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Abstract. In this study, WRF-Chem is utilized at high resolu-

tion (1.333 km grid spacing for the innermost domain) to in-

vestigate impacts of southern California anthropogenic emis-

sions (SoCal) on Phoenix ground-level ozone concentrations

([O3]) for a pair of recent exceedance episodes. First, WRF-

Chem control simulations, based on the US Environmental

Protection Agency (EPA) 2005 National Emissions Invento-

ries (NEI05), are conducted to evaluate model performance.

Compared with surface observations of hourly ozone, CO,

NOX, and wind fields, the control simulations reproduce ob-

served variability well. Simulated [O3] are comparable with

the previous studies in this region. Next, the relative contri-

bution of SoCal and Arizona local anthropogenic emissions

(AZ) to ozone exceedances within the Phoenix metropoli-

tan area is investigated via a trio of sensitivity simulations:

(1) SoCal emissions are excluded, with all other emissions

as in Control; (2) AZ emissions are excluded with all other

emissions as in Control; and (3) SoCal and AZ emissions are

excluded (i.e., all anthropogenic emissions are eliminated)

to account only for Biogenic emissions and lateral bound-

ary inflow (BILB). Based on the USEPA NEI05, results for

the selected events indicate the impacts of AZ emissions are

dominant on daily maximum 8 h average (DMA8) [O3] in

Phoenix. SoCal contributions to DMA8 [O3] for the Phoenix

metropolitan area range from a few ppbv to over 30 ppbv

(10–30 % relative to Control experiments). [O3] from SoCal

and AZ emissions exhibit the expected diurnal characteris-

tics that are determined by physical and photochemical pro-

cesses, while BILB contributions to DMA8 [O3] in Phoenix

also play a key role.

Finally, ozone transport processes and pathways within the

lower troposphere are investigated. During daytime, pollu-

tants (mainly ozone) near the Southern California coasts are

pumped into the planetary boundary-layer over the South-

ern California desert through the mountain chimney and pass

channel effects, aiding eastward transport along the desert

air basins in southern California and finally, northeastward

along the lower Gila River basin in Arizona, thereby affect-

ing Phoenix air quality during subsequent days. This study

indicates that local emission controls in Phoenix need to be

augmented with regional emission reductions to attain the

federal ozone standard, especially if a more stringent stan-

dard is adopted in the future.

1 Introduction

Tropospheric ozone is a strong oxidant controlling much of

the chemistry in the atmosphere, such as hydroxyl radical

production and the lifetime of atmospheric species (see re-

view in He et al., 2013). Tropospheric ozone is also a green-

house gas and acts as an important anthropogenic contribu-

tor to radiative forcing of climate (IPCC, 2007). Lower tro-

pospheric ozone adversely affects human health (Anderson,

2009; Smith et al., 2009), reduces crop yields (Avnery et al.,

2011; Chameides et al., 1999), and damages natural ecosys-

tems (Ashmore, 2005; Mauzerall and Wang, 2001). There-

fore, ozone (O3) is one of the six criteria pollutants reg-

ulated by the US Environmental Protection Agency (EPA)

through National Ambient Air Quality Standards (NAAQS).
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The current NAAQS for O3 concentrations ([O3]) is 75 ppbv,

defined as the 3-year average of the annual fourth-highest

daily maximum 8-h average (DMA8) [O3] for each moni-

toring site within an airshed. The US EPA has already pro-

posed to lower the standard to 65–70 ppbv (EPA, 2014) and

may also redefine the national O3 secondary standard for pro-

tecting sensitive vegetation and ecosystems (Huang et al.,

2013). Currently, many US cities are classified as NAAQS

O3 nonattainment areas based on the 2008 federal standard

(http://www.epa.gov/airquality/greenbook/hnc.html). In ad-

dition, sensitive areas (e.g., national parks and wilderness

areas) also experience DMA8 O3 exceedances (http://www.

nature.nps.gov/air/Monitoring/exceed.cfm). Therefore, im-

proved understanding and attribution of [O3] sources in these

areas is necessary to develop effective air quality manage-

ment strategies to achieve ever more stringent US air quality

standards.

As a secondary pollutant, measured ground-level [O3] is

the result of O3 production/loss due to local sources of pre-

cursor emissions, to transport of O3 and its precursors from

nearby and/or remote regions, and to ozone formed from nat-

ural precursor emissions. The direct way to characterize O3

source attribution is through field measurements (e.g., Fast et

al., 2002; Kemball-Cook et al., 2009; Nunnermacker et al.,

2004). The other way to identify transported O3 and local

generated O3 is to use trajectory models (e.g., MacDonald et

al., 2006; Lanford et al., 2010).

Transport of ozone and its precursors from one area to an-

other is determined by flow patterns, which can be obtained

by measurement and/or modeling. However, information on

flow alone is insufficient in ozone studies because of the com-

plexity of the chemistry involved, wherein ozone and pre-

cursors nonlinearly interact with flow, turbulence and sun-

light to determine ozone distributions (Huang et al., 2013;

Lee et al., 2003, 2007; Levy II et al., 1985). Chemical

transport models (CTMs) are increasingly common in sim-

ulating atmospheric chemical and transport processes at re-

gional/continental/global scales because of the detailed phys-

ical and chemical processes which they are capable of sim-

ulating. For example, using a CTM (GFDL AM3), Lin et

al. (2012) found that Asian O3 pollutants can affect surface

[O3] in the western US, contributing up to 8–15 ppbv to the

DMA8; and that Asian pollution increases the DMA8 O3 ex-

ceedance days by 53 % in the southwestern US. Huang et

al. (2013) combining model simulations at 12 km resolution

(WRF/STEM), remote-sensing, and ground-based observa-

tions, have studied the effect of Southern California anthro-

pogenic emissions (SoCal) on ozone pollution in southwest-

ern US mountain states. They found that the SoCal precur-

sor emissions and its transported ozone increased [O3] up

to 15 ppbv in western Arizona. They also characterized the

nonlinear relationship between emissions and [O3]. How-

ever, these studies have not examined the impacts of regional

emissions on [O3] in an urban setting (such as Phoenix), at

high resolution.

Physical/chemical-based CTM modeling is the only avail-

able tool for ozone transport predictions on finer spatial

scales (Lee et al., 2007). Many studies have investigated

ozone transport at urban scales using coupled meteorolog-

ical and chemistry models. For example, Lu et al. (1997)

found that ozone and other pollutant concentrations were

higher in northern and eastern Los Angeles (LA) than those

in the western and central greater LA, where strong emis-

sion sources are located, due to transport owing to the persis-

tent onshore sea breeze and mountain-induced upslope flow.

Analogously, that surface [O3] in the Phoenix metropolitan

area and its rural environs are higher in northeastern than in

southwestern Phoenix arises from transport of urban pollu-

tants by prevailing southwest winds (Fast et al., 2000; Lee et

al., 2003, 2007; Lee and Fernando, 2013). Although these

studies have considered both chemistry and transport pro-

cesses at the urban scale, they did not try to distinguish be-

tween ozone produced by local emissions and that produced

by regional transport, a principal motivation of this study.

