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Abstract. We suggest that some metrics for quantifying dis-

tances in phase space are based on linearized flows about

unrealistic reference states and hence may not be applica-

ble to atmospheric flows. A new approach of defining a

norm-induced metric based on the total energy norm is pro-

posed. The approach is based on the rigorous mathematics of

normed vector spaces and the law of energy conservation in

physics. It involves the innovative construction of the phase

space so that energy (or a certain physical invariant) takes

the form of a Euclidean norm. The metric can be applied to

both linear and nonlinear flows and for small and large sepa-

rations in phase space. The new metric is derived for models

of various levels of sophistication: the 2-D barotropic model,

the shallow-water model and the 3-D dry, compressible at-

mosphere in different vertical coordinates. Numerical calcu-

lations of the new metric are illustrated with analytic dynam-

ical systems as well as with global reanalysis data. The dif-

ferences from a commonly used metric and the potential for

application in ensemble prediction, error growth analysis and

predictability studies are discussed.

1 Introduction

1.1 The context

In predictability studies, the sensitivity of numerical models

to initial conditions is an important topic. It has been demon-

strated in Lorenz’s (1963) pioneering work that slightly dif-

ferent initial states diverge exponentially over time. Thus,

theoretical predictability is often measured by the Lyapunov

exponent, which is roughly speaking the long-term growth

rate of the “separation” between neighbouring states (Lorenz,

1965). This characterizes only one aspect, the intrinsic pre-

dictability, of a chaotic system (Yoden, 1987). In practice,

prediction also involves assimilating data to bring the first-

guess modelled state into the “neighbourhood” of the ob-

served state, putting an extrinsic constraint on predictabil-

ity. In ensemble prediction methods, a cluster of close ini-

tial model states may be generated around an analysed state

to yield “optimally growing” error structures so as to cover

most efficiently the range of forecast uncertainty and guide

targeted observations (Palmer et al., 1998; Mu et al., 2003).

In the preceding notions of “separation”, “neighbourhood”

and “optimally growing”, the definition of a metric that mea-

sures the distance between two states is fundamental. There

are a number of metrics used in the literature and many au-

thors may hold the view that the definition of a metric is

somewhat arbitrary a priori, especially in the weights given

to the differently dimensioned state variables. The particular

choice is often taken to depend on the application in mind,

whether for investigating the theoretical predictability in a

model, estimating optimally growing perturbations, or min-

imizing model departures from observations. For example,

if temperature is rather constant in a region, more emphasis

may be given to wind in the metric used to evaluate the theo-

retical predictability in that region; if temperature forecast is

particularly bad, more emphasis may be put on temperature

in the metric used to generate optimally growing perturba-

tions or to minimize initial model errors.

In principle, one can adopt any expression to measure the

distance between two points in the phase space of a dynam-

ical system as long as the expression satisfies the properties

of a metric. But only some expressions may have associ-

ated physical significance. For example, geopotential height

is often taken to represent well the wind and temperature

in mid-latitude regions through geostrophic and hydrostatic

balance respectively. So in these regions, the phase space is
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single-variate and the metric may be defined simply from

the p1 norm, i.e. the domain integral of the absolute differ-

ence in geopotential between two atmospheric states (Ding

and Li, 2007). In multi-variate phase space, the situation is

more complex as there are various ways of combining state

variables into a single metric (Lorenz, 1969; Molteni and

Palmer, 1993; Mu et al., 2003). No doubt each of these def-

initions have its merits for the purposes they serve. While

the value of a metric for achieving a practical purpose is

important in applications, our current work is mainly con-

cerned with the fundamental theoretical question: is there a

distinguished mathematical formulation of the metric that is

consistent with the intrinsic dynamics of a physical system?

Without jumping too much ahead, the answer lies in having a

well-reasoned methodology to formulate such a metric rather

than in a particular form of the metric itself.

Energy-like metrics are most commonly used to measure

the distance between two states of the atmosphere. Some

definitions look similar to wave energy (Bannon, 1995; Zou

et al., 1997; Kim et al., 2011), while others use quadratic

expressions that resemble kinetic and available potential en-

ergy (Buizza et al., 1993; Zhang et al., 2003; Leutbecher and

Palmer, 2008; Rivière et al., 2009). But none of these met-

rics are truly energy or energy differences, as already noted

by some authors (e.g. Ehrendorfer and Errico, 1995). Palmer

et al. (1998) summarized and compared a number of metrics

inspired by expressions of kinetic energy and total energy.

Like energy, enstrophy is another dynamical invariant under

certain conditions and Palmer et al. (1998) also investigated

an enstrophy-like metric. But the commonality of such ap-

proaches lies in (1) the identification of a dynamical invari-

ant, and (2) the formulation of a metric. The former is rather

well-established in atmospheric dynamical theory; it is the

latter formulation that needs clarification. We shall first re-

view an often used metric as a concrete illustration of the

problem.

1.2 An example of a metric

Talagrand (1981) considered dry, compressible flows lin-

earized about a reference atmosphere at rest with temperature

To and surface pressure po in the absence of surface topog-

raphy, where To and po are constant in time and uniform in

space. The following integral of quadratic forms over a hori-

zontal domain A is conserved by the linearized flow when it

is adiabatic and inviscid:

ET81 =
1

2

∫
A

po∫
0

(
u2
+ v2
+
cp

To

T ′
2

)
dp dA

+
1

2

∫
A

RTo

po

p′
2
s dA, (1)

where cp and R are specific heat capacity at constant pres-

sure and specific gas constant of dry air. The state variables

u, v, T and ps are zonal wind, meridional wind, temperature

and surface pressure respectively while primes denote per-

turbations from the reference state. The tendency of ET81 is

a small, time-varying fraction of the true energy tendency. A

derivation of ET81 is given in Sect. A1 of the Appendix.

As stated in Sect. 4 of Ehrendorfer and Errico (1995), the

temperature perturbation term in ET81 is the available poten-

tial energy (APE) of the system linearized about an isother-

mal atmosphere. But here we note that it is not the APE of the

real atmosphere which has a non-trivial lapse rate (Lorenz,

1955, 1960):

APE=
1

2

∫
A

po∫
0

1

0d −0

(
T − T̄

)2
T̄

dp dA, (2)

where 0 is the atmospheric lapse rate, 0d ≡ g /cp is the adi-

abatic lapse rate, T̄ is the global isobaric mean temperature

and po = 1000 mb.

The associated metric, MT81, proposed by Talagrand

(1981) is given by

M2
T81 =

1

2

∫
A

po∫
0

(
(δu)2+ (δv)2+

cp

To

(δT )2
)
dp dA

+
1

2

∫
A

RTo

po

(δps)
2 dA, (3)

where δ denotes the difference between two evolving atmo-

spheric states.MT81 is likewise invariant under the linearized

dynamics.

The expression defined in Eq. (3) was originally formu-

lated to study the convergence of the modelled state to the

observed state with repeated data assimilation cycles in Ta-

lagrand (1981). It was used later by a number of authors

(Ehrendorfer and Errico, 1995; Errico, 2000; Mu et al., 2009;

Qin and Mu, 2012) to measure the evolving difference be-

tween two atmospheric states. Unfortunately, in the latter

applications, the uniform To in Eq. (3) has lost its physical

meaning as a reference state about which linearization takes

place due to large realistic values of lapse rates. As Talagrand

(1981) noted, ET81 and MT81 are not conserved due to non-

linearity even if realistic flows were adiabatic and inviscid.

We note additionally that significant surface topography like

the Tibetan Plateau, the Rockies and the Andes would also

invalidate the conservation of ET81 in realistic flows and ren-

ders questionable the use of MT81 as a metric. Many authors

are probably aware of these shortcomings but for the lack of

a better choice, continue to employ Eq. (3).

At a more fundamental level, while a dynamical invariant

is a good metric to diagnose the change in a system due to

data assimilation (which disrupts model dynamics and hence

does not conserve that invariant), it is not a suitable met-

ric to investigate sensitivity to initial conditions or to search

for optimally growing initial perturbations, precisely because
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it does not change during dynamical evolution. The former

objective was the subject of Talagrand (1981) and he suc-

ceeded in finding MT81 as such an invariant metric in lin-

earized flows. The latter two objectives were the interests of

many other authors (Ehrendorfer and Errico, 1995; Errico,

2000; Qin and Mu, 2012) who used MT81 or MT81-like met-

rics, sometimes appealing to the conditioned conservation

of ET81 as a motivation. But for ET81 to be conserved, the

flow has to be linear which also means that MT81 is invariant

and useless for detecting growing perturbations. This inher-

ent contradiction was not realized in the literature, no doubt

because realistic flows manifest significant nonlinearity, thus

never revealing the otherwise invariant property ofMT81, but

also never conserving ET81. This makes MT81 no more or

less justifiable than other metrics, e.g. the total difference

energy of Zhang et al. (2007) which is MT81 less the sur-

face pressure contribution. Talagrand (1981) clearly did not

intend his metric to be employed for those latter purposes

while the community continues to use MT81 without a firm

theoretical basis.

1.3 The essential problem

The essential question that this paper addresses is this: can

a metric be theoretically determined a priori, other than be-

ing designed to fit a particular practical purpose a posteriori?

In this theoretical work, we aim to develop a methodology

to construct new non-invariant metrics based rigorously and

consistently on invariant norms. These metrics should over-

come the limitations of having unrealistic reference states

and the need to linearize the flow about those states.

The organization of the paper is as follows. Section 2 il-

lustrates the methodology by constructing energy-based met-

rics for the 2-D barotropic model and for the shallow-water

model. Section 3 follows the same methodology and derives

energy-based metrics for the dry, compressible model in dif-

ferent vertical coordinates. In Sects. 4–6, the new metrics are

applied to analytic dynamical systems and reanalysis data of

the atmosphere. Finally in Sect. 7, we discuss the theoretical

and practical advantages of using an invariant norm-induced

metric.

2 Basic methodology for simple fluid systems

2.1 Mathematical foundation

A norm on S can be any function ‖ • ‖ : S→ [0,+∞)

which satisfies the following properties (Davidson and Don-

sig, 2010): non-negativity, absolute homogeneity, triangle in-

equality, and is zero only for the zero vector. Although given

the flexibility of defining the norm, some norms may be in-

terpreted with physical meanings while others may not when

the vector space represents the state of a physical system. For

atmospheric dynamical systems, a natural candidate for the

norm is the square-root of energy which is invariant in the un-

forced flow. (“Forcing” here refers generally to diabatic heat-

ing, dissipation, mechanical forcing or gain/loss through do-

main boundaries.) The importance of the energy-norm is its

conservation property so that any change in the norm means

there is a net forcing or energy flux in or out of the system.

In a normed vector space, the metric between two vectors

can be defined as the norm of the difference between them,

and is called the “norm-induced metric”. But there are other

ways of constructing a metric without first defining a norm,

because a metric only needs to satisfy the following proper-

ties: non-negativity, identity of indiscernibles, symmetry and

triangle inequality (Davidson and Donsig, 2010). When an

inner product is defined for a vector space, the inner prod-

uct of the difference between two vectors with itself yields

the square of the norm-induced metric. In the literature, both

the norm (Buizza et al., 1993; Ehrendorfer and Errico, 1995;

Leutbecher and Palmer, 2008) and the inner product (Palmer

et al., 1998) have been used to define a metric. We have the

following hierarchy (Davidson and Donsig, 2010):

{metricspace}% {normed space}% {innerproductspace} .

