculation of as-for the logarithmic retrieval, high correlation coefficients are
sumed real states and subsequent inversion, is used to estirore concentrated around the diagonal of the matrix. If the
mate the response of the retrieval on real atmospheric varikT slant is smaller than $10?1 cm™2, the logarithmic re-
abilities. Therefore, the real state vectors are correlated lintrieval’s p values at the diagonal are stillDat 11 km. The
early to their corresponding retrieved vectors. The correla-o values of the linear retrieval are slightly lower.§Q at
tion coefficient p) considers the different magnitudes of the 11 km). But the most pronounced difference between both
variabilities. For instancey between the real state at 5 km methods is the incorrect altitude attribution in case of the lin-
and the retrieved state at 8 km gives the typical fraction of theear retrieval. For example, the mixing ratio retrieved by the
retrieved variabilities at 8 km due to disturbances from 5 km.linear method at 11 km is strongly correlated to real values at
These correlation matrices give a good overview of the rela-8 km (o of 0.9). These disturbances are significantly reduced
tion between real atmospheric variabilities and the retrievedn case of the logarithmic retrievab ©0f 0.63). Thus the error
variabilities. of the state retrieved with the logarithmic method at 11 km
Error estimation and sensitivity assessment are performedan already be sufficiently reduced by considering the distur-
for the whole ensemble (the ensemble used for calculatbances originating from altitudes down to about 8 km only.
ing the a-priori mean and covariances), and for two sub-The linear method, on the other hand, should very likely take
ensemble of selected conditions, when especially good uppento account values from further down in order to reach a
tropospheric sensitivity and even sensitivity in the tropopausesimilar error level. This means that the correlation length of
region are expected. Sensitivity in the UT and tropopause rethe smoothing error is larger for the linear retrieval. To de-
gion requires the strong absorption lines to be unsaturatedermine the amount of a layer with a certain uncertainty the
Furthermore, the signal to noise ratio, which atflzas oc-  layer must be broader for the linear retrieval if compared to
casionally decreased by high aerosol loading owing to Sathe logarithmic retrieval.
haran dust intrusion events, should be acceptable (above The smoothing error is commonly presented as a mean er-
200 at 1100 cm?). In 30% of all measurement days the ror and a covariance matrix. However, for a non-Gaussian
lower tropospheric water vapour slant column amounts (slantlistribution this kind of error presentation is inappropriate.
column amounts between surface an@ km) are below For a pure log-normal distribution, errors might be presented
10x 107 cm~2 (LT slant <10x 10?1 cm~2 criterion), which ~ on a logarithmic scale as mean and covariance. This is not
means that the strong absorption lines are unsaturated. Qpossible for the linear retrieval, since it is expected to have
these days, good sensitivity for the UT can be expected. Th@ormal as well as log-normal characteristics. To overcome
observing system should perform even better if the lower tro-this problem the errors are firstly assessed for layers and not
pospheric slant column amounts are beload®tcm=2 (LT~ for a single altitude. Bearing in mind the modest vertical
slant <5x 10?1 cm~2 criterion). This is however only the resolution of trace gas profiles determined by ground-based

case for 10% of all possible observations. FTIR spectroscopy, the objective of this technique should
consist of retrieving the amount of a certain layer rather than
3.1 Smoothing error a concentration at a single altitude. Secondly, least squares

fits are applied to estimate the errors. This enables all sys-
Figure4 shows correlation matrices in the absence of param+tematic errors to be separated from the random errors. The
eter errors. They document the sensitivity of the retrievalregression curves of the least squares fits demonstrate how

www.atmos-chem-phys.net/6/811/2006/ Atmos. Chem. Phys., 6 833D12006
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Fig. 4. Sensitivity of observing system in the absence of parameter error. Depicted are correlation matrices between assumed real profiles
and retrieved profiles. Left panels for retrieval on a linear scale, right panels for retrieval on a logarithmic scale. Upper panels for the whole
ensemble, middle panels for the LT slariOx 10?1 cm=2 sub-ensemble, and lower panels for the LT skin 1071 cm~2 sub-ensemble.

Colors mark the values of the correlation coefficieptsds given in legend.

the real atmosphere — as a mean — is mapped by the retrievajression line €2 ,) to the variance of the retrieved amount

reg
their difference from the diagonal describes the systematiqof); p2=(,r28g /(,22. It gives the proportion of the variance

smoothing error. The scattering around the regression curvef the retrieved amount that is systematically linked to the
describes its pure random error. For a linear least squaregal atmospheric variance. The remaining variancé &f

fit the correlation coefficientd) can be used to estimate this the scattering around the regression line (the random error:
pure random errorp? is the ratio of the variance of the re-
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Fig. 5. Smoothing errors in the retrieved profiles. Left panel: linear
retrieval. Right panel: logarithmic retrieval. Colors as described in
legend.
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Figure 5 depicts the random smoothing errors relative to tropopause (8.8-11.2km)

(LT-slant < 5x102]/cm2) -

the variability of the retrieved value (noise to signal error:
e, /03) Of several layers throughout the troposphere. The
altitude region of each layer is indicated by the error bars.
The left panel shows estimations for the linear retrieval and
the right panel for the logarithmic retrieval. The errors for
both retrieval methods are quite similar. The black squares o0 02 o4 o0 0z o4
represent the error for the whole ensemble. It confirms the rea partiel cskohumn 10°4om] rea prtiel cckohimn [10°/om’
observation made in Fig} that above 8 km the retrieval ) _
generally contains limited information about the real atmo-"'9; 6: Correlations between assumed real partial column amounts
sphere: the signalinoise ratio lies above 50%. The blueand their corresponding retrieved amounts in thfa absence of
PP parameter errors. From the top to the bottom: lower tro-
crosses show the same but for t_he LT stax 10°* cm posphere, middle troposphere, upper troposphere (for the LT
sub-ensemble. Here the smoothing errors above 6 km are rejant.10x 1021 cm—2 sub-ensemble), and tropopause region (for
duced, e.g. from 54% to 44% for the67#10 km layer and  the LT slank5x 10?1 cm™2 sub-ensemble). Left panels, black
the logarithmic retrieval. The red circles show the situationsquares and black lines: retrieval on a linear scale and correspond-
for the LT slank5x 10?1 cm~2 sub-ensemble. Under these ing least squares fits. Right panels, red circles: retrieval on a log-
conditions, the random smoothing error of the logarithmic arithmic scale and corresponding regression line. Solid lines: lin-
retrieval for the 88—-112 km layer is as small as 36%. The ear least squares fit. Dotted lines: second order polynomial least
random errors calculated with Ec@)(are similar for the lin- ~ sauares fit.
ear and logarithmic retrieval.
The better performance of the logarithmic approach be-
comes visible in Fig6, which shows the real characteristics line slope always lies below the relevant logarithmic retrieval
of the correlations for four different layers representing theslope: the linear method has a larger systematic error. Fur-
lower troposphere (LT, .3-33 km), the middle troposphere thermore, the amounts retrieved by the logarithmic method
(MT, 4.3-64 km), the upper troposphere (UT,6+10 km),  are always linearly correlated to the real amounts. For the
and the tropopause region.88112 km). Depicted are all linear retrieval this is only valid at low altitudes. At altitudes
single ensemble members and curves of linear least squaredbove 6 km the linear retrieval is more sensitive at small
fits (solid lines) and second order polynomial least squaremamounts than at large amounts. In these cases the systematic
fits (dotted lines). The correlation coefficiend)(and the  behavior of the linear retrieval is insufficiently described by
slope {n) of the regression line are given in the panels. Thea linear regression line. A linear regression line then system-
left panels show the linear and the right panels the logarith-atically overestimates very low and very large amounts and
mic retrievals. Abovex6 km the linear retrieval regression underestimates amounts between the median and the mean