The Phoenix metropolitan area is classified as an

O3 nonattainment area under the 2008 NAAQS primary

O3 standard (http://www.epa.gov/airquality/greenbook/hnc.

html). Therefore, it is helpful to separately quantify the rela-

tive contributions of local emissions and regional transport to

Phoenix [O3] in order to design feasible and effective ozone

control strategies. Both aircraft observations (Nunnermacker

et al., 2004) and backward trajectory analysis (MacDonald

et al., 2006) indicate that surface [O3] on exceedance days

are attributed to both Arizona local anthropogenic emissions

(AZ) and regional and/or continental transport. Therefore,

our focus is to use a CTM to separately quantify the con-

tributions of local and regional emissions to the ozone distri-

butions in Phoenix on exceedance days, research which has

not been published in peer-reviewed journals.

In addition, previous studies indicate that coarse-

resolution modeling cannot adequately represent the hetero-

geneities of ozone and meteorological fields in Phoenix due

to its complex terrain (Fast et al., 2000; Lee et al., 2003; Lee

and Fernando, 2013). That high-resolution CTMs can obtain

better results in modeling urban air quality is also reported

for the LA basin, Mexico City, and other regions (e.g., Tie

et al., 2010; Chen at al., 2013; Lu and Turco, 1995, 1996;

Taha, 2008; Klich and Fuelberg, 2014; Stock et al., 2014).

Therefore, employing a high-resolution CTM to address air

pollutant distributions in the Phoenix metropolitan area due

to local emissions and regional transport is our second moti-

vation.

Using WRF-Chem (Grell et al., 2005) at high resolution,

we will examine the following: (1) the relative contribu-

tions of SoCal and AZ to the ozone episodes in Phoenix,

and (2) how SoCal (emissions) affect Phoenix [O3]. This

is a topic that has received limited research attention to

date (Moore, 2014), but requires investigation because of

the metropolitan area’s non-attainment ozone status and be-

cause of the need to evaluate the effectiveness of local an-
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thropogenic emission control strategies necessary to attain

the standard.

2 Methodology

2.1 WRF-Chem setup

We chose WRF-Chem (version 3.5.1) as the CTM since

it has been successfully used in this region (Chen et al.,

2013; Li et al., 2014; Zhao et al., 2012). In WRF-Chem,

the Weather Research and Forecasting (WRF) model (Ska-

marock et al., 2008) is employed to resolve atmospheric

physics and dynamical processes, while the coupled chem-

istry (Chem) model is used to simulate chemical processes

such as gaseous and aqueous chemical reactions, dispersion,

and deposition. The WRF-Chem setup consists of the Lin’s

cloud scheme (Lin et al., 1983), the RRTM radiation scheme

(Mlawer et al., 1997), the Noah land surface model with

single layer urban canopy model (Chen and Dudhia, 2001;

Chen et al., 2011; Ek et al., 2003), the Grell–Devenyi en-

semble cumulus scheme (Grell and Devenyi, 2002) that al-

lows subsidence and spreading at high resolution, a revised

MM5 surface layer, and the BouLac Planetary Boundary

Layer (PBL) schemes. Land cover and land use data from

the MODIS 1 km resolution data set (Friedl et al., 2002)

are combined with the 2006 National Land Cover Database

(NLCD) 3-class urban covers to better represent the urban

landscape. The second generation regional acid deposition

model (RADM2, Stockwell et al., 1990; Gross and Stock-

well, 2003) is used for gas-phase chemical reactions. The

aerosol algorithms are based on the MADE/SORGAM (Ack-

ermann et al., 1998; Schell et al., 2001) with GOCART, func-

tioning as an emission scheme that accounts for surface wind

speed, soil moisture, and soil erodibility (Ginoux et al., 2001;

Zhao et al., 2010). The other selected chemistry schemes are

based on the recommendations provided in the WRF-Chem

users’ guide (Peckam et al., 2013).

Four nested domains are used (Fig. 1a). The first (domain

1) has 36 km grid spacing and covers the western and central

US, eastern Pacific, northern and central Mexico, the Gulf of

California, and the western Gulf of Mexico. Nested domains

2, 3, and 4 use grid spacings of 12, 4, and 1.333 km, respec-

tively. The innermost domain (1.333 km grid spacing with

640 by 301 grid cells) encompasses Southern California (the

South Coast Air Basin or greater Los Angeles Air Basin, the

San Diego Air Basin, the southern Mojave Desert Air Basin,

the Salton Sea Air Basin, the southern part of the South Cen-

tral Air Basin), and the central and southern Arizona airsheds

to better represent the complex terrain and land cover fea-

tures (see Fig. 1b). As shown in Fig. 1b, the mountainous

features in southern California and Arizona are well repre-

sented at high resolution. The San Gorgonio Pass (between

the San Bernardino Mountains and the San Jacinto Moun-

tains), the Cajon Pass (between the San Gabriel Mountains

a
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Figure 1. (a) 4-nested model domains–D01 to D04, from the largest

rectangle box to the smallest rectangle box. (b) Innermost domain

terrain elevation (m). Black dots indicate the locations of CO, NOx ,

and/or O3 observation sites. Circles represent surface wind obser-

vation sites. Red-dashed-line box shows the southern California

and black-dashed-line box stands for southern and central Arizona.

SGM stands for the San Gabriel Mountains; SBM indicates the San

Bernardino Mountains; LSBM indicates the Little San Bernardino

Mountains; SJM represents the San Jacinto Mountains. SGP stands

for the San Gorgonio Pass, between SBM to the north and SJM to

the south. CP represents the Cajon Pass between SGM to the west

and SBM to the east. PHX stands for Phoenix metropolitan area.

Lines A’A, B’B, D’D, and E’E are cross-section locations and are

discussed in text and Figs. 8, 10, 13 and 14, respectively.

and the San Bernardino Mountains), and the Newhall Pass

(west of the San Gabriel Mountains) are also resolved. The

vertical configuration of the model comprised 41 layers: the

lowest 15 layers are within 1500 m a.g.l. and the first half-

vertical layer above the land surface is at 12.5 m a.g.l. The

observation sites (including O3, NOx , CO, and surface wind

observations) used for validation of the control simulations

are also superimposed (Fig. 1b).
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2.2 Data used for model initialization and evaluation

The biogenic emission data are obtained from the 1 km res-

olution Model of Emissions of Gases and Aerosols from

Nature (MEGAN, Guenther et al., 2006). The North Amer-

ican Regional Reanalysis (NARR; Mesinger et al., 2006)

product is used for initial and boundary conditions (atmo-

spheric and land surface [e.g., soil moisture and tempera-

ture]). NARR data are distributed on a 32 km grid with a 3 h

temporal frequency. The atmospheric chemical boundary and

initial conditions are obtained from MOZART-4/GEOS-5

(http://www.acd.ucar.edu/wrf-chem/mozart.shtml) for 2012

case and MOZART-4/NCEP T42 for 2005 case (Emmons et

al., 2010).