In this section, the energy norm and the norm-induced met-

ric are constructed on the phase space of two simple fluid

systems, namely the 2-D barotropic model and the shallow-

water model as an illustration of the basic methodology.

The two models are assumed to cover a horizontal domain

A with periodic lateral boundary conditions.

2.2 2-D barotropic model

For the 2-D barotropic model in Cartesian coordinates (x,y),

the kinetic energy

E =
1

2

∫
A

(
u2
+ v2

)
dA, (4)

is conserved, where u= (u,v) is the velocity vector. The

barotropic flow is fully described by the phase vector x =

(u,v), where u and v are functions on the domain A and all

the possible states form the vector space {x ∈ S}. It is easy to

verify that energy could be used to defined a norm such that

‖x‖2 = E. This is the familiar Euclidean norm on the vector

space.

Let x1 and x2 be two vectors in S. The norm-induced met-

ric is defined by

‖x1− x2‖
2
=

1

2

∫
A

(
(u1− u2)

2
+ (v1− v2)

2
)
dA, (5)

which is similar to the “error kinetic energy” defined by

Lorenz (1969). For ease of reference, the norm-induced met-

ric can also be called the “separation” in this work.
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2.3 Shallow-water model

For the shallow-water model, the sum of kinetic and geopo-

tential energy,

E =
1

2

∫
A

(
hu2
+ gh2

)
dA, (6)

is conserved (Vallis, 2006), where h is the height of the water

surface, g is the gravitational acceleration, and the other sym-

bols have the same meaning as in the barotropic model. Be-

fore making use of this energy expression as a norm, the sub-

tle question is how the phase vector should be constructed.

The easiest way of constructing the phase space is adding

another “dimension” to the phase space of the barotropic

model, which results in a three-dimensional phase vector

(u,v,h).

However,
√
E is not a norm in this vector space because

it does not have the property of absolute homogeneity, i.e.
√
E[µu,µv,µh] 6= ‖µ‖

√
E[u,v,h], where µ is a real num-

ber.

Moreover, since the integrand in Eq. (6) is not quadratic,

despite being non-negative for a single state, it is not so for

the corresponding difference vector between two states. So

we also cannot use Eq. (6) to define a metric for this phase

space.

The phase vector is constructed instead as
(√
hu,
√
hv,h

)
so that the energy is the Euclidean norm in this

vector space. Let x1 =
(√
h1u1,

√
h1v1,h1

)
and x2 =(√

h2u2,
√
h2v2,h2

)
be two phase vectors. The norm-

induced metric or separation, M , is given by

M2
= ‖x1− x2‖

2
=

1

2

∫
A

(
(δ
√
hu)2+ g(δh)2

)
dA, (7)

where δ denotes taking the difference between the two phase

vectors, e.g. δ
√
hu= (

√
h1u1−

√
h2u2).

In mathematics, the axiomatic approach usually defines a

norm after the construction of a vector space. But in physics,

we suggest that it is more useful to first identify the physi-

cal quantity which we desire to be the norm and then try to

construct the vector space such that this quantity is indeed

a norm on that vector space. In the above example, we have

adopted the latter approach and constructed the vector space

such that energy is the familiar Euclidean norm again. The

norm-induced metric follows naturally thereafter.

2.4 Linearization of separation

Let the norm be E = f (a,b)+ g (a,b), where f and

g are positive definite functions of variables a and b,

so that E is the Euclidean norm on the vector space{
x ∈ S |x =

(√
f ,
√
g
)}

. If variables a and b are observed

and recorded in practice rather than f and g, it is more con-

venient to transform
(√
f ,
√
g
)

coordinates to the more con-

ventional (a,b) coordinates. Although the relation between

the two coordinate systems may involve nonlinear transfor-

mations, the increments
(
δ
√
f ,δ
√
g
)

can be approximated

by linear combinations of (δa,δb) assuming the increments

are small (Fleisch, 2011). One example is the transformation

from Cartesian coordinates (x,y,z) to spherical polar coor-

dinates (λ,φ,r) where λ is longitude, φ is latitude and r is

the distance from origin (Fleisch, 2011).

The norm-induced metric in
(√
f ,
√
g
)

coordinates is

given by

M2
=

(
δ
√
f ,δ
√
g
)(
δ
√
f ,δ
√
g
)T
. (8)

Using the total increment theorem, M can be approximated

in the tangent space {y ∈ T |y = (δa,δb)} by

M2
≈ (δa,δb)G(δa,δb)T , (9)

where the metric tensor

G=
1

4

(
f 2
a /f + g

2
a/g fafb/f + gagb/g

fafb/f + gagb/g f 2
b /f + g

2
b/g

)
, (10)

where the subscripts denote derivatives with respect to that

variable. Notice that when f = a2 and g = b2, the metric

tensor is simply the identity matrix and Eq. (9) reproduces

the Euclidean norm.

In the shallow-water model, we may transform(√
hu,
√
hv,h

)
coordinates to the more conventional

(u,v,h) coordinates. If two vectors x1 and x2 are close

to each other, the total increment δ
√
hu can be linearized

about a reference state which could be either one of the two

vectors. Hence, Eq. (7) can be rewritten as

M2
≈

1

2

∫
A

(δu,δv,δh)

 h 0 u/2

0 h v/2

u/2 v/2
(
u2
+ v2

)
/4h+ g

 δu

δv

δh

dA, (11)

which is non-Euclidean as the metric tensor matrix is not di-

agonal. The separation-squared between two neighbouring

states is linearized about one of them but importantly, the

dynamics governing the evolution of both states remain non-

linear.

3 Dry compressible atmosphere

In this section, the definition of the separation metric is ex-

tended using the same methodology as above to fully com-

pressible equations of a dry, adiabatic and inviscid atmo-

sphere in different vertical coordinates. The horizontal do-

main A is assumed to be closed or periodic.
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3.1 Pressure coordinate

The formulation of a metric in pressure coordinate p is useful

because much observation and reanalysis data are presented

on pressure levels. In p-coordinate, it can be proven that the

following quantity is conserved (Trenberth, 1997):

E =
1

g

∫
A

pH∫
0

(
1

2
u2
+ cpT +8H

)
dp dA, (12)

where T is temperature, 8H is surface geopotential, pH is

surface pressure, cp is the specific heat capacity of dry air

at constant pressure, and the other symbols are as before.

The energy in Eq. (12) is not a norm in the vector space

(u,v,
√
T ) as pH also appears as a variable in the upper limit

of the first integral. This means that Eq. (12) cannot be used

directly to define the norm-induced metric.

To make further progress, consider a constant reference

pressure pr close to but smaller than pH such that the vertical

integration of the first two terms in Eq. (12) could be sepa-

rated into a main contribution
[
0,pr

]
and a boundary-layer

contribution
[
pr,pH

]
. In the boundary layer, the kinetic en-

ergy u2/2 is always much less than cpT and the temperature

does not deviate much from a reference temperature Tr(x,y),

which could be conveniently defined by the vertical gradient

of a hydrostatically balanced geopotential field 8ref(x,y,p)

at pressure pr:

Tr =−
pr

R

(
∂8ref

∂p

)
p=pr

. (13)

So Eq. (12) can be approximated by

E ≈
1

g

∫
A

pr∫
0

(
1

2
u2
+ cpT

)
dp dA

+
1

g

∫
A

(
cpTr (pH−pr)+8HpH

)
dA, (14)

where (pH−pr) represents the boundary-layer mass. Note

that the atmosphere stays close to the reference state

8ref(x,y,p) because hydrostatic balance must be dominant

for the pressure coordinate to be reasonably employed. This

implies that surface pressure and boundary-layer temperature

must always stay close to their reference values. So the above

approximation is as good as the hydrostatic balance implic-

itly assumed in pressure coordinate and a modified energy

expression differing by a constant from Eq. (14) can be de-

fined:

Emod =
1

g

∫
A

pr∫
0

(
1

2
u2
+ cpT

)
dp dA

+
1

g

∫
A

(
cpTr+8H

)
pH dA. (15)

The energy expression Eq. (15) is used to define the norm

with the phase vector defined as x =
(
u,v,
√
T ,
√
pH

)
since

8H and Tr are time independent. The separation metric of

compressible flows in pressure coordinate is given by

M2
=

1

g

∫
A

pr∫
0

(
1

2
(δu)2+ cp

(
δ
√
T
)2
)
dp dA

+
1

g

∫
A

(
cpTr+8H

)(
δ
√
pH

)2
dA, (16)

where the three contributions by differences in wind, tem-

perature and surface pressure are henceforth called kinetic,

enthalpy and surface pressure components of separation-

squared respectively.

Equation (16) could be approximated in terms of pertur-

bations of the more conventional variables u, v, T and pH

as

M2
≈

1

g

∫
A

pr∫
0

(
1

2
(δu)2+ cp

(δT )2

4T

)
dp dA

+
1

g

∫
A

(
cpTr+8H

) (δpH)
2

4pH

dA. (17)

The approximation in Eq. (16) only requires δT /T � 1 be-

cause hydrostatic balance then implies δpH/pH� 1.

The separation metric in Eq. (17) is linearized in the sense

that it has been transformed into the tangent linear space at

(T ,pH). It is different from MT81 in Eq. (3) in the coeffi-

cients of temperature difference (δT )2 and surface pressure

difference (δpH)
2 by factors 2 and 2R/cp respectively. In our

expression, the reference state is realistic and can evolve non-

linearly with time. We also account for the influence of sur-

face topography. Moreover, no linearization is assumed in the

flow dynamics in developing Eq. (17) and a more accurate

expression for the separation metric is available in Eq. (16)

for atmospheric states that are not close, i.e. δT /T&0.1, or

less likely, δpH/pH&0.1.

3.2 Isentropic coordinate

The use of potential temperature as a vertical coordinate

dates back half a century when for example, Lagrangian

parcel trajectories were traced on isentropic surfaces (Green

www.atmos-chem-phys.net/15/2571/2015/ Atmos. Chem. Phys., 15, 2571–2594, 2015
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et al., 1966). Hoskins (1991) further proposed a potential vor-

ticity – potential temperature view of the general circulation

which has advantages in understanding atmospheric dynam-

ics and advanced mid-latitude weather forecasts. Thus, it is

of both theoretical and practical interest to examine our sep-

aration metric in isentropic coordinate.