02 ~" "o

retrieved part. col. [102’/cm‘2]
o
N
!

004" p=0.89; m=0.61 0,0-] p=0.94; m=0.66
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Tab|e 1 Assumed Uncertainties. linear retrieval logarithmic retrieval
error source uncertainty 10 TT{ 10 T
g .g. B ‘>L * pressqre : Jﬁ'
measurement noise  S/N of 500 § 2 1L e oo ] T 11
phase error 02 rad 5 o el L X Throtle ] L L |
modulation eff 2% g 2 T LF A % Jf
. £ B 1 ¥ i O Tprofile __ &
T profile? up to 25 K at surface ® ] S L (muteneacus ] _—
1 K rest of troposphere —————— ———
solar ang|e ae 0 ) ?O 100 0 ) ?0 100
line intensity 50 noise/signal [%] noise/signal [%)]
pres. broad. coef. 1% ] 5
5 10 l( 10 l( |
a H o S i
detailed description see text % E JT Jﬁ |
5 = TX - :
v o Xl 1 ;
£ 3 I SN ;
] =) >¢ |
_ . . . s £ 57 1 ‘ 54 1 3
value. For a better description of this systematic behaviora= & T . T
second order polynomial would be needed. This additional -
characteristic of the linear retrieval’'s smoothing error has im- 0 50 00 0 50 100
T . . . . i i 0, i i 0,
portant consequences: it limits the linear retrieval in correctly noise/signal [%] noise/signal [%]
detecting variabilities present in time series. It underesti- ] | 5
mates alterations towards large amounts and overestimate al- 10 | 10
terations towards small amounts. For an analysis of water 5 & | |
. . . . . . L oX !
vapour time series above 6 km the logarithmic retrieval isthe § & |
. \ ° 4 | |
better choice! £ 2 sl T 5 T
5% %T T
3.2 Model parameter error e S S
0 50 100 0 50 100
As for the smoothing error, the random and systematic errors noise/signal [%] noise/signal [%]

caused by parameter uncertainties are separated by means of
least squares fits. Therefore, the retrievals of spectra simuFig. 7. Parameter errors in the retrieved profiles.  Upper
lated with correct parameters are correlated to the retrievalganels: for the whole ensemble. Middle panels: for the
of spectra simulated with erroneous parameters. In this subLT slant<10x10?* cm~2 sub-ensemble Bottom panels: for LT
section, errors due to measurement noise, uncertainties in s§lant<5x10°* cm™2 sub-ensemble. Left panels: linear retrieval.
lar angle, instrumental line shape (ILS: modulation efficiencyR'ght panels: logarithmic retrieval. Symbols as described in the
and phase errddase et al.1999, temperature profile, and legend.
spectroscopic parameters (line intensity and pressure broad-
ening coefficient) are estimated. The assumed parameter un-
certainties are listed in Table Two sources are consid- Separate the parameter errors completely from the smoothing
ered as errors in the temperature profile: first, the measureefrors. As a consequence, even systematic error sources may
ment uncertainty of the sonde, which is assumed to.6&0  produce random errors (line intensity and pressure broaden-
throughout the whole troposphere and to have no interleveing parameter). Furthermore, the correlation plots are ex-
correlations. Second, the temporal differences between theected to show some of the characteristics of the smoothing
FTIR and the sonde’s temperature measurements, which aTor: e.g. above 6 km the linear retrieval's sensitivity to-
estimated to be.Bb K at the surface and.® K in the rest of Wwards parameter uncertainties is expected to be smaller at
the troposphere, with 5 km correlation length for the inter- large amounts than at small amounts. This is the main reason
level correlations. for the linear retrieval’s high random errors above 6 km for
Random errors due to measurement noise, uncertainties i€ LT slant<5x 107! cm™2 sub-ensemble caused by the un-
the modulation efficiencies, the solar angle and the line intencertainties in the phase error parameter. The corresponding
sity are situated below or around 5%. They may be neglecte@Tors of the logarithmic retrieval are smaller (at least for the
if compared to the errors caused by phase error, temperatufd T and UT).
profile, or pressure broadening coefficient uncertainties. Fig- Considering the whole ensemble, the temperature uncer-
ure 7 shows the latter errors for the whole ensemble (uppettainty provides the largest errors (red crosses). The errors
panels) and for the sub-ensembles with low LT slant columnsare generally larger for the logarithmic retrieval, in particular
(middle and lower panels). It should be remarked that, owingthe temperature error. Here 23% &b &m for the linear re-
to the aforementioned nonlinearity 6, it is impossible to  trieval is much lower than 44% for the logarithmic retrieval.
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This is due to the retrieval’'s misinterpretation of spectral sig-3.3 Total random errors
natures arising from errors in the temperature profile. Since .
éK}, from Eq. @) is generally not equal to zero, the parame- Due to the strong non-linearity &, the total error cannot be
ter error in the measurement space may be transformed intdeduced from the smoothing and parameter errors presented
the state space. This is a minor problem when the minimi-above. It has to be simulated separately by a full treatment.
sation of the cost function (E®) is performed on a linear Figure8 shows the correlation matrices for consideration of
scale. Then changes of the state vector with respect to itparameter errors according to Tafilend for retrievals with-
a-priori state and the magnitude of the constraining term areut simultaneous fitting of the temperature profile. It is the
linearly correlated. A misinterpretation would thus mean asame as Fig4 but in the presence of parameter errors. The
large value of the constraining term and consequentlyEq. ( matrices for the whole ensemble (upper panels) show that
would never be minimised. On a logarithmic scale, however,the parameter errors reduce the sensitivity of both retrievals
a linear increase of the constraining term is related to an exin the middle and upper troposphere. Additionally, the log-
ponential increase of the retransformed state vector. Hencerithmic retrieval performs poorly in the lower troposphere.
a significant change of the state vector is not avoided by thd=or the low LT slant sub-ensembles (middle and lower pan-
constraining term. The problem can be reduced by a simul€ls), the differences to Figh are much smaller: The param-
taneous retrieval of the temperature profile, which adds tweceter errors are much more important for saturated than for
terms to the cost function: unsaturated absorption lines, which was already observed in
Fig. 7.
2 T Te -1 The total errors for this kind of retrieval are depicted in
oy =K (y = Kx) + (x —xa)’ Sa7(x — Xa) Fig. 9. If the whole ensemble is considered (black squares)
+o 2y —Ki) (y = Ket) + (¢ — £)" S Mt — 1) even the retrieval of the.6-88 km layer becomes uncer-
(20) tain (noise/signal of 62% and 75% for the linear and log-
arithmic retrieval). For the logarithmic retrieval the large