The anthropogenic emissions used in this study are ob-

tained from 2005 National Emissions Inventories (NEI05)

data provided by the US EPA (www.epa.gov/ttnchie1/net/

2005inventory.html). These data are distributed on a 4 km

grid array covering the US and surrounding land areas. A

method utilized to interpolate the 4 km grid spacing NEI05

data to any resolution one wishes to use for WRF-Chem

simulations is provided with the WRF-Chem system (http://

www.acd.ucar.edu/wrf-chem/). Each WRF-Chem model grid

point data is based on averaging from those NEI05 grid

points that fall within a distance less than the WRF-Chem

model resolution. The method works well when WRF-Chem

grid spacing is coarser than 4 km. However, the method mis-

represents emissions when the model resolution is greater

than the NEI05 grid. To overcome this issue, we have used

Monotonic Cubic Interpolation to downscale the 4 km reso-

lution NEI05 data to a 1.333 km resolution grid (the finest

model grid spacing of our WRF-Chem simulations). Details

on the NEI05 downscaling method and improved simulation

performance are discussed separately (Li et al., 2014).

The data used for model evaluation include measurements

of surface wind speed and direction (24 sites within Do-

main 4). These wind fields are obtained from two networks:

the AZMET (ag.arizona.edu/azmet), and the Air Quality and

Meteorological Information System (AQMIS) in the Cali-

fornia EPA/Air Resources Board (www.arb.ca.gov/aqmis2/

aqmis2.php). We use hourly observations of ozone concen-

trations from 26 stations in Arizona (downloaded from www.

epa.gov/ttn/airs/airsaqs/) and 46 stations in Southern Cali-

fornia (downloaded from www.arb.ca.gov/aqmis2/aqdselect.

php?tab=hourly). In addition, the hourly NOx observations,

including four stations in Arizona and over 20 sites in South-

ern California, and hourly CO observations, including four

stations in Arizona and about 20 stations in Southern Califor-

nia, can be obtained from the same websites as ozone data.

Comparison of simulated and observed VOC concentrations

was precluded by the latter’s irregular availability and their

lack of hourly concentrations.
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Figure 2. Surface wind comparisons between simulations (bold-

red) and observations (bold black). There are 20 sites in total, in-

cluding those in CA and AZ with locations shown in Fig. 1b as

circles. The variation ranges of simulation and observation are cor-

respondingly labeled by thin-red-line and thin-black-line, respec-

tively. Mean Biases (MB), RMSE and correlation coefficient (R)

are labeled also. CTRL represents WRF-Chem control run.

3 Results and discussion

Two episodes (14 May 2012 and 19 July 2005) are se-

lected as case studies. The criterion for selection required

observed DMA8 [O3] to exceed 80 ppbv for at least 10 of

the reporting stations in the Phoenix metropolitan area. For

both events, the synoptic weather in Southern California and

south-central Arizona was calm, clear, and sunny with light

westerly winds within the lower troposphere for the time

periods discussed in this section, based on NARR 3-hourly

data. In addition, these two events represent the pre-monsoon

and monsoon seasons, respectively, two typical climate cir-

culations (Adams and Comrie, 1997) during the ozone sea-

son.

The model (WRF-Chem) is initialized 4 days prior to each

episode with the data of the first 24 h being discarded. In

addition, analysis nudging is applied for the meteorological

fields (U , V , T , GPH, and Q) above the PBL in the outer-

most domain for the first 24 h.

3.1 Model evaluation

Figure 2 shows the comparison of surface wind fields (cir-

cles in Fig. 1b) between observations (bold-black) and WRF-

Chem simulations (bold-red; i.e., running WRF-Chem with

appropriate emissions and hereafter referred to as CTRL)

for the selected events. The time periods (labeled in Fig. 2)

cover 4 days, concluding with the episode day in the Phoenix

metropolitan area. In comparison with observations, the

model appropriately reproduced the diurnal variation with

only a slight overestimate of wind speed during daytime.

Note that each observation represents a single point while the

closest simulation grid cell to the observed latitude/longitude

location (representing an area of 1.333 by 1.333 km) is used

for comparison. Although there are some differences be-
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tween simulated and observed means, the standard devia-

tions for both modeled (thin-red) and observed (thin-black)

measurements fall in the same range. Mean Bias (MB), Root

Mean Squared Error (RMSE), and correlation coefficient (R)

are also calculated and labeled in each panel. For the U com-

ponent of wind speed, MB is less than 1.0 m s−1 and RMSE

is about 3.0 m s−1 (indicating wind heterogeneity within the

simulation domain). U component winds for the CTRL runs

and the observations exhibit linear correlations with statis-

tical significance (P < 0.01). The MB for V component

wind is less than 0.5 m s−1. Linear correlation indicates that

V component winds from the model and the observations

are statistically significant (P < 0.01) for the time periods

of 11–14 May 2012 and 16–19 July 2005. The wind and

temperature comparisons between WRF-Chem in Domain 1

and NARR data are also examined. Generally, the simula-

tions are consistent with NARR data in patterns and magni-

tudes for the two cases. More specifically, there were contin-

uously westerly winds between southern California and cen-

tral Arizona for both NARR and simulations at 850 hPa. Fig-

ure S1 in the Supplement is an example of the comparisons of

wind and temperature at 850 hPa (bottom panel) and 700 hPa

(top panel) for the average of 16–19 July 2005. These com-

parisons, which indicate sufficiently accurate meteorological

simulations, ensure that regional pollutant transport can be

adequately simulated, one of our focuses in this study.

Figure 3 shows the comparison of CO, NOx , and O3 con-

centrations between the model (bold-red, i.e., CTRL run)

and observations (bold-black) in Domain 4 for the same

time periods. Note that only four sites of NOx and CO

were measured (only one site online available) in greater

Phoenix while over 20 sites are found in Southern Cal-

ifornia. On average, the model performed well for both

CO and NOx concentrations for the July case. In contrast,

for the May case, the model overestimated CO and NOx

during nighttime but matched observations during daytime.

The standard deviations (thin-red) from the model are much

greater than those from observations (thin-black), indicat-

ing that modeled NOx and CO heterogeneity at sites is

greater than that from observations. The model behavior

in the May case indicates that the anthropogenic emissions

could be over-estimated using the NEI05 data due to emis-

sion control strategies enacted in California in the seven in-

tervening years (Pusede and Cogen, 2012). Figure S2 shows

how the emissions changed between 2005 and 2012 for

the South Coast Air Basin, California (http://www.arb.ca.

gov/app/emsinv/fcemssumcat2013.php) and 2011 in Mari-

copa County, Arizona (http://maricopa.gov/aq/divisions/

planning_analysis/emissions_inventory/Default.aspx) Rela-

tive to 2005, anthropogenic emissions of CO, NOx , and

VOC are reduced about 40–50 % in 2012 in the South Coast

airshed, California. Therefore, the NEI 2005 overestimates

[CO] and [NOx]. However, the changes in Maricopa County

are not significant except CO from Mobile.
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Figure 3. The comparisons of CO, NOx , and O3 concentrations be-

tween observations (bold black) and simulations (bold red) in Do-

main 4. There are 23 sites for NOx , 20 sites for CO, and 65 sites

for O3 observations during the study time periods. The locations

are shown in Fig. 1b. The variation ranges of simulation and obser-

vation are correspondingly labeled by thin-red-line and thin-black-

line, respectively. Missing observation time (04:00 local time) is

masked in the figure. CTRL represents WRF-Chem control run.