In isentropic coordinate θ , the conserved energy in

Eq. (12) takes the form (Trenberth, 1997; Staniforth and

Wood, 2003)

E =

∫
A

∞∫
θH

(
1

2
u2
+ θ5+8H

)
σ dθ dA, (18)

where σ =−g−1∂p /∂θ is isentropic density,

5= cp(p/1000mb)R/cp is Exner’s function, θH is sur-

face potential temperature, and the other symbols are as

before. Similar to the case of pressure coordinate, we define

an appropriate reference potential temperature at the lower

boundary θr (x,y) to separate the main contribution and the

boundary-layer contribution as

E ≈

∫
A

∞∫
θr

(
1

2
σu2
+ θσ5+ σ8H

)
dθ dA

+

∫
A

θr∫
θH

(θ5+8H)σ dθ dA, (19)

where we have ignored the kinetic energy in the boundary

layer as before. Since θ5= cpT and σdθ = ρdz, where ρ is

mass density and z is height, the boundary-layer term can be

evaluated as

θr∫
θH

(θ5+8H)σ dθ =

zθr∫
zH

(
1+

8H

θ5

)
cp

R
p dz

≈

(
1+

8H

θr5r

)
cp

R
pr (zθr − zH) , (20)

where zH is the surface topography, and zθr = z(x,y,θr, t)

is the elevation of the θr-surface as further elaborated in

Sect. 3.5. The reference boundary-layer pressure pr(x,y)

and Exner’s function 5r(x,y) are defined from the vertical

gradient of the hydrostatically balanced Montgomery poten-

tial field Mref(x,y,θ) at isentropic level θr:

5r ≡ cp(pr/1000mb)R/cp =

(
∂Mref

∂θ

)
θ=θr

. (21)

This allows a modified energy expression differing from

Eq. (19) by a constant to be defined:

Emod =

∫
A

∞∫
θr

(
1

2
σu2
+ θσ5+ σ8H

)
dθ dA

+
cp

R

∫
A

(
1+

8H

θr5r

)
przθr dA. (22)

We define the phase vector as x =(
√
σu,
√
σv,
√
σ5,
√
σ ,
√
zθr

)
so that the separation

metric in isentropic coordinate induced by the Euclidean

norm in Eq. (22) is given by

M2
=

∫
A

∞∫
θr

(
1

2

(
δ
√
σu
)2
+ θ

(
δ
√
σ5

)2

+8H

(
δ
√
σ
)2)

dθ dA+
cp

R

∫
A

(
1+

8H

θr5r

)
pr

(
δ
√
zθr
)2
dA. (23)

Compared to the separation metric in pressure coordinate,

Eq. (23) depends on one more thermodynamic variable, the

isentropic density σ , because the flow is compressible in

isentropic coordinate whereas it is non-divergent in pressure

coordinate. The linearized separation-squared in the tangent

linear space (u,v,5,σ,zθr) is given by the non-Euclidean

form

M2
≈

∫
A

∞∫
θr

(
σ

2
(δu)2+ θσ

(δ5)2

45
+

(
u2/2+ θ5+8H

)
(δσ )2

4σ
+ (u · δu+ θδ5)

δσ

2

)
dθ dA+

cp

R

∫
A

(
1+

8H

θr5r

)

pr
(δzθr)

2

4zθr
dA. (24)

The variation of the elevation of the isentropic surface θr can

be further related to the variation of the surface potential tem-

perature at each location (x,y):

δzθr ≈−
δθH

2zr
, (25)

2zr =−
g

θr

(
∂2Mref

∂θ2

)−1

θ=θr

, (26)

where 2zr(x,y) is the reference (positive) static stability in

the boundary layer defined consistently above as

∂θ

∂z

∂2M

∂θ2
=
∂θ

∂z

∂5

∂θ
=
∂p

∂z

d5

dp

=−gρ
R5

cpp
=−g

5

cpT
=−

g

θ
. (27)
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3.3 Geopotential height coordinate

Both pressure and isentropic coordinate formulations above

are limited by their underlying assumption of hydrostatic bal-

ance. Current numerical weather prediction (NWP) models

are able to model non-hydrostatic flows at mesoscale reso-

lution, and many predictability studies are conducted based

on NWP model results (Zhang et al., 2007; Hohenegger and

Schar, 2007; Qin and Mu, 2012). Therefore, it is useful to

derive the separation metric without making the hydrostatic

assumption and here we make use of the geopotential height

coordinate.

In geopotential height coordinate, z≡8/g and total en-

ergy is the sum of kinetic energy, internal energy and geopo-

tential energy (Vallis, 2006)

E =

∫
A

∞∫
zH

(
1

2
ρv2
+ ρcvT + ρgz

)
dz dA, (28)

where v = (u,v,w) is the 3-D velocity, cv is the specific heat

capacity for dry air at constant volume, and the other symbols

are as before. For an ideal gas, Eq. (28) can be rewritten as

E =

∫
A

∞∫
zH

(
1

2
ρv2
+
cv

R
p+ ρgz

)
dz dA. (29)

By defining the phase vector as x =(√
ρu,
√
ρv,
√
ρw,
√
p,
√
ρ
)
, Eq. (29) specifies a Eu-

clidean norm. Hence, the separation metric is given by

M2
=

∫
A

∞∫
zH

(
1

2

(
δ
√
ρv
)2
+
cv

R

(
δ
√
p
)2

+ gz
(
δ
√
ρ
)2)

dz dA. (30)

Actually, M is not dependent on the precise set of variables

E is expressed in. The separation metric induced by Eq. (28)

is the equivalent to that induced by Eq. (29). Compared to

the separation metric in pressure and isentropic coordinate,

Eq. (30) depends on w because the flow is non-hydrostatic.

Note that the absence of a boundary-layer term in Eq. (30) is

because the bottom boundary is rigid in geopotential height

coordinate.

Equation (30) can be linearized and approximated in

(u,v,w,p,ρ)-space as

M2
≈

∫
A

∞∫
zH

(
ρ

2
(δv)2+

cv

R

(δp)2

4p
+

(
v2/2+ gz

) (δρ)2
4ρ

+
v

2
· δvδρ

)
dz dA. (31)

The linear approximation requires the fractional difference

δp/p and δρ/ρ to be much smaller than one. The terms

above are physical analogues to those in Eq. (11) for the

shallow-water model, apart from the additional internal en-

ergy term. Equation (31) can be further simplified to

M2
≈

∫
A

∞∫
zH

(
1

2
ρ(δv)2+

cv

R

(δp)2

4p
+ gz

(δρ)2

4ρ

)
dz dA, (32)

if |δv|/|v| � |δρ|/ρ holds true over most of the integration

domain.

3.4 Generalized coordinate and finite upper boundary

In the preceding sections, the upper boundary of the atmo-

sphere is always assumed to be at zero or infinity. But it

is impossible to span the whole atmosphere in a numerical

model and a finite upper boundary is prescribed. In this sec-

tion, we treat the case of a generalized vertical coordinate

with finite upper and lower boundaries. The two boundaries

are assumed to be material surfaces to conserve the mass be-

tween them.

It has been shown (Kasahara, 1974; Staniforth and Wood,

2003) that energy for a dry, compressible atmosphere in gen-

eralized vertical coordinate s takes the form

E =

∫
A

sT∫
sH

((
u2
+ v2
+ εvw

2
)
/2+ cvT +8

)
σsds dA, (33)

where σs = ρ∂z/∂s,8 is the geopotential and δv is the switch

between non-hydrostatic (εv = 1) and hydrostatic (εv = 0)

flows. The subscriptsH and T denote values at the lower and

upper boundaries respectively and the other symbols are as

before. The integrand is similar to that in geopotential height

coordinate except that the density is multiplied by the Jaco-

bian of the vertical coordinate transformation.

E is conserved only if the upper boundary is a rigid lid, i.e.

zT = zT(x,y), so that no work is done there. But this bound-

ary condition is not realistic for the atmosphere. Instead, we

consider the case of an “elastic lid”, i.e. pT = constant, where

an energy-like invariant exists (Staniforth et al., 2003). For a

non-hydrostatic atmosphere, this invariant is

E =

∫
A

sT∫
sH

(
σs

(
u2
+ v2
+w2

)
/2+ σscvT

+ σs8+pTJ
)
ds dA, (34)

where J = ∂z/∂s is the Jacobian of the vertical coordinate

transformation. The last term in the integrand arises from

work done at the upper boundary. For a hydrostatic atmo-

sphere, the energy-like invariant in Eq. (34) is simplified by

combining pressure work, internal energy and gain in geopo-

tential above the surface into enthalpy and dropping away the

vertical velocity contribution (Staniforth et al., 2003) to get

E =

∫
A

sT∫
sH

((
u2
+ v2

)
/2+ cpT +8H

)
σs ds dA. (35)
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Note that the energy density in Eq. (35) reproduces the en-

ergy density in pressure and isentropic coordinates with zero

and infinite upper boundary respectively (see Eqs. 12 and

18).

As before, Eqs. (34) and (35) can be approximated by de-

composing E into an integral with constant integration lim-

its [sL, sU] over the main atmospheric body and boundary-

layer contributions over [sH, sL] and [sU, sT]. To make use

of the rigid lower boundary condition, we integrate with re-

spect to z over the lower boundary layer (except for s ≡ p,

see Sect. 3.1). Likewise, to make use of the elastic upper

boundary condition, we integrate with respect to p over the

upper boundary layer. We make the hydrostatic approxima-

tion in both boundary-layer integrations because hydrostatic

balance is still dominant in the atmosphere even when the

flow is non-hydrostatic. Thus, modified energy expressions

for the non-hydrostatic and hydrostatic atmosphere, Enh
mod

and Eh
mod respectively, can be defined after dropping away

constant contributions:

Enh
mod =

∫
A

sU∫
sL

(
σs

(
u2
+ v2
+w2

)
/2+ cvσsT + σs8+pTJ

)
ds dA

+

∫
A

(
cvTL+8H+

pT

ρL

)
ρLzL dA

+
1

g

∫
A

(
cp

R

pT

ρU

+8U

)
pU dA, (36)

Eh
mod =

∫
A

sU∫
sL

(
σs

(
u2
+ v2

)
/2+ cpσsT + σs8H

)
ds dA

+

∫
A

(
cpTL+8H

)
ρLzL dA

+
1

g

∫
A

(
cp

R

pT

ρU

+8H

)
pU dA, (37)

where ρL and TL are reference functions at sL, while ρU and

8U are reference functions at sU, all of which are functions

of (x,y) only. The zL is the elevation at sL and pU is the pres-

sure at sU. So the phase vectors xnh and xh respectively for

the non-hydrostatic and hydrostatic atmosphere are defined

as

xnh
=

(√
|σs|u,

√
|σs|v,

√
|σs|w,

√
|σs|T ,

√
|σs|8,√

|J |,
√
zL,
√
pU

)
, (38)

xh
=

(√
|σs|u,

√
|σs|v,

√
|σs|T ,

√
|σs|,
√
zL,
√
pU

)
, (39)

and the norm-induced metrics can be defined as before. For

a non-hydrostatic atmosphere, the degree of freedom |J | in

Eq. (34) compensates for the loss in internal energy due

to work done by the atmosphere at the upper boundary.

But |J | is not a degree of freedom for a hydrostatic atmo-

sphere. The reason is that when pressure p is kept fixed,

cp(dT )p ≡ (ðQ)p so that enthalpy in Eq. (35) can only be

changed by heat transfer and is invariant to work done at the

upper boundary.