rror in the lower tr here al tan t. For the LT
Heret andt, are the real and the assumed temperature statg ° e lower troposphere also stands ou orthe

vector,K; the sensitivity (or Jacobian) matrix for the temper- Slant<10x10°" cmr2 sub-ensemble, the error in thed6
it y . . PEr* g 8 km layer is reduced to 45% and the retrieval of th&-7
ature, andS,; the error covariance matrix for the tempera-

) . . ) 0
ture. Thus a temperature error does not lead to an adjustmer%t0 km layer is possible with an uncertainty of 53%. The

. - . : .~ condition of LT slank5x 10?1 cm~2 further reduces the er-
of the first term — a misinterpretation of spectral information rors: the logarithmic retrieval enables th&8112 km laver
—, but to an adjustment of the third term in EQQY. This ) g Y

reduces the probability of misinterpreting the temperature er_to be retrieved with an error of only 43%. This realistic error
ror. At 6.5 km, for example, the simultaneous fitting of the scenario suggests that, considering the whole ensemble, the

temperature profile reduces the error from 44% to 13%. ThisImear retrieval performs better. I
The reason for the poorer performance of the logarithmic

is seen by comparing the red crosses with the red squares in . . . - : _
: ; oo retrieval is due to the misinterpretations of spectral signatures
Fig. 7. This strategy leaves the uncertainty in phase errorand ™ . e
; - . as discussed above. There it was shown that the misinterpre-
pressure broadening coefficient as the most important errop_.; . X
sources ation of a temperature error is strongly reduced by simulta-
' o ) neously fitting this parameter. Figur&® and11 show that
For the LT slant10x 107! cm2 sub-ensemble (middle  this strategy is also successful concerning the total error. For
panels of Fig), the errors are much smaller (generally be- the |ogarithmic retrieval the respective correlation matrices
low 30%). Except for the phase error, the errors for the linear(rig. 10 are very similar to those without additional parame-
and logarithmic retrieval are now similar. A misinterpreta- ter errors (Fig4). It should now be possible to retrieve water
tion of spectral signatures is less probable for this ensembla,apour amounts up to at least 7-8 km under all conditions.
Apparently, the condition of unsaturated absorption lines si-rigure11 demonstrates that, for a realistic error scenario and
multaneously eliminates days predestined for misinterpretag simultaneous fit of temperature, both linear and logarithmic
tion. However, a simultaneous retrieval of the temperatureretrieval yield similar random errors. Considering the whole
further improves the retrievals by reducing the temperaturéansemble, LT and MT amounts can be determined with an
error to below 10% at all altitudes. The most important er- gcceptable noise to signal ratio of around 22%.
rors are due to uncertainties in the phase error. Tables2 and3 summarize random errors for the total col-
The lower panel of Fig7 depicts the errors for the LT umn amount and for partial column amounts of the LT, MT,
slant<5x 1071 cm~2 sub-ensemble. This condition further UT, and the tropopause region. Figur2depicts the corre-
reduces all errors at altitudes above 5 km. A simultaneoudations between real amount and retrieved amount of the 4
fit of the temperature limits all errors for the logarithmic re- representative layers. The left panels represent the linear and
trieval to below 10%. The only exception is the error ow- the right panels the logarithmic retrieval. While correlation
ing to phase error uncertainties. It still reaches 18% arounccoefficients are quite similar, the better performance of the

10 km. logarithmic retrieval manifests itself by the good linear cor-
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Fig. 8. Same as Figd but in the presence of parameter error as listed in Thble

relation with the real amounts at all altitudes, which finally pends on the retrieved amounts: at higher altitudes it is more

results in higher sensitivity (higher values of slopes), for al- sensitive at small amounts than at large amounts. This incon-
titudes above 6 km, if compared to the linear retrieval.

3.4 Systematic errors

Already in Sect.3.1, compared to the logarithmic method,

the systematic smoothing error of the linear method is show!
to be larger. At the same time the linear retrieval’s error de-

Atmos. Chem. Phys., 6, 81830, 2006

sistency of the linear method complicates the interpretation
of the amounts obtained with the linear retrieval. Neglecting
this inconsistency and assuming linear correlation for both
the linear and logarithmic method gives only a mean situa-
tion of their systematic smoothing error. Compared to the

Aogarithmic retrieval the slope of the linear retrieval’s regres-

sion line is further from unity, i.e. as a mean the absolute

www.atmos-chem-phys.net/6/811/2006/
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Table 2. Estimated noise/signal of linear retrieval with simultaneous fitting of temperature [%]. The values fo8+i@J km and 83—
11.2 km layers are for the LT slaatlOx 10?1 cm™2 and LT slank5x 10?1 cm~2 sub-ensembles, respectively.