The [O3] comparison between observations and simula-

tions presented in Fig. 3 indicates the model performed bet-

ter in simulating [O3] than CO or NOx . Both the station av-

erage and station standard deviation from the model and ob-

servations matched each other on event and non-event days

(details on site-by-site comparisons in Phoenix will be dis-

cussed in the next section). The simulated average [O3] and

their spatial heterogeneities fall within the range of observa-

tions except on 13 May 2012, when modeled average [O3]

and the spatial standard deviations fall out of the observation

ranges.

Figure S3 shows [O3] time series separately for Southern

California and greater Phoenix; corresponding statistics are

shown in Table 1. In checking Fig. 3, and Figs. S2 and S3,

although the NEI-2005 over-estimated CO and NOx emis-

sions in 2012 in the south coast airshed, California, causing

[NOx] and [CO] to be over-estimated as well, the ozone sim-

ulations nonetheless appear to be quite acceptable. One ex-

planation could be that this airshed is categorized as a VOC-

limited ozone environment. Under this condition, ozone con-

centrations are restrained by VOC concentrations. In other

words, reducing NOx fails to reduce ozone concentrations

(e.g., Taha et al., 1998) and the same is also found in Phoenix

www.atmos-chem-phys.net/15/9345/2015/ Atmos. Chem. Phys., 15, 9345–9360, 2015
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Table 1. Statistical results of hourly ozone concentrations of WRF-Chem simulations (CTRL) at 1 and 4 km resolution.

11–14 May 2012 16–19 July 2015

CA CA AZ AZ CA CA AZ AZ

1 km 4 km 1 km 4 km 1 km 4 km 1 km 4 km

Mean Bias (ppb) −1.9 −3.4 0.6 −0.4 −2.0 −4.0 −4.8 −4.7

Normalized Mean Bias (NMB) −7.9 −13.5 2.5 −1.7 −8.6 −16.3 −18.5 −18.4

Normalized Mean Error (%) 16.3 25.0 15.4 16.8 24.2 34.1 24.1 25.6

Mean Normalized Bias (%) −6.7 −10.7 3.2 −1.2 −3.5 −9.7 −16.4 −18.5

Mean Normalized Gross Error (%) 16.7 24.9 15.9 17.3 23.8 34.0 24.5 26.2

Correlation coefficient 0.75 0.54 0.76 0.65 0.74 0.4 0.75 0.61

Root Mean Square Error (ppb) 16.1 19.9 15.7 15.5 22.9 30.1 15.8 17.2

area (Fast et al., 2000; Lee and Fernando, 2013), which can

partly explain why the modeled [O3] matched the observa-

tions, even though the modeled [NOx] and [CO] are highly

overestimated in the May case.

Table 1 presents the statistics of comparisons of surface

ozone concentrations between the model and observations

in Southern California (total 46 sites) and greater Phoenix

area (total 24 sites), respectively. These statistics are widely

used in evaluating model performance (Simon et al., 2012).

Our statistics are comparable with those from previous stud-

ies in the two regions. For example, in Southern California,

the mean biases, RSME and correlation coefficients shown in

Table 1 are comparable with those from Huang et al. (2013,

their Table 3) and Chen et al. (2013, their Tables 2 and 3).

Furthermore, the mean normalized bias and mean normal-

ized gross error are comparable with those from Taha (2008,

in his Table 2). In greater Phoenix, these statistics are gener-

ally comparable with those from Lee et al. (2007), and Li et

al. (2014).

To examine the effects of model resolution on surface

ozone concentrations, we conducted two additional model

runs. These two additional runs were set up and configured

exactly the same as the 1.33 km runs; but, with just run-

ning WRF-Chem with Domains 1, 2, and 3, which means the

highest resolution of model output is 4 km. The model per-

formance at 4 km resolution was also validated against ozone

observations and summarized in Table 1. As shown in Ta-

ble 1, the model performed much better for the correlation

coefficients, normalized mean gross errors, mean normalized

bias, and normalized mean error at 1.33 km than those at

4 km. For the mean bias and normalized mean bias, the model

performed better in Southern California at 1.33 km than those

at 4 km, with similar performance in greater Phoenix. There-

fore, we conclude that WRF-Chem in its present configura-

tion performed better at 1.33 km resolution than that at 4 km

resolution, based on the two events and on the 2005 NEI. Our

results are consistent with previous studies (e.g., Taha, 2008;

Tie et al., 2010). In the following analysis and discussion, we

mainly focus on the model output at 1.33 km resolution.

The evaluation shown in Figs. 2–3, S3, and the statisti-

cal analysis presented in Table 1 demonstrate that the WRF-

Chem model, in its current configuration and set up, produces

simulated ozone concentrations comparable to the observa-

tions.

3.2 Contribution of local and remote emissions to

Phoenix [O3]

Next, we investigate impacts of anthropogenic emissions in

southern California (SoCal) and Arizona (AZ) on Phoenix

[O3]. To achieve this goal, we have conducted additional

WRF-Chem simulations for the selected cases with the same

model setup as presented and evaluated in Sects. 2.1 and 3.1,

and refer to these experiments as “CTRL”, but with (1) ex-

clusion of SoCal emissions (indicated as the dashed-red-line

box in Fig. 1b) and called “noCA”; (2) exclusion of AZ emis-

sions (indicated as the dashed-black-line box in Fig. 1b) and

called “noAZ”; and (3) exclusion of all anthropogenic emis-

sions in Domain 4, and called Biogenic emissions and Lateral

Boundary inflow (BILB).

Figure 4 shows the hourly [O3] comparison for obser-

vations (Obs), CTRL, noCA, noAZ, and BILB simulations

at selected observation sites in the Phoenix area on 11–

14 May 2012, (Fig. 4a–f) and 16–19 July 2005 (Fig. 4g–l).

Figure 4 indicates that hourly [O3] from the CTRL run match

the observations very well in western downtown (ID0019,

ID2001), central downtown (ID3003, ID9997), and east and

north suburban areas (ID9508, ID9702). AZ emissions are

the principal contribution to ozone production over Phoenix

during daytime (compare the change in simulated [O3] as

demonstrated by the red contour [CTRL] and dashed-blue

contour [noAZ]), with a maximum magnitude of up to 40–

60 ppbv hourly (compare differences between CTRL and

noAZ). The contribution of SoCal emissions to Phoenix [O3]

ranges between 10–40 ppbv during daytime (compare the

change in simulated [O3] as demonstrated by the red con-

tour [CTRL] and green contour [noCA]). Based on the BILB

run (gray contour), the contribution of biogenic emissions

(including larger-scale lateral input) to Phoenix [O3] varies

Atmos. Chem. Phys., 15, 9345–9360, 2015 www.atmos-chem-phys.net/15/9345/2015/
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Figure 4. Relative contributions of different emission scenarios to

[O3] at observation sites in Phoenix metropolitan area and sur-

rounding rural areas. The dates are 11–14 May 2012 (a–f) and 16–

19 July 2005 (g–l). Idxxxx corresponds to the EPA AIRS site num-

ber in Maricopa County, Arizona. Black line indicates the [O3] ob-

servation. Red line represents the simulated [O3] for the CTRL run.