In geopotential height coordinate (s ≡ z), the Jacobian J

is identical to one and so drops out from the phase vector of

a non-hydrostatic atmosphere, while 8 is a function of the

coordinate only and so
√
ρ and not

√
ρ8 is the phase coor-

dinate. The lower-boundary coordinate is time-independent

(zL ≡ zH) and so the lower-boundary integrals are constant

and can be dropped from Eqs. (36) and (37). So our general-

ization is consistent with the results of Sect. 3.3.

In pressure coordinate (s ≡ p), the “density” |σs| = 1/g is

a constant and so drops out from the phase vector. The upper-

boundary coordinate is constant (pU ≡ pT) and so the upper-

boundary integrals are also constant and can be dropped from

Eq. (37). So the separation metrics in Eqs. (16) and (17) in

pressure coordinate are still valid for an atmosphere with an

elastic lid, although the vertical integrals start from pT in-

stead of zero.

When the atmosphere has an elastic lid, the metrics for

geopotential height and isentropic coordinates have addi-

tional upper-boundary terms while the vertical integrals over

the main atmospheric body have finite constant upper limits,

unlike Eqs. (23) and (30). The pressure change δpU on the

constant upper-limit coordinate surface is directly related to

the movement of the elastic lid as follows:

δpU(zU)≈ gρU δzT, (40)

where ρU is the reference mass density at zU in geopotential

height coordinate:

δpU(θU)≈
gρU

2zU
δ =

gcp

R

pT

5T

δθT

θU2zU
(41)

where 2zU is the reference static stability at θU defined sim-

ilarly to Eq. (26) and 5T is the constant Exner function on

the elastic lid in isentropic coordinate.

3.5 Elevation at the top of the lower boundary layer

Geopotential is assigned to be zero at the lowest point on

Earth’s surface for energy to satisfy the non-negative require-

ment of a norm. So the null vector corresponds to a state

where Earth’s surface is flat. This zero-point is not arbi-

trary as it is not possible to extract any more geopotential

energy from this point by moving air around. So by defini-

tion, geopotential height z is also zero at the lowest point on

Earth’s surface.

The zL in Eqs. (36) and (37) (or zθr in Eq. (30) for θ -

coordinate) is the elevation of the coordinate surface sL at

the top of the lower boundary layer (or θr for θ -coordinate).

Elevation is really just a geometric coordinate that can have

a zero-point at any level. Thus an arbitrary constant can be
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added to Enh
mod or Eh

mod so that zL is arbitrary to a constant

value. In other words, zL need not be identical to the geopo-

tential height z at sL as is implicitly assumed so far. This

means that our theoretical formulation of the norm and norm-

induced metric is not yet complete at this juncture. (There

is no corresponding problem at the upper boundary because

pU is a thermodynamic coordinate of which the zero-point is

well-defined physically.)

In pressure coordinate, we treat the lower boundary dif-

ferently, integrating with respect to p instead of z. The basic

reason is that the formulation is simpler in pressure coordi-

nate: the phase space has one less state variable (as “density”

is a constant in pressure coordinate), the top of the boundary

layer, pr, is constant and the phase coordinate arising from

the lower-boundary contribution is a well-defined thermody-

namic function,
√
pH . Moreover, our formulation in Eq. (17)

has the advantage of sharing essentially the same form as the

already widely used MT81 in Eq. (3) (apart from factors of 2

and 2R/cp in the temperature and surface pressure terms and

the inclusion of surface topography). In contrast, integrating

with respect to z leads to a phase coordinate
√
zL where zL

is an arbitrary constant and in general, one must assume ref-

erence values for two thermodynamic functions (TL and ρL)

instead of one.

The uniqueness of the pressure coordinate allows us to

calibrate zL by implementing Eq. (37) for s ≡ p and requir-

ing that the lower boundary-layer contribution to the energy

norm be equal to that in Eq. (15). Hence,

pH

g
= ρL (zL+ zo) , (42)

where zL is the geopotential height at sL as before and zo

is the arbitrary constant to be calibrated. From hydrostatic

balance, to first order,

pH−pr = gρL (zL− zH) , (43)

where pr is the time-independent reference pressure at the

top of the boundary layer in pressure coordinate as defined

in Sect. 3.1. Equations (42) and (43) imply

zo =−zH+
pr

gρL

=−zH+
RTr

g
, (44)

where Tr is the reference boundary-layer temperature in pres-

sure coordinate as defined in Sect. 3.1.

Now we define a generalized “local elevation”

ZL
def
= zL− zH+

RTL

g
, (45)

which is the elevation from a zero-point located locally at

a distance RTL /g below the surface. RTL /g is the den-

sity scale height derived from the reference lower boundary-

layer temperature TL(x,y) in the generalized coordinate.

The zero-point of local elevation is shallower underground

in regions of high terrain. When we add the relevant con-

stants to Enh
mod and Eh

mod, the phase coordinate arising from

the lower boundary condition becomes the locally calibrated
√
ZL instead of the globally calibrated, geopotential-based
√
zL. Note that the definitions of geopotential and geopoten-

tial height are not affected by this local calibration.

Application of the calibration in isentropic coordinate

leads to zθr being replaced by

Zθr
def
= zθr − zH+

R

gcp

θr5r, (46)

which is the local elevation of the θr-surface in Sect. 3.2. This

fixes the hidden problem in Eq. (24), and hence in Eq. (23),

where the boundary-layer contribution could be arbitrarily

small because zθr in the denominator of the integrand is arbi-

trary to a constant. In pressure coordinate, the local elevation

actually measures surface pressure as it can be shown that

ZL = (pH/pr)(RTr/g). Our theoretical formulation is now

complete and consistent among all coordinates.

4 Example I: geostrophic balanced flow of

shallow-water model

In this section, the separation metric of the shallow-water

model is applied to an axisymmetric geostrophically bal-

anced flow in polar coordinates in a rotating frame. Let r

and λ be the radial and angular coordinates respectively, and

u and v be the radial and azimuthal velocity components re-

spectively, and the rest of the symbols follow the same nota-

tion as in previous sections. The flow is initially at rest with

height given by

ho =

{
−h′o+Ho r < a1

Ho r > a1,
(47)

where Ho is the basic height and h′o is the initial disturbance.

The initial potential vorticity profile is

ξ =
f + ζ

h
=

{
f

−h′o+Ho
r < a1

f
Ho

r > a1,
(48)

where ξ is potential vorticity (PV), f is the Coriolis pa-

rameter (or “planetary” vorticity), and ζ = r−1∂ (rv)/∂r is

the relative vorticity. The geostrophic balanced state can

be solved analytically by PV conservation without assump-

tion of h′o�Ho as pointed by Mak (2011), where he

gave the non-dimensional solution of geostrophic adjust-

ment in Cartesian coordinates. The boundary conditions are:

∂h/∂r = 0 at r = 0 and h= 0 as r→∞, which means the

azimuthal velocity at the origin is zero and the perturbation

dies away at infinity.

For simplicity, the following non-dimensional variables

are introduced:

h̃′ =
h

Ho

− 1, r̃ =
r

Ld
, ṽ =

v

fLd
, ξ̃ =

ξ

f/Ho

, (49)
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where h̃′ is the non-dimensional perturbation height and

Ld =
√
gHo/f is the Rossby radius of deformation. As fi-

nally axisymmetry and geostrophic balance is restored, ũ= 0

and ṽ = ∂h̃′/∂r̃ . Since the initial disturbance could be strong,

it is necessary to consider the advection of fluid columns

from initial positions (Mak, 2011). Let a2 be the new PV

discontinuity point, i.e. a2−a1 is the displacement of the PV

boundary. Then the non-dimensional conservation of PV be-

comes

∂2h̃′

∂r̃2 +
1
r̃
∂h̃′

∂r̃
+ 1

h̃′+ 1
=

{
1/η r̃ < a2/Ld

1 r̃ > a2/Ld ,
(50)

where η =−h′o/Ho+ 1. The solution is determined by pa-

rameters h′o/Ho and a2/Ld .

Solving Eq. (50) separately for r̃ < a2/Ld and r̃ > a2/Ld
and matching the solutions at r̃ = a2/Ld gives the balanced

perturbation height

h̃′ =

−
h′o
Ho

(
1−

I0(̃r/
√
η)

M(a2/Ld )

)
r̃ ≤ a2/Ld

−
h′o
Ho

K0 (̃r)
N(a2/Ld )

r̃ > a2/Ld ,
(51)

where Iα and Kα are modified Bessel functions of the first

and second kind, and

M(x)= I0

(
x/
√
η
)
+

1
√
η

K0 (x)

K1 (x)
I1

(
x/
√
η
)
, (52)

N(x)=K0 (x)+
√
η
I0

(
x/
√
η
)

I1

(
x/
√
η
)K1 (x) . (53)

The balanced velocity can be obtained as

ṽ =


h′o
Ho

1
√
η

I1(̃r/
√
η)

M(a2/Ld )
r̃ ≤ a2/Ld

h′o
Ho

K1 (̃r)
N(a2/Ld )

r̃ > a2/Ld ,
(54)

where a2 is determined by the mass conservation equation

∞∫
0

h̃′̃rdr̃ =

a1/Ld∫
0

(
−h′o/Hõr

)
dr̃. (55)

The left-hand side of Eq. (55) is a monotonic decreasing

function of a2, hence the solution of a2 is unique and in-

creases as a1 increases.

The non-dimensional separation metric in polar coordi-

nates is given by

M2
=

1

2

∞∫
0

((
δ
√
h̃ṽ
)2

+
(
δh̃
)2)

r̃dr̃, (56)

which linearizes as

M2
≈

1

2

∞∫
0

(
ṽδṽδh̃+ h̃(δṽ)2+

(
ṽ2

4h̃
+ 1

)(
δh̃
)2)

r̃ dr̃, (57)

where the first three quadratic terms involving δṽ and ṽ sum

up to approximate the kinetic separation-squared.

The non-dimensional PV profile is shown in Fig. 1a with

a1/Ld = 4 and h′o/Ho = 0.8. Figures 1b and 1c show the

non-dimensional solutions of height and tangential velocity.

The PV boundary is displaced from r̃ = 4 to r̃ = 3.53. The

low-PV water mass originally at region D now moves to B

and C and pushes the high-PV water mass originally at C to

A. The tangential velocity maximizes at the new PV bound-

ary a2. The Rossby number Ro = V/fL= ṽLd/a2 is about

0.17 which is small so that the geostrophic approximation is

good.

In order to investigate the importance of the mixed term in

separation-squared, two sets of balanced solutions with dif-

ferent initial height discontinuity but the same initial radius

of high PV (a1/Ld = 4) are investigated. The first case is

h′o/Ho = 0.1, where the flow is more like a linear system.

The second case is h′o/Ho = 0.8, where the flow is nonlin-

ear. Separation metrics are calculated by adding perturba-

tions to the two control parameters a1/Ld and h′o/Ho for

both cases. All perturbations are sufficiently small that lin-

earization of separation-squared is good. The ratio between

the mixed term 1
2

∫
∞

0

(̃
vδṽδh̃

)
r̃dr̃ and the other two quadratic

terms of the linearized kinetic separation-squared for both

cases are shown in Fig. 2.