error source total 3-33km 43-64km 76-1Q0km 88-112 km
smoothing 3 14 23 44 45
meas. noise <1 3 2 8 9
pha. err. 2 12 8 24 18
mod eff. <1 1 <1 <1 2
T. profile 1 4 2 6 5
solar angle <1 1 <1 <1 1
line int. <1 <1 <1 2 1
pres. coef. 1 7 7 7 5
total 4 21 24 50 47

Table 3. Same as Tablg, but for logarithmic retrieval.

error source total 3-33km 43-64km 76-1Q0km 88-112km
smoothing 2 10 21 44 36
meas. noise 1 4 2 7 8
pha. err. 2 19 10 33 18
mod eff. <1 1 <1 <1 <1
T. profile 1 8 6 7 3
solar angle 1 <1 <1 <1 <1
line int. <1 1 1 1 1
pres. coef. 1 11 6 5 4
total 4 22 24 49 42

linear retrieval logarithmic retrieval

104 T ;L 10
g X7l '
1 l
= X
) A l O whole ens.
S 1 3 x LT slant
£ 51 b1 <aoxao0em® 7]
© 1 T : O LT slant
1 OX O <5x107'cm” !
—— ————————
0 50 100 0 50 100

noise/signal [%] noise/signal [%]

Fig. 9. Same as Fig5 but in the presence of parameter error as
listed in Tablel.

variance of the linear retrieval’s regression Ilné () agrees
less well with the real variance. According to E§) énd
sincep _o,eg/m is similar for both retrieval methods, the

amounts: the absolute systematic errors are increased and
the random errors reduced. This once again manifests the
dependency of the linear retrieval’'s errors on the retrieved
amounts. On the other hand, the absolute errors of the log-
arithmic retrieval are practically independent from the re-
trieved amounts.

Additionally, systematic uncertainties of the spectroscopic
line parameters may cause systematic errors. To estimate
them, the retrievals of spectra simulated with correct param-
eters are linearly correlated to the retrievals of spectra sim-
ulated with erroneous parameters. The systematic errors are
given as the difference of the regression line slope to unity.

Table4 lists the systematic errors for the linear retrieval for
the four partial column amounts representing the LT, MT, and
UT, the tropopause region and for the total column amount.
Table5 lists these estimations for the logarithmic retrieval.
Below 6 km they are very similar to the linear retrieval. At
higher altitudes the linear retrieval’s errors are larger. At

absolute variance of the scattering around the regression linthese altitudes and as discussed above, it would be more cor-

(the random error) is then larger for the logarithmic retrieval

.rect to give two values for the linear retrieval's smoothing er-

However, this is a mean value for the whole ensemble. Aror: a first for low amounts, which would be reduced, and a
detailed analysis would reveal that the linear retrieval has insecond for large amounts, which would be increased if com-
creased absolute systematic errors and reduced absolute rgpared to the mean value presented. At higher altitudes the
dom errors only for large amounts. It is vice versa for small logarithmic retrieval is slightly more sensitive to the system-

www.atmos-chem-phys.net/6/811/2006/
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Fig. 10. Same as FigB but with simultaneous retrieval of temperature profile.

Table 4. Estimated systematic errors of linear retrieval [%]. The values for thelDO km and 88-112 km layers are for the LT
slant<10x 10?1 cm~2 and LT slank5x 1021 cm™2 sub-ensembles, respectively.

error source total 3-33km 43-64km 7.6-100km 88-112km

smoothing 0 -3 -6 -31 —38
line int. -5 -5 -3 -3 —4
pres. coef. 0 +10 -8 -1 —4
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Table 5. Same as Tablé, but for logarithmic retrieval.

FTIR spectroscopy

error source total 23-33km 43-64km 7.6-1Q0km 88-112km
smoothing -1 —4 -1 -23 -33
line int. -5 -5 -2 -4 -5
pres. coef. +2 +19 -15 +4 -1
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Fig. 11. Same as Figd but with simultaneous retrieval of tempera-
ture profile.

atic line intensity error, since the increasing sensitivity of the

linear retrieval for high amounts reduces the slope of the re- &
gression line. The same can be observed for the pressuréf;

coefficient error: at high altitudes the linear retrieval’s error
always lies below the logarithmic retrieval’s error.

3.5 Characterisation of posterior ensembles

On a logarithmic scale all involved pdfs are Gaussian distri-
butions. A correctly working retrieval should therefore pro-

duce a normal pdf for the posterior ensemble, or if referred
to the retransformed linear scale, a log-normal pdf. It should
not change the principle distribution characteristics of the a-

priori ensemble. The situation of the linear retrieval is differ-
ent because it involves normal and log-normal pdfs. Conse

quently the posterior pdf may be something between a log-

normal and normal pdf. A2 test can check this issue. The
posterior covariance matrix 8 =e{£x”}. In contrast to the
a-priori covariance matris,, the matrixSy is singular, since

linear retrieval

304 lower troposphere (2.3-3.3km)
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Fig. 12. Same as Fig6 but in the presence of parameter errors and
with simultaneous retrieval of temperature profile.

the solution space has fewer dimensions than the a-priori

space. The calculation of the? values according to Eq5)

is thus not straightforward. However, since the covarianceperature. The calculations have to be performed on a loga-
matrix is symmetric its singular value decomposition leadsrithmic scale to check for a log-normal distribution and on

toLALT, with the columns of. containing its eigenvectors a linear scale to check for a normal distribution. In Fig.
and the diagonal matrix its corresponding eigenvalues. As the theoretical2 cumulative distribution function (cdf) for
S 1in Eq. ) a pseudo inverse is applied, which only con- 3 degrees of freedom (black line) is compared to tRecdf

siders the 3 largest eigenvalues. Tjtfecalculated with this

www.atmos-chem-phys.net/6/811/2006/

derived from the different tests. The upper panels show the
inverse would thus have 3 degrees of freedom. The test isest assuming a normal distribution. The left panels show the
performed for all aforementioned retrievals: with/without pa- linear retrieval and the right panel the logarithmic retrieval.

rameter errors and with/without simultaneous fitting of tem- The black squares (in the graph partially hidden by the red
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Fig. 14. DOF values for logarithmic retrievals with realistic error
assumptions compared to DOF values of logarithmic retrieval in the
absence of errors. Left panel: no retrieval of temperature profile.
Right panel: simultaneous retrieval of temperature profile.

test not possible
due to occasionally
negative mixing
ratios with linear
retrieval !