Blue line shows the [O3] for the noAZ run. Green line displays the

[O3] for the noCA run. Gray line is the [O3] for the BILB run.

between 25–35 ppbv, indicating a baseline target for emis-

sion reduction strategies. Following Huang et al. (2013), the

contribution of SoCal to [O3] in the Phoenix area is the differ-

ence between the CTRL and noCA experiments. The relative

contributions from SoCal, AZ, and BILB emissions to hourly

[O3] at observation sites for 19 July 2005 and 14 May 2012

are shown in Figs. S4 and S5.

Figures 4 and S4 and S5 indicate the relative contribution

of SoCal and AZ emissions to [O3] vary with time. Phys-

ical and chemical processes at each stage can explain this

variation. During nighttime, noCA [O3] are less than that of

the noAZ run. This is because there is no ozone consump-

tion (or titration) in the noAZ run while transported ozone

can still make its contribution. After sunrise, solar radiation

heats the ground surface, increasing the planetary bound-

ary layer (PBL) height. Ozone accumulated within a resid-

ual layer from previous day(s) is entrained into the PBL, in-

creasing ground-level [O3]. This process continues until the

PBL height reaches its peak. Simultaneously, ozone produc-

tion starts with its precursor emissions in the presence of sun-

light, a rate that increases with increasing sunlight intensity
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Figure 5. Simulated diurnal variations of [O3] at Phoenix ur-

ban setting for different emission scenarios: (a) average from 16–

19 July 2005, and (b) average from 11–14 May 2012.

and surpasses the transport rate of [O3] by mid to late after-

noon. Furthermore, the figures indicate that the peak time of

[O3] differs between the CTRL run and the noAZ run at some

locations for some days. These differences of [O3] peak time

indicate the importance of ozone transport. Figure 5 displays

the mean diurnal variation of [O3] for the different emission

scenarios for the two cases. The data are averaged over all

urban grid cells (i.e., not solely over the station sites pre-

sented in Fig. 4) in Phoenix for 11–14 May 2012, and 16–

19 July 2005, respectively. The relative contribution of emis-

sions to Phoenix [O3] are clear and the diurnal features are

similar to those shown in Figs. 4, and S4 and S5, emphasiz-

ing the crucial roles of both local and remote emissions.

The daily maximum 8 h average (DMA8) [O3] from

CTRL and the relative contributions to DMA8 [O3] from

different emission scenarios (BILB, SoCal, and AZ) are as-

sessed at observation sites and for all urban grid cells within

Phoenix (Fig. 6). The model reproduces observations very

well with a slight underestimation on 19 July 2005, but

with an overestimation on 13 May 2012. The contribution

of SoCal to DMA8 [O3] in the Phoenix area ranges be-

tween 20–30 ppbv for the May case and 5–20 ppbv for the

July case. Relative to the CTRL run, the percentage contri-

butions of 26–36 % for the May case and 7–38 % for the July

event emphasize the significant effect of Southern Califor-

nia emissions on Phoenix metropolitan area air quality. For

the two episode days, the contributions are 28 ppb (36 %) for

14 May 2012, and 11 ppb (16 %) for 19 July 2012. The rel-

ative contributions of AZ local emissions to greater Phoenix

observation sites are also shown in Fig. 6. Overall, the rela-

tive contributions of AZ local emissions to Phoenix [O3] are

more than that of SoCal emissions.

The means of DMA8 [O3] throughout the Phoenix ur-

ban area (about 1100 grid cells) arising from the different

emission scenarios are shown in Fig. 6b and d, and indi-

cate similar values to those at observation sites (Fig. 6a, c).

The contribution of SoCal emission to DMA8 [O3] for the

Phoenix metropolitan area ranges between 20–32 ppbv for

the 11–14 May 2012, case, and from 6–22 ppbv for the 16–

19 July 2005, case. The percentages, relative to CTRL, are

from 27 to 37 % for 11–14 May and from 9 to 40 % for

www.atmos-chem-phys.net/15/9345/2015/ Atmos. Chem. Phys., 15, 9345–9360, 2015
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Figure 6. Mean DMA8 [O3] in Phoenix metropolitan area from

observation (Obs), simulation from CTRL runs (CTRL), BILB runs

(BILB), and the relative contributions of different emission sources.

CTRL-noAZ represents the modeled DMA8 [O3] differences be-

tween CTRL run and noAZ run. CTRL-noCA displays the modeled

DMA8 [O3] differences between CTRL run and noCA run. Obser-

vation sites show in Fig. 1b. (a) DMA8 [O3] at observation sites

for 16–19 July 2005, (b) the same as (a) but for that averaged from

Phoenix urban grid cells. (c) and (d), the same as (a) and (b) but for

the case of 11–14 May 2012.

16–19 July. Considering only the 2 days with the maximum

ozone concentrations, the contributions are 29 ppb (37 %)

and 11 ppb (16 %) for 14 May and 19 July, respectively.

Note that in Fig. 6, the differences of CTRL minus BILB

is not equal the sum of the differences of CTRL minus noCA

plus that of CTRL-noAZ. The reason could be the nonlinear

processes among emissions, physical, and/or chemical mech-

anisms (Kwok et al., 2015) and the uncertainties of the entire

system: both the emissions and the models themselves.

Figure 6 demonstrates the following results: (1) the im-

pact of AZ emissions on DMA8 [O3] in the Phoenix area

is greater than that of the SoCal’s; (2) even so, SoCal emis-

sions considerably increase DMA8 [O3] in the Phoenix area

by up to 30 ppbv, though this is day and case dependent;

(3) the DMA8 [O3] from the BILB experiment are in excess

of 30 ppbv, including the contributions of biogenic emissions

and lateral boundary transport. Based on the diurnal varia-

tions shown in Figs. 4 and 5, and Figs. S4 and S5, [O3] due to

biogenic emissions and lateral boundary inflow could be 10–

17 ppbv. In other words, the contribution of BILB to Phoenix

DMA8 [O3] cannot be ignored despite the region’s aridity

and lack of dense forests. Note that all of these results are

based on the US EPA 2005 national emissions inventories.

Figure 7 depicts the spatial distributions of DMA8 [O3]

for different emission scenarios on 19 July 2005. The CTRL

run indicates that higher [O3] occur in the northeastern urban

perimeter, which is consistent with previous studies (e.g. Lee

and Fernando, 2013). The effects of SoCal emissions and AZ

local emissions on DMA8 [O3] are location-dependent. The
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Figure 7. DMA8 [O3] spatial distributions in Greater Phoenix and

surrounding areas on 19 July 2005: (a) CTRL, (b) noAZ, (c) noCA,

(d) BILB, (e) CTRL-noAZ, and (f) CTRL-noCA. Contours repre-

sent terrain elevations. Dots show O3 observation sites. Circle indi-

cates the approximate location of Phoenix urban area.

case of 14 May 2012, is also examined (see Fig. S6) and

a similar distribution as in Fig. 7 is found, but it differs in

magnitude.