In the first case of almost linear flow, the mixed term’s

contribution is always less than 5 % of the δṽ2 term’s con-

tribution. Hence, the non-Euclidean separation metric can be

approximated by ignoring the mixed term. But in doing so,

one must also ignore the kinetic enhancement of the δh̃2 term

as it is generally even smaller. This is because the flow has

only small PV differences which induces small velocities and

so all terms involving ṽ must be consistently ignored.

In the second case of nonlinear flow, the contribution of the

mixed term could be comparable to that of the δṽ2 term un-

less the perturbations are almost entirely in the extent a1/Ld
rather than the magnitude h′o/Ho of the initial low-PV fluid.

Here, it is also generally inconsistent to keep the kinetic en-

hancement of the δh̃2 term without keeping the mixed term.

Therefore, in nonlinear flows, the non-Euclidean characteris-

tic of the linearized metric cannot be neglected because large

PV differences lead to large velocities ṽ.

The kinetic separation-squared (the first term of Eq. 56)

for the nonlinear flow where h′o/Ho = 0.8 and the fractional

error made in using the linearized expression (the first three

terms in Eq. 57) are shown in Fig. 3. Note that the size of per-

turbations on a1/Ld and h′o/Ho is comparable to the param-

eters themselves. The linearized separation-squared is only

valid for very small perturbations, or for a special subset of

the dynamical parameters.
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Figure 1. Non-dimensional solution of PV, height and tangential

velocity with a1/Ld = 4 and h′o/Ho = 0.8 in the geostrophically

balanced shallow-water model.

5 Example II: 2-D thermal wind model in pressure

coordinate

In this section, the separation metric of a dry compressible

atmosphere in pressure coordinate is applied to a 2-D thermal

wind flow in the Northern Hemisphere. The zonal wind u at

the surface is assumed be to zero. The potential temperature

Figure 2. The ratio between the mixed term and the other two

quadratic terms of the linearized kinetic separation-squared when

a1 /Ld = 4 and (a) h′o /Ho = 0.1 and (b) h′o /Ho = 0.8. The value

at the origin is not defined.

Figure 3. (a) The non-dimensional kinetic separation-squared when

a1/Ld = 4 and h′o/Ho = 0.8. (b) Fractional error of linearized ki-

netic separation-squared from (a). The white dot at the centre marks

the origin.

θ under radiative equilibrium is assumed to be

θ

θo

= 1−1hsin
8
3 φ

2exp
{
(p−pch)/1p

}
− 1

2exp
{
(p−pch)/1p

}
+ 1
+1v ln

po

p
, (58)

where φ is latitude, po is the constant surface pressure, θo is

the constant surface temperature at the equator, 1h and 1v

control the fractional change of potential temperature from

equator to pole and from the surface to the tropopause re-

spectively, pch controls the pressure where the equator–pole

temperature difference changes sign, 1p is a factor control-
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Figure 4. Balanced (a) temperature (K) and (b) zonal wind (m s−1) in the 2-D thermal wind model. (c) Ratio of the non-dimensional kinetic

to enthalpy components of separation-squared when 1h and 1p̃ are perturbed.

ling the vertical extent of the balanced jet and the other sym-

bols follow the same notation as in previous sections. The

form of Eq. (58) is inspired by the work of Held and Hou

(1980).

It is convenient to introduce the following non-

dimensional variables:

T̃ =
T

θo

, ũ=
u

Rθo/�ea
, p̃ =

p

po

, Ẽ =
E

cpθopoa/g
, (59)

where�e is the angular speed of rotation of Earth, a is the ra-

dius of Earth, and the rest of the symbols follow the same no-

tation as Sect. 3. So the non-dimensional thermal wind equa-

tion can be written as

2sinφ
∂ũ

∂p̃
=

1

p̃

∂T̃

∂φ
, (60)

Given the equilibrium potential temperature, the non-

dimensional temperature is

T̃ = p̃R/cp(
1−1hsin

8
3φ

2exp
{
(p̃− p̃ch)/1p̃

}
− 1

2exp
{
(p̃− p̃ch)/1p̃

}
+ 1
−1v ln p̃

)
, (61)

where 1p̃ is the non-dimensionalized 1p. The solution for

zonal wind is obtained by integrating the right-hand side of

Eq. (60) from the surface to p̃. The non-dimensional separa-

tion metric is given by

M2
=

π
2∫

−
π
2

1∫
0

(
R2θo

cp�2
ea

2

(δũ)2

2
+

(
δ
√
T̃
)2
)

cosφ dp̃ dφ, (62)

where we have used the fact that the depth of the atmosphere

is much smaller than the radius of Earth. Notice that T̃ and ũ

are both well-defined finite functions of p̃ over [0, 1] so the

integral is finite.

The following parameters are specified: θo = 300 K, po =

1000 mb, pch = 220 mb, 1v = 35/300. We consider a ref-

erence solution with 1h = 40/300 and 1p̃ = 50/1000. Fig-

ure 4a and b show the balanced temperature and zonal wind

profiles of the reference solution. The westerly jet is formed

around 40◦ N with a maximum velocity of 21.5 m s−1 at

about 200 mb. The thermal wind balance model is more valid

in the mid-latitudes and hence the solution in the tropics

is not a good approximation of the real atmosphere. An-

other deficiency is the vertical temperature profile in this

model does not describe the temperature inversion above

tropopause. Therefore we shall only make use of the data

below 100 mb and between 35–65◦ N.

Separation metrics are calculated when 1h and 1p̃ are

perturbed. From the results in Fig. 4c, the kinetic component

is always less than the enthalpy component though the ratio

between them varies with perturbations. The order of mag-

nitude of the ratio of kinetic to enthalpy components is set

fundamentally by the ratio of temperature and specific angu-

lar momentum parameters on Earth, θo/(�ea)
2. In the next

section, the relative importance of kinetic and enthalpy com-

ponents of separation-squared is further investigated with re-

analysis data.
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6 Example III: reanalysis data of the atmosphere

The separation metric of a dry compressible atmosphere in

pressure coordinate is also applied to the reanalysis data.

The data used in this study are the NCEP Climate Forecast

System Reanalysis (CFSR) monthly mean of 6-hourly fore-

casts (CFSR, Accessed 15 May 2013. 2010). The reanalysis

monthly mean data cover 31 years from January 1979 to De-

cember 2009 with 0.5◦× 0.5◦ spatial resolution and 37 ver-

tical levels from 1000 mb to 1 mb. Temperature, zonal and

meridional wind at 37 pressure levels as well as geopoten-

tial height, pressure and temperature at the surface are used

for the calculation. The separation metric Eq. (17) is trans-

formed from Cartesian coordinates to spherical coordinates

with the Jacobian r2 cosφ. Since the depth of the atmosphere

is much smaller than the radius of Earth, the Jacobian can be

approximated by a2 cosφ.

For the work here, at each grid point, we chose pr to be the

smallest surface pressure ever attained and linearly interpo-

late for Tr at pr between the mean temperature at the lowest

pressure-level above the surface and the mean surface tem-

perature (assumed to be at the mean value of surface pres-

sure) in the data set. A quick check with the data set shows

that temperature within 100 mb from the surface never devi-

ates by more than 2.5 % and so the approximation T ≈ Tr in

the boundary layer in Eq. (14) is valid. We also confirmed

that linearization of the separation-squared in Eq. (17) is jus-

tified.

We investigate the separation between the monthly mean

state of the atmosphere represented by CFSR data and its

annual mean climatology. The annual mean climatology is

defined as the mean over all months in 31 years of CFSR

data and so is time independent. It provides the values for T

and pH in the denominators of the terms in Eq. (17).

6.1 Mid-latitude zonal mean and eddies

The separation-squared between zonal mean CFSR monthly

mean data and its annual mean climatology in mid-latitudes

(35–65◦ N) up to 100 mb between 2001 and 2009 is shown in

Fig. 5a. The averaging interval for zonal mean is confined to

isobars above the surface. Kinetic and enthalpy components

show a synchronous semi-annual oscillation, which maxi-

mizes in January or February and in July or August. This

is consistent with the seasonal cycle: the atmosphere moves

furthest from the annual mean state during winter and sum-

mer. The surface pressure component is noisier and the semi-

annual oscillation is not obvious. The reason is that surface

pressure has strong zonal asymmetry due to the distribution

of continents and oceans and the seasonal cycles of surface

pressure are out of phase between continents and oceans.

The kinetic component is smaller than the enthalpy com-

ponent, which agrees with the results from the analytical

thermal wind model in Sect. 5. The ratio of kinetic to en-

thalpy separation-squared is about 0.37 on average.
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Figure 5. (a) Kinetic (red), enthalpy (green) and surface pres-

sure (blue) separation-squared between CFSR zonal mean monthly

mean data and its annual mean climatology in mid-latitudes (35–

65◦ N) up to 100 mb. (b) As (a), but using full 3-D data includ-

ing the eddies. (c) Enthalpy separation-squared calculated with dif-

ferent formulae: as the author proposed (green solid line), using

constant temperature To = 270 K in the integrand cp(δT )
2/(4To)

(black dashed line), further multiplying by a factor of 2 to

get cp(δT )
2/(2To) (cyan dashed line), and using constant po =

1000 mb instead of pr(x,y) for the integration upper limit but ex-

cluding isobars below the surface (grey solid line). Note that the

vertical scale is logarithmic in (a, b) but is linear in (c).

Insight from Eq. (62) shows that it is because Earth is a

rapidly rotating planet (i.e. �e is large) resulting in smaller

geostrophically balanced flow for the same equator–pole

temperature difference. The possibility to reveal this reason

stems from the separation metric being induced from the

energy norm which respects the fundamental dynamical ra-

tios in the system. Such dynamical reasoning would not be

possible if the metric was arbitrarily constructed with user-

prescribed ratios.

It has been shown in the Lorenz energy cycle (Holton,

2004) that baroclinic eddies are the primary driving force

for the energy exchange in mid-latitudes. However, the ed-

dies are neglected in the calculation above with zonal mean

data. To reveal the contribution to the separation metric from

eddies, the same separation-squared is calculated from the
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Figure 6. (a) Surface elevation zH in the northern mid-latitudes (35–65◦ N). Surface pressure separation-squared in Dec 2005 contributed by

(b) surface topography, zH(δpH)
2/(4pH), and (c) enthalpy, 1

g cpTr(δpH)
2/(4pH). (d) The enthalpy contribution using Talagrand’s formula,

1
gRTo(δpH)

2/(2po), where To = 270 K and po = 1000 mb, for comparison with (c).

full 3-D data as shown in Fig. 5b. The kinetic separation-

squared is found to be comparable to the enthalpy separation-

squared when the mid-latitude eddies are included. We at-

tribute the difference between Fig. 5a and b to the existence

of mid-latitude eddies. So on average, eddies contribute 78 %

to the total kinetic separation-squared and 28 % to the total

enthalpy separation-squared.

These percentages are consistent with the contribution

from eddies in the Lorenz energy cycle, where eddies con-

tribute 71 % to the total kinetic energy and 31.8 % to the total

APE (Oort and Peixóto, 1974).