probability [%]

In the case of misinterpretation of spectral signatures the
logarithmic retrieval over-interprets spectral signatures. This
10 can be demonstrated by analysing the trace of the averaging
X kernel matrix (tfA)). It determines the amount of informa-
tion present in the spectra used by the retrieval for updat-
Fig. 13. 2 test for posterior ensembles. Upper panel$:test  ing the a-priori state. It is commonly called the degree of
assuming normal distribution. Lower paneksz. testassuming log-  freedom of the measurement (DOF). Figlitecompares the
normal distribution. Left panels: linear retrieval. Right panels: log- DOF values for the logarithmic retrievals with and without
arithmic retrieval. Black line: theoreticad? cumulative distribu- additional errors. If the retrieval is working correctly adding

tion function (cdf) for 3 degrees of freedom; black filled squares: - -
empirical)(2 cdf of ensemble in absence of parameter errors; blackfurther ‘?”Ofs should r_educe the DOF_vaIue, since the infor-
mation in the spectra is more uncertain. However, on a log-

circles: empiricaly ? cdf of ensemble in the presence of parameter ¢ . " h
errors and without retrieval of temperature profile; red circles: em-arithmic scale occasionally the contrary is observed. If the

pirical x2 cdf of ensemble in the presence of parameter errors ande€mperature profile is not simultaneously fitted (left panel

simultaneous retrieval of temperature profile. of Fig. 14) occasionally more information is retrieved from
the erroneous spectra than from the spectra with only white
noise, which means that errors in the spectra are misinter-

circles) represent the posterior ensemble when no parametgireted as information. This problem disappears by fitting the

errors are assumed. The linear posterior ensemble is quitemperature profile simultaneously (right panel).

consistent with a normal distribution. This means that the

linear retrieval forces the originally log-normally distributed

ensemble into a Gaussian ensemble. Additional errors pusA  Comparison of retrieval results to ptu-sonde measure-

the solutions slightly away from a normal distribution. A ments

simultaneous retrieval of the temperature enables a better ex-

ploitation of the information present in the spectra and leadt-1  The FTIR measurements

nearly to the same distribution characteristic as if no errors_. . .
y ?lnce March 1999 measurements of highly-resolved in-

were present. The logarithmic posterior ensemble has fewe . )
characteristics of a normal distribution. Its empirig&lcdfs rared solar absorption spectra are routinely performed at the
. . - Izafa Observatory, situated on the Canary Island of Tenerife
diff derably f the th tical cdf. The | ’ o
er considerably from the theoreticat ¢ ©IOWeT  og18 N, 1629’ W) at 2370 m a.s.l. Its position in the At-

panel checks for a log-normal distribution. This test cannotI ntic Ocean and abov table inversion laver tvoical for
be performed for the linear retrieval since it yields occasion- 2MHC Scean and above a stable inversion fayer, typical fo

ally to negative retrieved values. In the absence of paramete?UbtrOplcal regions, provides clean air and clear sky condi-

errors, the logarithmic retrieval does not change the charactonS most of the year. This offers good conditions for at-

teristics of the a-priori distribution. It is still a log-normal mospheric observations by remote sensing techniques. The

e spectra are obtained by a Bruker IFS 120M applying a res-
distribution (black squares). The presence of parameter er lution of Q0036 to 0005 ¢t and no numerical apodis-

rors pushes the posterior ensemble slightly away from a pur&." . . . S
Iog-npormal distrigution (black and red gircl)(les) y P ation. The spectral intensities are determined by a liquid-

nitrogen cooled HgCdTe detector, which, in order to ensure
linearity, is operated in a photovoltaic mode. During short
periods in 1999 and 2001 a photoconductive detector was

X’ test for log-normal distribution
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applied whose nonlinearities were corrected. The spectra arthe FTIR instrument and the sun. This is particularly prob-
typically constructed by co-adding up to 8 scans recorded irlematic for the lowest layer above the FTIR instrument as,
about 10 or 13 min, depending on their resolution. Analysingwhile the FTIR instrument is located at the surface the sonde
the shape of the absorption lines (lines are widened by presis typically floating around 30 km south of the observatory
sure broadening) and their different temperature sensitivitiesn the free troposphere. A comparison between the humidity
enables the retrieval of the absorbers’ vertical distribution.measured in-situ at the observatory and the sonde’s humidity
Since the instrumental line shape (ILS) also affects the shapdemonstrated that the water vapour amounts close to the sur-
of the measured absorption lines, this instrumental characface are more variable and on average 40% larger than those
teristic should be determined independently from the atmo-n the free troposphere.
spheric measurements. This is done on average every two
months using cell measurements and LINEFIT software a#t.4 Comparison
described irHase et al(1999. The temperature and pres-
sure profiles, necessary for the inversion, are taken from th&Vithin the comparison period, from March 1999 to January
synoptical meteorological 12:00 UT sondes. Above 30 km2004, the critera for sonde quality (no clouds, realistic hu-
data from the Goddard Space Flight Center’s automailer sysmidity above 10 km) and temporal coincidence with FTIR
tem are applied. Some results of these measurements ameeasurements are fulfilled in 157 occasions only. 59 of them
presented irBchneider et a2005 and references therein.  also belong to the LT slartlOx 10?1 cm~2 sub-ensemble
and 19 to the LT slart5x10%* cm~2 sub-ensemble. Fig-
4.2 The radiosonde measurements ure 15 presents correlation matrices of FTIR and sonde pro-
files. They are the experimental analogue to the simulated
Until September 2002 the meteorological soundings werecorrelations shown in FiglO. The upper panels show the
launched from Santa Cruz de Tenerife, 35 km northeast of theituation for all coincidences and the lower panels for low
observatory, and since October 2002 in an automised modeT slant column amounts. Keeping in mind the errors of the
from Guiimar, 15 km southeast of the observatory. The son-sonde data and temporal and spacial mismatching, the over-
des are equipped with a Vaisala RS80-A thin-film capaci-all agreement of these correlation patterns with the simulated
tive sensor which determines relative humidity. The sondepattern is very good. Considering all situations the linear
data are corrected by a method suggestetiditerer et al.  retrieval is apparently more consistent with the sonde mea-
(2009, who reported a remaining random error of less thansurements than the logarithmic retrieval, since it has slightly
5% throughout the troposphere. Other authors report corlarger p values along the diagonal of the matrix. The de-
rection methods with a remaining uncertainty of over 10% graded performance of the logarithmic retrieval may be due
(Miloshevich 2001). Furthermore, the precision of the wa- to a slight misinterpretation of an incorrect ILS characteri-
ter vapour measured by the RS80-A sensor may be degradeshtion. As seen in FigZ, the phase error is similar to the
due to chemical contamination during storage. To avoid sontemperature error and may cause similar problems if the as-
des with iced detectors, sondes that passed through cloudsimptions of Tablé are too optimistic for the applied Bruker
are not taken into account. Therefore sondes which detedS 120M spectrometer. In this case, the logarithmic re-
a vapour pressure close to the liquid or ice saturation prestrieval may be improved even further by a simultaneous re-
sure are disregarded. Furthermore, sondes with unrealistitrieval of the ILS. However, it should be considered that the
high humidities above 10 km, which may indicate an iced linear retrieval has large outer diagonal elements, in partic-
detector, are excluded. The corrected sonde mixing ratiosilar above 5 km. For the logarithmic retrieval, on the other
are finally sampled on the altitude grid of the retrieval by re- hand, large correlation coefficients are well centred around
quiring that linear interpolation of the mixing ratios between the diagonal, which counterbalances the lower diagonal val-
two grid levels yield the same partial columns as the originalues, since it means that the correlation lengths towards sonde