In summary, our results demonstrate that removing So-

Cal emissions would facilitate attainment of [O3] in Phoenix

on some days, but not on others. In other words, SoCal

emissions are an important, if uneven, contributor to the

DMA8 [O3] exceedances for Phoenix. In addition, the effects

of SoCal emissions on Phoenix DMA8 [O3] are location-

dependent (see Figs. 7 and S6). From a pollution control

point of view, our results indicate that reducing the emissions

emitted in Phoenix is the key to attain federal standards. With

typical synoptic wind fields, emissions from Southern Cali-

fornia affect ground-level [O3] in the Phoenix metropolitan

area significantly. Therefore, the results indicate that Phoenix

would benefit from regional, in addition to local, emission

controls to reach NAAQS attainment status.
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J. Li et al.: Regional-scale transport of air pollutants 9353

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

O
zo

n
e 

co
n

ce
n

tr
at

io
n

 d
if

fe
re

n
ce

s 
(p

p
b

v)

20

40

60

80

100

0
0

Z,
 0

7
/1

6
-0

8
Z,

 0
7

/2
0

In
te

gr
at

io
n

 T
im

e 
(h

o
u

rs
)

30

60

90

120

0
0

Z,
0

5
/1

1
-0

8
Z,

0
5

/1
6

In
te

gr
at

io
n

 T
im

e 
(h

o
u

rs
)

PHXCoast Mtns Desert

CA/AZ Border

-116 -114 -112 1010 m/s

(a)

(b)

Figure 8. Hovmoller diagram of [O3] differences (CTRL minus

noCA) at 13th vertical model layer (about 1100 m a.g.l.) along the

cross-section B’B shown in Fig. 1b for May case (a) and July case

(b). Approximate locations of Phoenix (PHX), desert, mountains

(Mnts), and coast are also labeled in (b). The integrating is counted

from 00:00 UTC, 10 May 2012, and 00:00 UTC, 15 July 2005, re-

spectively.

3.3 Southern California to Arizona [O3] transport

Through analysis of [O3] variations with the various emis-

sion scenarios, 10–30 % of [O3] in the Phoenix area can be

attributed to SoCal emissions for the cases presented here.

In this section we will examine pathways characterizing how

pollutants in the coastal air basins of Southern California are

transported into Arizona and affect air quality in the Phoenix

area based on 1.33 km resolution model output. The corre-

sponding analyses of the results from the 4 km resolution

output can be found in the Supplement.

Figure 8a shows a Hovmoller diagram of [O3] differences

(CTRL minus noCA) and the wind vector field (from CTRL

run) for the May case at the model’s 13th vertical level (about

1100 m above ground-level, or a.g.l.) of WRF-Chem along

the cross-section B’B (indicated in Fig. 1b). The Hovmoller

diagram is a suitable technique to identify transport and prop-

agating phenomena in a given field (i.e. Hovmoller, 1949).

In Fig. 8a, the y axis is the model integration time (hours)

and the x axis is the location (longitude) along the B’B tran-

sect. The approximate locations of Phoenix (PHX), desert,

mountains (Mnts) and coast are also labeled in this figure.

Since both CTRL and noCA experiments include the same

emissions except over California, the difference in ozone be-

tween these experiments offsets the chemical ozone produc-

tion east of California and west of Phoenix. Thus, the resid-

ual ozone perturbation field in these regions is dominated

by transport. The pattern of this field exhibits tilted ozone

bands with phase lines that have consistent positive slopes

(Fig. 8a), indicating that a perturbation of ozone in Califor-

nia will eventually reach Arizona. This demonstrates that the

residual ozone field shown in Fig. 8a is caused by transport

from California to Arizona. The Hovmoller diagram of [O3]

differences for the July case also exhibits patterns of resid-

ual ozone with positive slopes indicating transport (Fig. 8b).

These slopes are, however, less pronounced than the May

case.

The data within each model vertical layer are examined.

It is found that peak transport occurs in different model lay-

ers depending on the event. For the July event, there is ozone

transport from the 5th model layer (about 150 m a.g.l.) to the

13th model layer (1100 m a.g.l.). For the May event, ozone

transport occurs from the 5th to 17th (2000 m a.g.l.) model

layers. The Hovmoller diagrams for NOx and VOCs indicate

that most air masses of NOx and VOCs are horizontally con-

fined near emission source areas and are vertically restricted

to below about 1500 m a.g.l. (figure not shown), compared to

the magnitude presented in Fig. 8.

We next examine how pollutants from Southern Califor-

nia are transported into south-central Arizona and discuss the

physical-chemical mechanisms responsible. Analysis of an-

thropogenic emission distributions indicates that emissions

mainly originate from coastal areas in Southern California

(also see their Fig. 1 in Chen et al. , 2013 for emission distri-

bution). Therefore, we first explain how the pollutants cross

the coastal mountains and reach the inland desert regions in

Southern California.

As discussed in Sect. 1, wind fields are paramount in

pollutant transport (Lee et al., 2007). Figure 9 displays the

daytime averaged (20:00 to 02:00 UTC) wind vector field

at 40 m a.g.l. in the Southern California coastal area of

16–19 July 2005 (for 4 km resolution plots, see Fig. S7).

The wind patterns exhibit a combination of on-shore ocean

breezes and mountain-induced upslope winds, similar to fea-

tures reported by Lu and Turco (1996) and Lu et al. (1997).

The wind field distribution shown in Fig. 9 propels pollutants

emitted in coastal areas towards the coastal mountains. The

polluted air masses can be lofted up to 3–4 km a.g.l. over the

mountains through the Mountain Chimney Effect (MCE, Lu

and Turco, 1996). The pollutants above mountain-top height

might either be transported into the free atmosphere over the

coast (Lu and Turco, 1996) and/or be transported towards the

inland desert and affect the air quality in the desert of South-

ern California (Huang et al., 2013; VanCuren, 2015) and of

nearby mountain states (Langford et al., 2010; Huang et al.,

2013).

The entire transport path, from the Southern California

coast to south-central Arizona, and the associated ozone ver-

www.atmos-chem-phys.net/15/9345/2015/ Atmos. Chem. Phys., 15, 9345–9360, 2015



9354 J. Li et al.: Regional-scale transport of air pollutants

110m/s118W 117W

32.5

33.5

34.5

Terrain elevation (m)

Figure 9. Wind vector field at 40 m above surface layer in southern

California coastal area. Data are averaged from 20:00 to 02:00 UTC,

16–20 July 2005.

tical distributions along cross-sections A’A, B’B, D’D and

E’E, is described here in this subsection. First, vertical dis-

tributions of [O3] along cross-sections A’A and B’B are

checked from 21:00 to 24:00 UTC each day and Fig. 10 is an

example of vertical distributions of [O3] along cross-section

A’A and B’B at 22:00 UTC on 17 July 2005 (for 4 km res-

olution plots, see Fig. S8). Results presented in Fig. 10 are

similar to those reported by Lu and Turco (1996, in their

Figs. 4 and 6) from modeling and Langford et al. (2010; in

their Fig. 3) from observations, indicating that WRF-Chem

adequately simulates the Mountain Chimney Effect (MCE).