The enthalpy separation-squared is not conceptually re-

lated to Lorenz’s definition of APE in Eq. (2). There are

superficial resemblances because of the quadratic form, but

in Eq. (17), no fixed reference state is assumed and the at-

mospheric lapse rate plays no role. Nonetheless, the parti-

tion between zonal mean and eddy contributions in enthalpy

separation-squared and in APE are comparable because 0 is

nearly constant in the troposphere while climatological tem-

perature Tclim ∼ T̄ , leading to enthalpy separation-squared

from the annual mean climatology being roughly propor-

tional to APE.

The coefficient of temperature difference (δT )2 is differ-

ent in our linearized separation-squared in Eq. (17) from

that in the often used metric MT81 in Eq. (3) (Ehrendorfer

and Errico, 1995; Errico, 2000; Qin and Mu, 2012). The en-

thalpy separation-squared is recalculated using progressively

modified formulae in Fig. 5c (see the details in the cap-

tion). It is found that using constant reference temperature

To = 270 K and constant reference pressure po = 1000 mb

does not change the enthalpy separation-squared much.

But the increase of the coefficient by a factor of 2 from

our metric to MT81 (green to grey line in 5c) makes the en-

thalpy contribution to the total separation-squared twice as

significant!

Although the surface pressure separation-squared is 1

order of magnitude smaller than the enthalpy separation-

squared (Fig. 5b), the coefficient of (δpH)
2 also differs be-

tween our metric and MT81. Figure 6a and b compare the

northern mid-latitude terrain and the topographic contribu-

tion to the surface pressure separation-squared. However, the

boundary-layer enthalpy contribution to the surface pressure

separation-squared is nearly an order of magnitude larger and

maximizes over the central Pacific Ocean (Fig. 6c). If MT81

was used instead, the surface pressure separation-squared

would be considerably smaller (see Fig. 6c and d).
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Figure 7. (a) Kinetic (red), enthalpy (green) and surface pressure

(blue) separation-squared between CFSR monthly mean data and

its annual mean climatology in the tropical region (25◦ S–25◦ N) up

to 100 mb. (b) Time–latitude cross-section of the logarithm to base

10 of the total separation-squared integrated zonally and vertically

up to 100 mb in the tropical region.

6.2 Tropical oscillations

The separation-squared between CFSR monthly mean 3-D

data and its annual mean climatology in the tropical re-

gion (25◦S–25◦ N) up to 100 mb is calculated and the re-

sults between 2001 and 2009 are shown in Fig. 7a. Sur-

face pressure separation-squared, like kinetic and enthalpy

separations-squared, shows a synchronous semi-annual os-

cillation as oceans cover more area than land in the tropics.

The kinetic separation-squared is about 1 order of mag-

nitude larger than the enthalpy separation-squared, quite un-

like in the mid-latitudes (see Figs. 7a and 5b). This can be

explained by the near constancy of temperature and surface

pressure as opposed to large seasonality of wind in the trop-

ics, e.g. due to the monsoons, whereas geostrophic and ther-

mal wind balance necessitate surface pressure and tempera-

ture to have accompanying large variation to wind variation.

The semi-annual oscillation at different latitudes is further

investigated in Fig. 7b. Contributions from the higher tropical

latitudes are an order of magnitude larger than from the equa-

torial latitudes, which attests to the constant climate near the

equator. The seasonality is stronger in the Northern Hemi-

sphere compared to the same latitude in the Southern Hemi-

sphere.

We next focus on the equatorial atmosphere to see what

the separation metric can reveal about tropical dynamics. The

separation-squared between CFSR monthly mean data and

its annual mean climatology in the equatorial tropics (5◦S–

5◦ N) integrated from the surface to the stratopause (1 mb)

is shown in Fig. 8a. Further investigation of the separation-

squared level by level shows that on average, the kinetic and

enthalpy separations-squared in the stratosphere (70 to 1 mb)

contribute 39.3 and 47.3 % respectively to the kinetic and en-

thalpy separations-squared in the whole column.

This is noteworthy because the stratosphere only makes

up about 10 % of the atmospheric mass but it accounts for

up to about 40 % of the combined monthly variance of the

equatorial troposphere and stratosphere as measured by the

energy norm-induced metric.

The quasi-biennial oscillation (QBO) is a quasi-periodic

reversal of the mean zonal wind in the equatorial strato-

sphere, and is well-known to influence the global strato-

sphere through modulation of zonal wind, temperature, hu-

midity and the meridional circulation (Baldwin et al., 2001).

The meridional distribution of QBO amplitude is approxi-

mately Gaussian, centred at the equator with a 12◦ half-width

(Wallace, 1973).

Although the QBO has a signature in temperature, it is

weak because geostrophic balance is not dominant near the

equator and thus the QBO signal is not identifiable in the en-

thalpy separation-squared against large signals arising from

seasonal variation in insolation. We present only the analysis

of the kinetic separation-squared here, which is a very good

approximation to the total separation-squared because of its

overwhelmingly large contribution.

Using singular spectrum analysis (SSA), we first decom-

pose the kinetic separation-squared into a trend, seasonal os-

cillation and interannual oscillation, leaving a residue. Be-

tween 1979 and 2009, there are 372 sample points in time.

The window length for SSA used is 36 sample points, i.e.

3 years. The first reconstructed component, RC(1), explains

90.9 % of the total variance. It traces the decadal variation

which is in anti-phase to the 10.7 cm solar flux (Patat, 1998)

and has a secular rising trend.

The semi-annual oscillation due to the seasonality of hemi-

spheric insolation is captured by RC(2, 3), explaining 3.6 %

of the total variance. RC(4, 5) explains 1.4 % of the total

variance and when shifted backward by 5 months matches

the QBO index very well (Fig. 8b), including years when the

QBO period is longer than average, e.g. 1999 to 2002. (The

QBO index is defined as the zonal wind at 30 mb over Sin-

gapore.) RC(4, 5) is lag correlated with the absolute value of

the QBO index in Fig. 8c. The maximum correlation score

of 0.53 is attained when the RC(4, 5) lags behind the QBO

index by 5 months. The correlation score peaks every 28

months which is the average period of the QBO.

The lag correlation of the absolute value of the QBO index

with the (full) kinetic separation-squared at different pres-

sure levels is shown in Fig. 8d. The correlation score max-

imizes at 30 mb with zero lag simply because the QBO in-

dex is defined at this level. Since the QBO phase propagates

downward, the kinetic separation-squared leads the QBO in-

www.atmos-chem-phys.net/15/2571/2015/ Atmos. Chem. Phys., 15, 2571–2594, 2015



2586 T.-Y. Koh and F. Wan: Norm-induced metric in atmospheric dynamics

1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009
15.5

16

16.5

17

17.5

18

18.5

19

19.5

Year

lo
g 10

 o
f s

ep
ar

at
io

n2  (J
)

(a)

1979198119831985198719891991199319951997199920012003200520072009
0

10

20

30

40

Year

V
el

oc
ity

 (m
/s

)

−2

−1

0

1

2

x 1018

Se
pa

ra
tio

n2  (J
)

negative QBO index
positive QBO index

RC(4,5)  shifted backward by 5 months(b)

−36 −24 −12 0 12 24 36
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Lag (month)

C
or

re
la

tio
n 

sc
or

e

(c)

Figure 8. (a) Kinetic (red), enthalpy (green) and surface pressure (blue) components of separation-squared between CFSR monthly mean

data and its annual mean climatology in the equatorial tropics (5◦ S–5◦ N) integrated over the whole atmosphere column. (b) ‖QBO index‖

(black) and RC(4, 5) of kinetic separation-squared (magenta) shifted backward by 5 months. Black solid (dashed) lines represent westerly

(easterly) phase of the QBO. (c) Lag correlation of ‖QBO index‖ with the RC(4, 5) of kinetic separation-squared. (d) Lag correlation of

‖QBO index‖ with kinetic separation-squared at different pressure levels. The black contours denote the 99 %-confidence level. In (c, d), a

positive lag denotes the signal leading the QBO index.

dex at higher pressure levels than 30 mb and lags behind at

pressures lower than 30 mb. Only the tilted positive corre-

lation band centred at zero lag denotes a real physical con-

nection. The other tilted correlation bands located at about

multiples of 7 months away are just mirrored images pro-

duced by the quasi-periodicity of the QBO. The correlation

score drops rapidly in the troposphere and becomes insignifi-

cant at the 99 % confidence level (except around 500 mb). To

minimize the effect of auto-correlation in time, we assume

that the number of independent samples is 124, which is the

number of seasons in our time series, giving the number of

degrees of freedom as 122.

There is some indication that QBO has a significant but

weak influence in the mid-troposphere around 500 mb. Such

an influence may not be as unreasonable as it first sounds

because of the disproportionately large stratospheric contri-

bution to equatorial atmospheric variance mentioned earlier.

A plausible dynamical reason could be that the zonal mean
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Figure 9. Multi-variate phase space for a hydrostatic flow in pres-

sure coordinate. For ease of visualization, wind u is shown as a 1-D

axis instead of a 2-D plane and each axis represents one among an

infinite number of degrees of freedom on the surface (for
√
pH) or

in the volume (for
√
T and u) of a fluid. The length of phase vectors

A and B are a and b respectively while their separation is c in this

subspace. O is the null vector. The spheres represent hyper-surfaces

of constant energy.

wind in the lowermost stratosphere (∼70 mb) modifies the

vertical propagation of equatorial waves, reflecting certain

waves downwards so that their trapped energy maximizes in

the mid-troposphere at the peaks of QBO easterly or west-

erly phases. Because we use a metric induced by the energy

norm, when the energy of the atmospheric state is enhanced,

the separation of that state from the annual mean climatology

is correspondingly enhanced.

7 Discussion and summary

To date, much of the literature’s rationale to the definition

of a metric runs along two lines of thinking which are not

mutually exclusive:

– to employ the quadratic form of a norm and its in-

duced metric beyond the restricted dynamical regime

for which the norm is proven to obey a conservation law

(Ehrendorfer and Errico, 1995), with the confidence that

the form is at least valid in that regime;

– to justify the quadratic form of a metric based on its

simplicity (Palmer et al., 1998) and on dimensional con-

sistency among the contributions by different state vari-

ables: the weighing coefficient on each variable depends

on the suitable choice of a convenient reference state,

certain physical constants and dimensionless numbers,

as well as the practical importance of emphasizing that

variable.

Neither line of thinking is without its merits and both ar-

guments are substantial enough if practical application de-

mands utility more than theoretical rigour. For instance, to

find a singular vector or conditional nonlinear optimal pertur-

bation (CNOP) in a model forecast for adaptive observation

(Buizza et al., 1993; Mu et al., 2009), knowing that temper-

ature has larger normalized error variance than wind (Koh

and Ng, 2009) would favour a metric definition that empha-

sizes temperature deviations more, such as MT81 instead of

Eq. (17). In that case, extending the use of a metric beyond

the regime for which it was originally designed – MT81 was

formulated by Talagrand (1981) for linearized, adiabatic, in-

viscid flows and is constant for the forecast of such flows in

between consecutive data assimilations – is justifiable at least

because the practical use of the metric in nonlinear, forced-

dissipative regimes enables important advancement in NWP.