highly-resolved data. mixing ratios are smaller compared to those of the linear re-
trieval. This is a consequence of the poorer vertical reso-
4.3 Temporal and spatial variability lution of the latter (see explanations about smoothing error

in Sect.3), and even more important considering the situa-
The large temporal and spatial variabilities of atmospheriction of the upper troposphere and tropopause region for days
water vapour are problematic when measurements conductedith low LT slant column amounts. Here thevalues on
from different platforms are to be compared. Both experi-the diagonal are quite similar for the linear and logarithmic
ments should be conducted at the same time and sound thetrieval. However, the logarithmic amounts above 9 km are
same atmospheric location. For this reason only sonde medess correlated with the sonde measurements around 8 km.
surements coinciding within 2 h of the FTIR measurementsFor example, the state retrieved at 10 km hasvalue with
are used for the comparison. Spatial coincidence is difficultthe real state at 8 km of82 in the linear and.@0 in the log-
to achieve. The sonde measures in-situ and will always bearithmic case only. This results in a much smaller systematic
situated at a certain distance from the imaginary line betweenlifference between the sonde and FTIR for the logarithmic
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Fig. 15. Same as FigL0 but for correlation matrices between measured sonde and FTIR profiles.

retrieval at high altitudes if compared to the linear retrieval. low LT slant column amounts only, it is situated around 55%
Tables6 and 7 list these differences. They are calculated for the linear as well as the logarithmic retrieval. These cal-
from least squares fits as described in sec8dn The dif-  culations even disregard temporal and spatial mismatching
ference to unity of the slope gives the systematic deviationof both measurements. These values are therefore — at least
and the scattering around the regression line gives the rargualitatively — well consistent with the simulations in S&gt.
dom deviation. This scattering describes the level of consiswhere the total random error of the FTIR measurements for
tency between the variabilities detected by the sonde and ththese altitudes is estimated to be situated around 45% for the
FTIR measurements. It may also be seen as the overall prdinear and logarithmic retrieval (see total error in TabZs
cision of FTIR and sonde experiments together. For the UTand3).

and tropopause layer and considering the coincidences with
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Table 6. Differences between sonde and FTIR column amounts as estimated from the correlation pldi6)(Fige values for the .B—
10.0 km and 88-112 km layers are for the LT slaatl0x 10?1 cm~2 and LT slan&5x 10?1 cm~2 sub-ensembles, respectively.

total 23-33km 43-64km 7.6-100km 88-112km

random 25 40 32 54 56
systematic  +6 +3 —4 —40 —47

Table 7. Same as Tabl6é but for logarithmic retrieval.

total 23-33km 43-64km 7.6-100km 88-112km

random 25 47 33 58 51
systematic +6 —4 +1 +2 -10

An outstanding difference to Tabl@sand3 is the poorer  enhanced humidity due to surface conditions is very likely
consistency for the LT layer of FTIR when compared to limited to the lowest 100 m of the atmosphere. This overesti-
sonde than when compared within the simulations: empir-mation of simulated LT amounts reduces the mean estimated
ical standard deviation a£45% compared to the estimated sensitivity in the UT and tropopause region.
values of below 22%. This is due to the aforementioned dif- Figure 16 further demonstrates that the logarithmic re-
ferent conditions in the lowermost layer above the instrumentrieval is correlated linearly to the sonde data at all altitudes,
(surface influences) and the corresponding layer at the sondghereby for high altitudes the linear retrieval’s regression
(free troposphere). Since the LT mainly determines the todine underestimates both especially large and small amounts.
tal column amount, the latter is also largely affected by theseThis is consistent with the simulations (FitR). The experi-
differences. The estimated and empirically observed preciments confirm that at high altitudes the linear retrieval is less
sion for the MT are much more consistent: estimated noisesensitive at large amounts if compared to small amounts. The
to signal for the FTIR of 24% versus measure82% for  empirical validation suggests that the differences between the
both experiments together. linear and logarithmic retrievals’ systematic errors are even