Note the distribution of potential temperature contours in

Fig. 10, illustrating that ozone-laden air masses above moun-

tain peak height may be directly transported into the desert

PBL under appropriate flow at these levels. This pattern dif-

fers from that of transport back to the free atmosphere over

coastal basins (note the tongue of high [O3] to the west of

the peak in Fig. 10a). This is because of the particularly high

PBL height (in excess of 3–4 km a.g.l.) in the desert during

daytime due to strong solar radiation. At nighttime, ozone air

masses subsequently subside into the residual layers and/or

stable PBL in the desert, and are continuously advected by

westerly winds (part of the near-surface ozone will be con-

sumed by titration from NOx and by deposition during night-

time). Importantly, Fig. 9 indicates the presence of strong

winds from the coast flowing through the mountain passes.

For example, there are southerly winds flowing along the Ca-

jon Pass (see location in Fig. 1b) and strong westerly winds

flowing along the San Gorgonio Pass (see location Fig. 1b),

which are realistic and consistent with the immense fields of

wind turbines there. With the wind pattern shown in Fig. 9,
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Figure 10. Vertical distributions of ozone along cross-section A’A

(a) and B’B (b) shown in Fig. 1b at 22:00 UTC of 17 July 2005.

The contours are potential temperature starting at 280 K with 1 K

interval.

ozone in low air layers can be directly transported into the

southern Mojave Desert Air Basin (SMDAB, see Fig. 1b)

from the greater Los Angeles Air Basin (GLAAB) through

the Cajon Pass. Ozone can also be transported eastward to

the Salton Sea Air Basin (SSAB) from the GLAAB through

the San Gorgonio Pass and from the San Diego Air Basin

(SDAB) through other passes (see Fig. 9 for the locations

and wind vectors).

To demonstrate the model performance in simulating [O3]

in the passes, Fig. 11 presents the hourly comparison of [O3]

between observations and simulations (CTRL) at Crestline,

near the Cajon Pass, and Banning Airport, near the San Gor-

gonio Pass. Figure 11 shows that the simulations and the

observations are comparable from 17 to 19 July 2005. In

Fig. 11, model simulations with 12 km resolution are also

plotted to characterize resolution-dependency. It is clear that

with higher resolution, simulated results are improved above

those of coarser resolution, a feature likely due to more ac-

curate ozone transport through the passes.

Figure 12 shows the horizontal distribution of the

integrated fluxes of ozone differences (
∫
([O3]CTRL−

[O3]noCA)V CTRLdz) from the surface to 1400 m a.g.l. av-

eraged from (a) 18:00 to 02:00 UTC and (b) 03:00 to

17:00 UTC, 16–20 July 2005 (data from the other case 11–

15 May 2012 are similar and for 4 km resolution plot, see

Fig. S9). Figure 12 emphasizes two key aspects of this trans-

port:

Atmos. Chem. Phys., 15, 9345–9360, 2015 www.atmos-chem-phys.net/15/9345/2015/
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Figure 11. Ground-level ozone concentration comparisons between

observations and simulations at (a) Banning Airport (ID0650012,

33.92077◦,−116.85841◦) located in the San Gorgonio Pass and (b)

Crestline (ID060710005, 34.24313◦, −117.2723◦) near the Cajon

Pass from 17–19 July 2005. Obs indicates the observation. CTRL

represents the simulations from CTRL run and M12km is the model

simulations at 12 km resolution.

1. There were stronger fluxes in the mountain passes, es-

pecially in the San Gorgonio Pass, than any other lo-

cation, indicating the important contributions of moun-

tain passes to ozone transport. Most recently, Van-

Curen (2015), based on analysis of ozone observations,

also suggests the importance of ozone transported into

the MDAB through the passes and has confirmed our

model results.

2. Ozone fluxes are present, originating from the coasts

and mountains in Southern California, extending

southeastward along the SSAB and the SMDAB

(Fig. 12b), crossing the California-Arizona border near

the southern Colorado River, then moving northeast-

ward (Fig. 12b) along the Lower Gila river basin, and

finally reaching the Phoenix area.

The vertical distribution of pollutants is also evaluated

along cross-section D’D in the Salton Sea Valley and cross-

section E’E in the Gila River Valley (locations are labeled in

Fig. 1b). Presenting vertical distributions of VOC, NOx and

O3 along D’D on 18 July from CTRL, Fig. 13 depicts the

transport of the pollutants from late afternoon to midnight,

as indicated by the location of high-concentration fronts (for

the corresponding 4 km resolution plots, see Fig. S10). The

NOx masses are vertically confined to below 1 km above sea

level (a.s.l.) with concentrations of 5–15 ppbv. VOC plumes

are confined below 2 km a.s.l. with concentrations of 10–

20 ppbv. We also evaluated the vertical distribution of VOC

from the BILB emissions experiment: the vertical distribu-

tion is similar to the VOC shown in Fig. 13, but the con-

centrations are about 10 ppbv (figure not shown). In other

words, there are about 10 ppbv of VOC that are transported

from coastal anthropogenic emissions to this region. Similar

to NOx concentrations, the highest concentrations of VOC

are near the ground surface.

Ozone vertical distributions reach up to 2–3 km a.s.l. with

concentrations as high as 90 ppbv. The high [O3] is centered

1–2 km a.s.l. during nighttime while [O3] is low near ground-
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Figure 12. Integrated fluxes of ozone differences (CTRL-noCA)

from surface to 1400 m above ground-level: (a) average from 18:00

to 02:00 UTC, 16 to 20 July 2005, and (b) average from 03:00 to

17:00 UTC, 16 to 20 July 2005.

level due to the chemical titration by NOx and dry deposition

(Fig. 13). In other words, among the three pollutants, ozone

is most “long-lived” and NOx has the shortest span, which

is consistent with their atmospheric chemistry and previous

results (e.g., Lee and Fernando, 2013).

The diurnal variation of a pollutant is, in part, a conse-

quence of diurnal variation of flow (the other principal in-

fluence is the diurnal variation of the emissions themselves).

During daytime, southeasterly winds (valley winds) at lower

layers in the northern Salton Sea basin hinder the pollutants

from being transported southeastward along the Salton Sea

Basin (See Figs. 12a and 9). Therefore, a portion of the pol-

lutants, transported from the GLAAB through the San Gor-

gonio Pass, accumulate over the northern Salton Sea basin

(as shown at 01:00 UTC in Fig. 13), while a different portion

of the pollutants crossed the Little San Bernardino Mountains

and reached the SMDAB due to upslope flow (see Figs. 12a

and 9). During nighttime, basin-scale mountain downslope

winds transport the pollutants southeastward along the SSAB

basin (Figs. 12b and 13).