There are other practical considerations: Sect. 4a of Ehren-

dorfer and Errico (1995) mentions the relevance of numeri-

cal discretization schemes in determining whether a norm is

practically invariant or not. Sections 4 and 6 of Palmer et al.

(1998) distinguish the analysis error covariance metric for

practical predictions, which depends on the observation net-

work and the data assimilation scheme, against the geophys-

ical fluid dynamics (GFD) covariance metric for GFD stud-

ies, which depends on dynamics only and is defined from

the invariant measure associated with the system’s attractor.

The results of ensemble predictions, error growth analysis

and predictability studies will be sensitive to the choice of

the metric. Section 5 of Palmer et al. (1998) showed that the

MT81 metric may be more suitable for practical prediction

studies than in pure GFD problems on predictability.

Having recognized the merits of the above approaches, it

is instructive to examine the comparative advantages of our

theoretical approach. For that, we need to elucidate the un-

derlying physical basis of the norm-induced metric.

Figure 9 is a Cartesian representation of the phase space

(u,
√
T ,
√
pH) constructed for a hydrostatic flow in pressure

coordinate. To our knowledge, this is the first time that quan-

tities like
√
T and

√
pH are constructed to serve as phase

coordinates and we emphasize that only in these constructed

coordinates does the square-root of true energy satisfy all the

axioms of a norm.
√
Emod of Eq. (15) is the Euclidean norm

on the vector space of (u,
√
T ,
√
pH); it is not even a norm

in the conventional vector space of (u,T ,pH) because it does

not have absolute homogeneity there.

With reference to Fig. 9,
√
Emod is used to measure a and

b, the lengths of phase vectors A and B respectively. The M

of Eq. (16) is the metric used to measure the separation c be-

tween A and B. As the metric is induced by the norm, the

separation of a phase vector from the null vector O is identi-

cal to the phase vector’s length. This means that a, b and c are

measured with the same “ruler”. By using any other metric

in a normed vector space, we are measuring c on a different

ruler from a and b, which is admissible mathematically but

goes against physical sense.
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For adiabatic, inviscid flows, it is a law of physics that en-

ergy E is conserved and hence a and b are invariant. The

vectors A and B move on constant energy hyper-surfaces

which take the form of hyper-spheres when the phase co-

ordinates (u,
√
T ,
√
pH) are scaled by factors of

√
dp/2g,√

cpdp/g,
√
(cpTr+8H)/g respectively and have common

units of m−1. Unless the flow is linear (like the case in Ta-

lagrand (1981)), c will generally not be invariant. Then the

norm induced metric can indeed be used to detect chang-

ing separations between A and B while the invariant lengths

of A and B provide physical justification for using the same

“ruler” to measure separation. In this way, we avoid the in-

herent contradiction that MT81 faces: it is only useful when

the norm is not conserved (see the end of Sect. 1.2). More-

over, linearization of the flow is never required for the con-

servation of energy. Without detracting from the last state-

ment, where mathematically valid, the separation metric can

be transformed into the tangent linear space of conventional

but non-Cartesian coordinates (u,T ,pH) where either A or

B provides a realistic nonlinearly evolving reference state for

the linearization of the metric. In these coordinates, the norm

and metric take on a non-Euclidean form.

There is another advantage of measuring a, b and c on the

same “ruler”: the angle ψ between vectors A and B in Carte-

sian coordinates (u,
√
T ,
√
pH) can be consistently defined

by the cosine rule:

cosψ =
a2
+ b2
− c2

2ab
, (63)

which is equivalent to the definition of the inner product:

〈A,B〉 =
(
a2
+ b2
− c2

)
/2. (64)

For the metric in Eq. (17), the inner product defined in this

way is

〈A,B〉 =
1

g

∫
A

pr∫
0

(
1

2
uA
·uB
+ cp

√
T AT B

)
dp dA

+
1

g

∫
A

(
cpTr+8H

)√
pAHp

B
H dA, (65)

where the superscripts on the variables refer correspondingly

to states A and B. Equation (65) may be contrasted against

Eq. (11) of Palmer et al. (1998) which is the inner product in

(u,T ′,p′s)-space related to the MT81 metric, reproduced in

the notation of this paper as

〈A,B〉P98 =
1

2g

∫
A

po∫
0

(
uA
·uB
+
cp

To

T ′AT ′B
)
dp dA

+
1

2g

∫
A

RTopo ln

(
pAs

po

)
ln

(
pBs

po

)
dA. (66)

The set of angles a phase vector makes with the Cartesian

axes fixes the direction of the phase vector. The notions of di-

rection and inner product are fundamental to many concepts

and applications in predictability (e.g. Lyapunov exponents)

and optimization of error growth (e.g. CNOP). Like our def-

inition of separation, our definitions of direction and inner

product ultimately rest upon the physical principle of energy

conservation as the basis for the invariance of the norm and

Euclidean geometry is manifest in (u,
√
T ,
√
pH)-space. In

contrast, the set of metricMT81, norm
√
ET81 and inner prod-

uct 〈A,B〉P 98 respects Euclidean geometry in (u,T ′,p′s)-

space, but ET81 is not energy, causing the norm to vary in

nonlinear, adiabatic, inviscid flows. In such flows, quantify-

ing the separation and angle between two state vectors by

MT81 and 〈A,B〉P 98 would be like measuring distance and

angle with elastic rulers and protractors. Appendix A delves

further into the origin of the difference between ET81 and

energy E.

Placed in the context of applications like ensemble fore-

cast, the above theoretical development provides a physi-

cally based metric that can be used to, for instance, measure

the spread of member states about the observation in multi-

variate phase space where no single variable can summarize

the model performance, such as at the surface (Scherrer et al.,

2004) or in the tropics (Koh et al., 2012). The development

of such multi-variate spread diagnostics would complement

existing univariate spread measures (Buizza, 1997). Another

use can be in error growth analysis to define the norm of

a CNOP used to identify area targets for observation (Mu

et al., 2009). A major practical advantage in the above ap-

plications would be that even large separations can be rig-

orously quantified using the Cartesian coordinates in which

the energy norm is Euclidean, such as illustrated in Fig. 3a

of Sect. 4. This would be essential, for example, in shallow-

water simulations of tsunamis (Wang and Liu, 2007).

The importance of the non-Euclidean form of the met-

ric for nonlinear flows illustrated in Sect. 4 (Fig. 2) is

an important advancement in the definition of separation.

For highly nonlinear, non-hydrostatic atmospheric flows at

mesoscales, especially those manifesting strong convection

such as around the core region of a tropical cyclone (TC),

the separation between atmospheric states involves a kinetic–

buoyant energy inter-conversion term, δwδρ in Eq. (31). The

practical implementation of such a metric for computing

CNOP may result in a discernible impact on the areas tar-

geted for observation to improve TC intensity forecasts.

By agreeing on the invariant norm relevant to the dynam-

ics of a system, for instance the energy norm in pressure co-

ordinate, the relative ratios of contribution among the con-

ventional state variables, δu, δT and δpH in this case, to the

total separation-squared are no longer arbitrary to some di-

mensionless constants or dependent on the user’s choice of

the reference state, as the case would be for a metric con-

structed from dimensional consistency arguments alone.

For example, the small ratio of enthalpy to kinetic compo-

nents of separation-squared in the tropics (Fig. 7a) compared

with the mid-latitudes (Fig. 5a, b) cannot be increased in an
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ad hoc manner, e.g. by replacing the nonlinear reference-

state T by the climatological amplitude of diurnal temper-

ature fluctuations in Eq (17). The reason is that this ratio is

reflective of the lack of geostrophic balance in the monthly

mean tropical climate (i.e. contrary to the case in Eq. (62)

and Fig. 4). Likewise, in the mid-latitudes, the use of MT81,

where the enthalpy component is roughly doubled (Fig. 5c),

would not be recommended if the dimensionless ratio of sys-

tem constants governing the dynamics of thermal wind bal-

ance in Eq. (62) is to be respected. Nonetheless, we do not

believe having doubled the enthalpy contribution in MT81

would detract from the qualitative conclusions of much pre-

vious work even if details might have been altered, e.g. the

consistency of the “energy” norm to the “analysis error co-

variance metric” in Palmer et al. (1998).

We have given a firm theoretical basis for the contribu-

tion of surface topography on the metric. Previous theoret-

ical literature (e.g. Talagrand, 1981) did not allow for the

presence of topography. It would not be possible to guess the

form of topographic influence by dimensional analysis alone.

For example, by dimensional analysis, topography could well

modify the enthalpy contribution as
(
cpTo+8H

)
(δT /To)

2

in Eq. (3) instead of modifying the surface pressure contri-

bution in Eq. (17), especially looking at the form of Eq. (12).

With our approach, the topographic term is negligible in pres-

sure coordinate (Fig. 6b, c) because8H/(cpT ).1%, and this

is also true in isentropic coordinate, see Eq. (24). But one

would not be able to consistently neglect the topographic ef-

fect if one used the expression
(
cpTo+8H

)
(δT /To)

2 be-

cause surface pressure separation-squared can be about 1%

of enthalpy separation-squared (e.g. in Fig. 5a) and is re-

tained within the metric expression. In height coordinate, to-

pography does not even appear except as the fixed lower limit

of vertical integration for the semi-infinite atmosphere.

By using the energy norm-induced metric, we detected

a weak but statistically significant teleconnection between

the QBO phase in the lower stratosphere and the monthly

variability at mid-tropospheric levels (Fig. 8d) which may

be worth further investigation in future. At this early junc-

ture, it is understandable if a teleconnection is selectively

picked out by our metric for atmospheric variation because

of the principle of energy conservation on which the met-

ric is based: a longer state vector due to accumulation of

tropospheric energy by equatorial wave reflection from the

lower stratosphere would manifest larger variation from the

climatic mean state since we use the same “ruler” to mea-

sure energy and separation in phase space (see Fig. 9). If

the enthalpy contribution cpT (δT /T )
2 was artificially ex-

aggerated roughly a hundredfold by normalizing the tem-

perature difference by its variance 1T instead of by T , i.e.

cpT (δT /1T )
2, the metric would now be dominated by tem-

perature variability in which the QBO signal is swamped by

seasonal signals. The above teleconnection between the mid-

troposphere and the QBO index would be lost when using

such an ad hoc metric.

While useful, the energy norm is not the only invariant

norm from which a metric can be induced. Other dynami-

cal invariants, e.g. enstrophy (Vallis, 2006) and wave activity

(Haynes, 1988), could be used. One only needs to construct

the phase space judiciously following the approaches demon-

strated in Sects. 2 and 3 so that the invariant quantity takes

the form of a Euclidean norm. Hence, the above theoreti-

cal advantages may potentially be relevant to most problems

with a conserved physical quantity. For instance, in homo-

geneous, isotropic turbulence of a 2D incompressible fluid,

the metric induced by the enstrophy norm may be useful in

investigating chaotic dynamics of turbulence: e.g. defining ζ

as absolute vorticity, one might consider the spectral power

of
∫
A(δζ )

2dA in the enstrophy cascading inertial sub-range

as a measure of the separation between two mature turbulent

flows.