Figure16 shows the correlation between LT, MT, UT, and more pronounced than proposed by the theoretical study per-
tropopause partial column amounts of FTIR and sonde meaformed in Sect3. This is reflected in the larger differences
surements. The greatest differences with Aig.are ob-  between the slopes of the regression lines for the linear and
served for the LT (as discussed above), where the regredegarithmic retrieval. While at higher altitudes and for days
sion line between sonde and FTIR data has on offset ofwith low LT slant column amounts, slopes of aroun83for
~2.5x10?1 cm~2: the LT at the site of the instrument is the linear retrieval versus.@B for the logarithmic retrieval
more humid than the free tropospheric LT. For the MT the are simulated, the empirical validation yield$5® versus
consistency between the simulations and the empirical 0b0.96. An explication may be that the assumed measurement
servations is excellent, even though the errors of the sondaoise is underestimated in the simulations, since all spectra
measurements and temporal and spatial mismatching areere calculated for no aerosol loading. More measurement
still disregarded. The regression lines for the UT and thenoise would mean that the a-priori information is more im-
tropopause region show a small offset. Retrieved amountgortant and, since the linear retrieval applies a wrong a-priori,
are~1x10%° cm=2 larger than the sonde amounts. This may the caused systematic error would increase.
confirm a dry bias of the sonde measurementsrier et al. The empirical validation not only confirms the increased
2003. The slopes of the linear regression lines for the UT systematic error of the linear retrieval, it even suggests that
and tropopause region ared2 and 090 for the logarithmic  the improvements by the logarithmic method are more pro-
retrieval. These values are much larger than the simulatedounced than indicated in the simulations. The empirical val-
slopes of 64 and 062. The reason may be that the humidity idation — in consistency with the simulations — shows that
applied for the first layer in the simulations differs from the the linear retrieval of water vapour at high altitudes has im-
real humidity of this layer. Due to the aforementioned differ- portant inconsistencies. Only the logarithmic method is a
ent condition at the sonde and at instrument altitudg k), self-consistent retrieval method. Its retrieved amounts are
a mixing ratio determined by an in-situ instrument was ap-linearly correlated with the real amounts and are well-suited
plied for the simulation. This relatively high value is then for detection of water vapour variabilities in the UT and the
spread out up to the next grid point 8km). However, the tropopause region.
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linear retrieval logarithmic retrieval pendence from lower tropospheric levels. A quick view may
0] lower roposphere (2.3-3.3km) 0] give the impression of increasing water vapour contents in
the upper troposphere; however, for a serious trend analysis
a longer and more continuous time series would be needed.
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° A ° s s inating from the upper troposphere are rather weak and thus

2-| Upper troposphere (7.6710.0km) 2 their retrieved values depend to an important extent on a-

(LT-slant < 10x10™/cm

and S/N > 200)

priori assumptions. Water vapour mixing ratios are log-
normally distributed and an inversion on a logarithmic scale
enables the correct application of this a-prior knowledge and
consequently leads to a statistically optimal retrieval. How-
p=0.81; m=1.02 ever, this method introduces the risk of misinterpreting spec-
o 1 : o i : tral signatures produced by errors in assumed model parame-
o] topopause (eag12m 05 ] o ters. It is shown that the misinterpretations can be controlled
and SIN > 200) o by simultaneously fitting the temperature profile. A logarith-
°41 . ] mic retrieval should therefore perform better than the com-
. C o monly applied linear retrieval, in particular for high altitudes
e oo where the spectral signatures are similar to the measurement
001 $=0.83; m=053 00] $=0.86; m=0.90 noise. It is found that the linear retrieval leads to large sys-
S > o o o o o o tematic errors, which are difficult to characterise. They can
sonde partial column [10"/fcm’) sonde partial column (10" fcm) be observed in correlation plots between retrieved and real
amounts. The complex character of the linear retrieval’s
Fig. 16. Same as Figl2 but for measured sonde and FTIR partial systematic error has important consequences: it limits the
column amounts. linear retrieval in correctly detecting variabilities present in
time series. It would underestimate alterations towards large
amounts and overestimate alterations towards small amounts.
5 Subtropical water vapour time series The systematic error of the logarithmic retrieval is smaller.
Its amounts are almost linearly correlated to the real amounts,
Figurel7 depicts a nearly 7 year record of tropospheric wa- i.e. its sensitivity is independent from the retrieved amount.
ter vapour amounts as determined by the logarithmic retrievaFor an analysis of water vapour time series of the upper tro-
with simultaneous fitting of the temperature. The black cir- Posphere and the tropopause region the logarithmic retrieval
cles show data from the Bruker IFS 120M, which was op- has to be applied. A realistic error scenario simulates ran-
erated until April 2005. The red crosses are results as obdom errors of 4% for the total column amounts and around
tained from a Bruker 125HR, which measures since Jan23% for amounts of the lower and middle troposphere. On
uary 2005. While for the lower and middle tropospheric days with low LT slant amounts, amounts of the upper tro-
values all measurement days are depicted, the upper tropdospheric and the tropopause region can also be determined
Spheric and tropopause values are presented on|y when th@lth an uncertainty of around 45%. Furthermore, it is found
LT slant column amounts are lower thanx’]mZJ- Cm_z and that, in addition to the limited vertical resolution, the uncer-
5x 10?1 cm~2, respectively. For the lower and middle tropo- tainties in the instrumental line shape (phase error) are re-
sphere a well pronounced seasonal cycle is observed. Vasponsible for the mostimportant errors. All these estimations
ues are highest at the end of summer and lowest in the winare confirmed by a comparison to sonde measurements.
ter months. A similar clear seasonal dependence is not ob- The advantage of the FTIR technique compared to the me-
served for the upper tropospheric amounts and the amount®gorological sondes is that the errors are well understood and
of the tropopause region. Values are sometimes even esp&ater isotope evaluation is possible. This may allow a study
cially high in autumn/winter, which demonstrates their inde- of hydrometeorological processes in the atmosphere.

retrieved part. col. [102’/cm‘2]
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Fig. 17. Time series of water vapour above Tenerife island determined from FTIR measurements. From the top to the bottom: tropopause
column amounts (8-112 km), upper tropospheric column amount$&1Q0 km), middle tropospheric column amounts346.4 km), and

lower tropospheric column amounts§233 km). Black circles: measurements of Bruker IFS 120M. Red crosses: Measurements of Bruker
IFS 125HR.

The suggested method can be applied to other dataset @fcknowledgementsie would like to thank the Bundesmin-
highly-resolved infrared spectra (e.g. to measurements madisterium fir Bildung und Forschung for funding via the DLR
within the Network for Detection of Stratospheric Change). (contracts S0EE0008 and 50EE0203). Furthermore, we are grateful
However, the capability of the method would have to be in-t0 the Iz&ia Observatory for facilitating the sonde data and for
vestigated for each measurement site individually. If the in_allowing usto use its infrastructure and to the Goddard Space Flight
strumental line shape (phase error) is well characterised anﬁer_'ter for providing the temperature and pressure profiles of the