Figure 14 is similar to Fig. 13 but presents results for the

cross-section E’E in the Gila River basin in Arizona (loca-

tion shown in Fig. 1b) on 18 July (corresponding 4 km reso-

lution plots, see Fig. S11). During this time period, although

concentrations of pollutants continued to decrease along this

www.atmos-chem-phys.net/15/9345/2015/ Atmos. Chem. Phys., 15, 9345–9360, 2015
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Figure 13. The vertical distribution of VOC (top), NOx (middle), and O3 (bottom) along the cross-section D’D (shown in Fig. 1b) in the

Salton Sea Basin at 01:00, 03:00, and 06:00 UTC, 18 July 2005. Contours are potential temperature with 1 K interval.

transport pathway, the ozone transport phenomenon was still

very clear along the Gila River basin due to the prevailing

nighttime southwesterly winds (see Fig. 12). These south-

westerly winds can result from either the low-level jet from

the northern Gulf of California during monsoon season (mid-

July to mid-September, Adams and Comrie, 1997) or by the

inertia from a remnant of daytime westerly winds during pre-

monsoon season (from May to mid-July, Lee and Fernando,

2013). At about 18:00 UTC, the ozone in the residual layer

mixes with PBL ozone generated by local photochemical re-

actions, and finally affects the ground-level concentrations in

Phoenix and its surrounding rural areas.

The results presented in this section are mainly based on

model simulations. In past decades, there were a few field

experiments conducted to measure the vertical distributions

of meteorological fields and trace gases in southern Califor-

nia (e.g., the Southern California Air Quality Study in 1987;

Lawson, 1990; the Southern California Ozone Study in 1997;

Croes and Fujita, 2003 and CALNEX-2010; www.esrl.noaa.

gov/csd/calnex/) as well as in the Phoenix area (e.g., Phoenix

Air Flow Experiment II in 1998; Fast et al., 2000; Nun-

nermacker et al., 2004). Some of the events during the ex-

periments have been used to address ozone transport (e.g.,

Huang et al., 2013; Langford et al., 2010) from the Southern

California coast. No aloft measurements could be found for

May 2010 that would be of help in the present model perfor-

mance evaluation. In addition, satellite-retrieved data may be

used to demonstrate the vertical distributions and even dis-

tant transport (e.g., Huang et al., 2013), although these data

are hampered by limitations such as coarse-resolution, accu-

racy, etc. (e.g., Bowman, 2013). To quantitatively examine

the transport and vertical distribution from Southern Cali-

fornia coasts to Phoenix, field observations, especially mea-

surements aloft, along the inland California desert region and

within western Arizona are needed.

Atmos. Chem. Phys., 15, 9345–9360, 2015 www.atmos-chem-phys.net/15/9345/2015/

www.esrl.noaa.gov/csd/calnex/
www.esrl.noaa.gov/csd/calnex/


J. Li et al.: Regional-scale transport of air pollutants 9357

Figure 14. The vertical distribution of VOC (top), NOx (middle), and O3 (bottom) along the cross-section D’D (shown in Fig. 1b) in the

Gila River Basin, Arizona at 05:00, 11:00, and 18:00 UTC, 18 July 2005. Contours are potential temperature with 1 K interval.

4 Conclusions

As with other cities, Phoenix’s ozone concentrations on ex-

ceedance days can be attributed to both local precursor emis-

sions and to the transport of ozone and its precursors from

remote regions. In this study, WRF-Chem at high resolution

(∼ 1.333 km grid spacing) is employed to investigate sur-

face ozone distributions in Southern California and south-

central Arizona for two selected Phoenix episodes. Model

simulations have been compared with surface observations

of hourly ozone, CO, NOX and wind fields in Southern Cali-

fornia and Arizona. The results indicate that the WRF-Chem

configuration in this study can adequately simulate the spatial

distribution, the magnitude, and the variability of the obser-

vations. The modeled ozone concentrations ([O3]) are com-

parable with previous studies in the focus region.

Three sensitivity studies have been conducted to sepa-

rate the contributions of Southern California anthropogenic

emissions (SoCal), of the Arizona local anthropogenic emis-

sions (AZ), and of biogenic emissions and lateral bound-

ary input to Phoenix [O3] on the exceedance days: (1) run-

ning WRF-Chem as CTRL but excluding SoCal emissions

(noCA), (2) running WRF-Chem as the Control simulation

but excluding AZ emissions (noAZ) and (3) running WRF-

Chem as the Control simulation but excluding all anthro-

pogenic emissions in domain 4 areas, leaving the Biogenic

emissions and Lateral Boundary input (BILB). Our simula-

tions indicate that AZ emissions play the key role in forma-

tion of the elevated [O3] in Phoenix for the selected cases

(see Figs. 4, 5, and 6). Based on the US EPA 2005 emissions

inventories, SoCal emissions contribute to DMA8 [O3] in the

Phoenix area, and this impact varies between 5–30 ppbv at

various observation sites and from 6–32 ppbv throughout the

urban setting. In addition, our model simulations indicate the

effects of SoCal emissions on DMA8 [O3] in Phoenix are lo-

cation and event dependent, but not negligible. The effects of

BILB contributions to Phoenix DMA8 [O3] are also signifi-

cant in spite of the region’s aridity. Our future research will

distinguish biogenic and lateral boundary inflow contribution

to this area through model simulations and observations. The

www.atmos-chem-phys.net/15/9345/2015/ Atmos. Chem. Phys., 15, 9345–9360, 2015
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model results are based on the 2005 US National Emissions

Inventories (NEI, 2005). With more stringent emission con-

trol strategies in California, the effects of the pollutants trans-

ported from California could be reduced.

The time series of [O3] of the relative contributions to

Phoenix [O3] from SoCal and AZ emissions exhibit a diurnal

variation. During nighttime hours, the transported ozone in-

creases [O3] while local NOx emissions consume it. The re-

verse occurs during afternoon hours when locally generated

emissions predominate.

WRF-chem’s high resolution resolves all pertinent to-

pographical features, especially the critical low-elevation

mountain passes, capturing the pollutant transport through

them. Therefore, the pollutant’s (mainly ozone) transport

pathway in the lower troposphere is identified: the pollutants

(mainly ozone) are first transported to the southern Mojave

Desert Air Basin (SMDAB) and the Salton Sea Air Basin

(SSAB) through both the Mountain Chimney Effect (MCE)

and Mountain Pass Channel Effect (PCE) during daytime,

affecting DMA8 [O3] in these two air basins. The following

physical transport paths (based on the two events) are: the

pollutants are first transported southeastward along the two

air basins (the SSAB and the SMDAB) in CA during night-

time, then northeastward along the Gila River basin in AZ

during nighttime, and finally reach the Phoenix area and mix

with the local air mass by turbulent mixing during daytime.

The entire transport path is determined by a combination of

local and synoptic circulations.

Since the PBL height can extend in excess of 3–4 km a.g.l.

in desert air basins, pollutants may be directly transported

into the daytime desert PBL from coasts by both PCE and

MCE. Therefore, regional transport in the desert is accom-

plished in the PBL (daytime), and residual layer and stable

PBL (nighttime).

The Supplement related to this article is available online

at doi:10.5194/acp-15-9345-2015-supplement.
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