In summary, we propose a new two-step approach in tack-

ling the problem of metric definition: (1) constructing the

phase space specifically so that an invariant based on a phys-

ical conservation law is the Euclidean norm on this space;

and (2) defining the norm-induced metric to quantify the sep-

aration in phase space between two states. This methodol-

ogy is mathematically rigorous and physically meaningful.

The norm can be invariant even for nonlinear flows and the

norm-induced metric is valid even for large separations. We

have applied this approach to examine analytical examples

and realistic reanalysis data, and discussed its potential ap-

plications in ensemble prediction, error growth analysis and

predictability studies. But we note that practical and other

theoretical considerations may favour alternative approaches

to defining the metric. Finally, the separation metric in this

study is developed for dry atmospheres. We are working next

on the separation metric including moisture.
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Appendix A: Difference between ET81 and energy E

A1 Derivation of ET81

We first re-derive ET81, following Talagrand (1981) but us-

ing the notation of this paper. The inviscid, adiabatic flow is

first linearized about the reference state, u= 0, T = To and

ps = po, where To and po are constants. The reference-state

geopotential 8o is given by hydrostatic balance:

d8o

dp
=−

RTo

p
,

⇒8o =−RTo ln

(
p

po

)
, (A1)

where we have chosen 8o(po)= 0.

In pressure coordinate, the equations of motion for the per-

turbation state are

∂u

∂t
+ f k̂×u+∇p8

′
= 0, (A2)

cp

∂T ′

∂t
−ω

RTo

p
= 0, (A3)

∇p ·u+
∂ω

∂p
= 0, (A4)

∂8′

∂p
+
RT ′

p
= 0, (A5)

where f is the Coriolis parameter and k̂ is a unit vector point-

ing upwards.

Equation (A2) is dot-multiplied by u to obtain the kinetic

energy tendency, while Eq. (A3) is multiplied by T ′/To to

get a varying fraction of enthalpy tendency and of adiabatic

heating:

∂

∂t

u′2

2
+u · ∇p8

′
= 0, (A6)

∂

∂t

cpT
′2

2To

−ω
RT ′

p
= 0. (A7)

Equation (A5) and (A7) can be combined as

∂

∂t

cpT
′2

2To

+ω
∂8′

∂p
= 0. (A8)

Equation (A8) is added to Eq. (A6) and with the help of

Eq. (A4), we get

∂

∂t

(
u′2

2
+
cpT
′2

2To

)
+∇p ·

(
u8′

)
+
∂

∂p

(
ω8′

)
= 0. (A9)

Using the fact that ω→ 0 exponentially fast with height,

Eq. (A9) is integrated vertically to the surface to obtain

ps∫
0

∂

∂t

(
u′2

2
+
cpT
′2

2To

)
dp+∇p ·

ps∫
0

u8′dp

+
∂ps

∂t
8′(ps)= 0. (A10)

Unlike Talagrand (1981), we allow a weak surface topog-

raphy to exist without interfering with the linearization of the

flow, so that 8(ps)=8
′
s(x,y). Thus, we may write

8′(ps)=8(ps)−8o(ps)8
′
s+RTo ln

(
ps

po

)
, (A11)

where we have made use of Eq. (A1). The above is substi-

tuted into Eq. (A10) to yield

ps∫
0

∂

∂t

(
u′2

2
+
cpT
′2

2To

)
dp+

(
RTo ln

(
ps

po

)
+8′s

)
∂ps

∂t

+∇p ·

ps∫
0

u8′dp = 0. (A12)

Integrating horizontally under periodic lateral boundary con-

ditions causes the last term to vanish. Ignoring third-order

terms, as is consistent with the effect of flow linearization on

Eqs. (A6) and (A7), we then have

∂E
topo

T81

∂t
≡
∂

∂t

1

g

∫
A

po∫
0

(
u′2

2
+
cp

2To

T ′2
)
dp dA

+
1

g

∫
A

(
RTo

2po

p′2s +8
′
sp
′
s

)
dA

= 0, (A13)

In Eq. (A13), the influence of surface topography is exerted

through a linear term in p′s, which was fortuitously excluded

from ET81 in Eq. (1) by Talagrand (1981); the other terms

all have homogeneous quadratic forms. Thus, only when the

surface is flat, ET81 is derived as the square of a norm on

(u,T ′,p′s)-space and is invariant for adiabatic, inviscid flows

linearized about a reference isothermal atmosphere at rest.

As only T ′/To of the adiabatic heating and enthalpy tendency

is included in the formulation of Eq. (A7), ET81 is not total

energy. But its tendency is a time-varying fraction of the en-

ergy tendency, which explains why ET81 is not conserved in

general adiabatic, inviscid flows.

A2 Derivation of perturbation energy E′ in pressure

coordinate

We now derive the conservation of total energy E in pres-

sure coordinate, paying attention to the differences from the
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derivation in the previous section. We only assume that the

basic atmospheric state is hydrostatic and isothermal at tem-

perature To so that Eq. (A1) applies, where the constant po is

now defined as the reference pressure at the lowest point on

Earth’s surface. The full equations of motion for the pertur-

bation state, which may not be close to the basic state, are(
∂

∂t
+u · ∇p+ω

∂

∂p

)
u+ f k̂×u+∇p8

′
= 0, (A14)

cp

(
∂

∂t
+u · ∇p+ω

∂

∂p

)
T ′−ω

R

p

(
T ′+ To

)
= 0, (A15)

and Eqs. (A4) and (A5) as before.

Equation (A14) is dot-multiplied by u to obtain the kinetic

energy tendency while Eq. (A15) is combined with Eq. (A5)

retaining the full enthalpy tendency:(
∂

∂t
+u · ∇p+ω

∂

∂p

)
u2

2
+u · ∇p8

′
= 0, (A16)

cp

(
∂

∂t
+u · ∇p+ω

∂

∂p

)
T ′+ω

d8′

dp
−ω

RTo

p
= 0. (A17)

Equations (A16) and (A17) are added with the help of

Eq. (A4) so that

∂

∂t

(
u2

2
+ cpT

′

)
+∇p ·

(
u

(
u2

2
+ cpT

′
+8′

))
+
∂

∂p

(
ω

(
u2

2
+ cpT

′
+8′

))
−ω

RTo

p
= 0. (A18)

As ω→ 0 exponentially fast with height, Eq. (A18) is inte-

grated vertically to the surface to obtain

∂

∂t

pH∫
0

(
u2

2
+ cpT

′

)
dp+∇p ·

pH∫
0

u

(
u2

2
+ cpT

′
+8′

)
dp

+
∂pH

∂t
8′(pH)−RTo

pH∫
0

ω

p
dp= 0. (A19)

The penultimate term in Eq. (A19) is evaluated following

Eq. (A11) to get

∂pH

∂t
8′(pH)=

∂pH

∂t
8s+RTo

∂pH

∂t
ln

(
pH

po

)
, (A20)

where 8s is the non-trivial surface geopotential due to to-

pography. The last integral in Eq. (A19) can be integrated by

parts, with the help of Eqs. (A1) and (A4), as follows:

−RTo

pH∫
0

ω

p
dp= RTo

pH∫
0

∂ω

∂p
ln

(
p

po

)
dp−RTo

[
ω ln

(
p

po

)]pH

0

=∇p ·

pH∫
0

u8o dp−RTo

∂pH

∂t
ln

(
pH

po

)
. (A21)

The last term of Eq. (A20) is cancelled by the last term of

Eq. (A21) and its contribution is replaced by the first term

of Eq. (A21) which is the flux divergence of reference-state

geopotential. In contrast, the last term of Eq. (A11) survives

and becomes the quadratic p′s term in Eq. (A13). This is be-

cause the bulk of adiabatic heating, ωRTo/p, that is respon-

sible for the terms in Eq. (A21) is dropped out when only a

fraction T ′ /To of adiabatic heating is retained in Eq. (A7).

Substituting Eqs. (A20) and (A21) into Eq. (A19), we fi-

nally get

∂

∂t

pH∫
0

(
u2

2
+ cpT

′

)
dp+8s

∂p′H

∂t

+∇p ·

pH∫
0

u

(
u2

2
+ cpT

′
+8

)
dp= 0, (A22)

where p′H is the perturbation of surface pressure from po and

is not necessarily small. Integrating horizontally under pe-

riodic lateral boundary conditions, the flux divergence term

vanishes leaving

∂E′

∂t
≡
∂

∂t

1

g

∫
A

pH∫
0

(
u2

2
+ cpT

′

)
dp dA

+
1

g

∫
A

8sp
′
H dA

= 0. (A23)

The above is the basis for the conservation of perturbation

energy E′ for fully nonlinear, adiabatic, inviscid flows. E′

is different from total energy E in Eq. (12) by a constant as

mass is conserved, i.e.
∫
A
pH/gdA= constant.

A3 Comparison between ET81 and linearized

perturbation energy E′
lin

To compare with Eq. (A13) on equal footing, we linearize

Eq. (A23) about the same reference state as in Sect. A1 where

surface topography is weak, i.e. 8s =8
′
s. First, consider the

following integral over the lower boundary layer [pH,po]:

po∫
pH

(
u2

2
+ cpT

′

)
dp= cpT

′
H (po−pH)=−cpT

′
Hp
′
H, (A24)

where T ′H and p′H are the perturbations on surface tempera-

ture and surface pressure respectively and we have ignored

third-order terms. Thus, Eq. (A23) becomes

∂E′lin

∂t
≡
∂

∂t

1

g

∫
A

po∫
0

(
u2

2
+ cpT

′

)
dp dA

+
1

g

∫
A

(
cpT
′

H+8
′
s

)
p′H dA

= 0. (A25)

As the full enthalpy tendency and adiabatic heating are

kept in Eq. (A15), the enthalpy contribution in Eq. (A25) is
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linear in T ′ and there are no quadratic terms in p′H. Instead,

the topographic influence clearly shows a linear dependence

on p′H, which is already seen in Eq. (A13) and would have

been similarly present in ET81 if surface topography had not

been ignored in Talagrand (1981)’s approach. There is ad-

ditionally a quadratic interaction term T ′Hp
′
H in Eq. (A25)

whose counterpart in Eq. (A13) is a third-order term that has

been ignored.

The above comparison shows clearly that E
topo

T81 or ET81

is different from E′lin. Both linearized formulations are in-

herently problematic because the atmosphere is significantly

different from the isothermal reference state. The relative

ratio of the terms in Eqs. (A13) or (A25) also depends on

the arbitrary choice of To and po. Adopting the full (non-

linearly conserved) energy in Eq. (12) requires us to inno-

vate on the construction of the phase space (
√
T ,
√
pH) in

Sect. 3.1, in order to solve the problem of having a Euclidean

energy norm
√
E when energy is a linear function of temper-

ature and surface pressure. Subsequent transformation of our

norm-induced metric into the tangent linear space (T ,pH)

yields the quadratic dependence on δT and δpH but with dif-

ferent weighing coefficients than in the metric MT81 induced

by the norm
√
ET81 on the phase space (T ′,p′H). This dif-

ference arises because we use a different norm on a different

vector space from Talagrand (1981).
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