. . ...National Centers for Environmental Prediction via the automailer
the temperature profile data are reliable even on days wit ystem
saturated absorption lines, lower and middle tropospheric
amounts can be detected. The upper tropospheric sensitiviti jiteq by: M. G. Lawrence
is expected to be better the lower the water vapour content in
the lowest layers and the stabler the instrumental line shape.
In this context the subtropical site of fza, located on an is-
land, and the application of a Bruker IFS 120M are not the
best conditions. For measurements made by a Bruker IF
125HR even lower uncertainties should b_e expected. A.t .Iesﬁarries, J. E.: Atmospheric radiation and atmospheric humidity, Q.
humid or higher Iocated_ measurement S|te_s, the conditions ; g meteorol. Soc., 123, 2173-2186, 1997.
necessary for the detection of water vapour in the tropopausgiase, F., Blumenstock, T., and Paton-Walsh, C.: Analysis of the
region are more frequently fulfilled. Applying the proposed  instrumental line shape of high-resolution Fourier transform IR
retrieval method to spectra measured during the last 20—-25 spectrometers with gas cell measurements and new retrieval soft-
years at FTIR sites such as Jungfraujoch or Kitt Peak could ware, Appl. Opt., 38, 3417-3422, 1999.
produce unique continuous long-term series of UT/LS waterHase, F., Hannigan, J. W., Coffey, M. T., Goldman, Aggfher,
vapour amounts. M., Jones, N. B, Rinsland, C. P., and Wood, S. W.: Intercompar-

ison of retrieval codes used for the analysis of high-resolution,

eferences

www.atmos-chem-phys.net/6/811/2006/ Atmos. Chem. Phys., 6 833D12006



830 M. Schneider et al.: Water vapour profiles by ground-based FTIR spectroscopy

ground-based FTIR measurements, J. Quant. Spectrosc. RadidRothman, L. S., Barbe, A., Benner, D. C., Brown, L. R., Camy-
Transfer, 87, 25-52, 2004. Peyret, C., Carleer, M. R., Chance, K. V., Clerbaux, C., Dana,

Hopfner, M., Stiller, G. P., Kuntz, M., Clarmann, T. v., Echle, V., Devi, V. M., Fayt, A., Fischer, J., Flaud, J.-M., Gamache,
G., Funke, B., Glatthor, N., Hase, F., Kemnitzer, H., and Zorn, R.R., Goldman, A., Jacquemart, D., Jucks, K. W., Lafferty, W. J.,
S.: The Karlsruhe optimized and precise radiative transfer algo- Mandin, J.-Y., Massie, S. T., Newnham, D. A., Perrin, A., Rins-
rithm, Part II: Interface to retrieval applications, SPIE Proceed- land, C. P., Schroeder, J., Smith, K. M., Smith, M. A. H., Tang,
ings 1998, 3501, 186195, 1998. K., Toth, R. A., Vander Auwera, J., Varanasi, P., and Yoshino,

Kuntz, M., Hopfner, M., Stiller, G. P., Clarmann, T. v., Echle, G., K.: The HITRAN Molecular Spectroscopic Database: Edition
Funke, B., Glatthor, N., Hase, F., Kemnitzer, H., and Zorn, S.:  of 2000 Including Updates through 2001, J. Quant. Spectrosc.
The Karlsruhe optimized and precise radiative transfer algorithm, Radiat. Transfer, 82, 5-44, 2003.

Part Ill: ADDLIN and TRANSF algorithms for modeling spec- Schneider, M., Blumenstock, T., Chipperfield, M., Hase, F., Kouker,
tral transmittance and radiance, SPIE Proceedings 1998, 3501, W., Reddmann, T., Ruhnke, R., Cuevas, E., and Fischer, H.:
247-256, 1998. Subtropical trace gas profiles determined by ground-based FTIR

Kurylo, M. J.: Network for the detection of stratospheric change  spectroscopy at I7@m (28, 16°): Five year record, error anal-
(NDSC), Proc. SPIE—Int. Co. Opt. Eng. 1991, 1491, 168-174, ysis, and comparison with 3D-CTMs, Atmos. Chem. Phys., 5,
1991. 153-167, 2005.

Kurylo, M. J. and Zander, R.: The NDSC - Its status after 10 yearsSPARC: Assessment of Upper Tropospheric and Stratospheric Wa-
of operation, Proceedings of XIX Quadrennial Ozone Sympo- ter Vapour, edited by: Kley, D., Russell lll, J. M., and Phillips,
sium, Hokkaido University, Sapporo, Japan, 167-168, 2000. C., WCRP-113, WMO/TD-No. 1043, SPARC report No. 2, De-

Leiterer, U., Dier, H., Nagel, D., Naebert, T., Althausen, D., Franke, cember, 2000.

K., Kats, A., and Wagner, F.: Correction Method for RS80-A Hu- Spencer, R. W. and Braswell, W. D.: How dry is the tropical free
micap Humidity Profiles and their Validation by Lidar Backscat-  troposphere? Implications for global warming theory, Bull. Am.
tering Profiles in Tropical Cirrus Clauds, J. Atmos. Oceanic  Meteorol. Soc., 78, 1097-1106, 1997.

Technol., 22, 18-29, 2005. Stiller, G. P., Hpfner, M., Kuntz, M., Clarmann, T. v., Echle, G.,

Miloshevich, L. M., Vomel, H., Paukkunen, A., Heymsfield, A. J., Fischer, H., Funke, B., Glatthor, N., Hase, F., Kemnitzer, H., and
and Oltmans, S. J.: Characterization and correction of relative Zorn, S.: The Karlsruhe optimized and precise radiative trans-
humidity measurements from Viasalla RS80-A radiosondes at fer algorithm, Part I: Requirements, justification and model error
cold temperatures, J. Atmos. Oceanic Technol., 18, 135-155, estimation, SPIE Proceedings 1998, 3501, 257-268, 1998.
2001. Turner, D. D., Lesht, B. M., Clough, S. A, Liliegren, J. C., Rever-

NDSC: http://www.ndsc.ws/2005. comb, H. E., and Tobin, D. C.: Dry Bias and Variability in

Rodgers, C. D.: Inverse Methods for Atmospheric Sounding: The- Vaisala RS80-H Radiosondes: The ARM Experience, J. Atmos.
ory and Praxis, World Scientific Publishing Co., Singapore, Oceanic Technol., 20, 117-132, 2003.

2000. Wagner, G., Birk, M., Schreier, F., and Flaud, J.-M.: Spectroscopic
database for Ozone in the fundamental spectral regions, J. Geo-
phys. Res., 107, 4626-4643, 2002.
Wilks, D. S.: Statistical methods in the atmospheric science, Aca-
demic Press, ISBN 0-12-751965-3, 1995.

Atmos. Chem. Phys., 6, 81830, 2006 www.atmos-chem-phys.net/6/811/2006/


http://www.ndsc.ws/

