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Abstract. The multimodel ensemble exercise performed

within the HTAP project context (Fiore et al., 2009) is used

here as an example of how a pre-inspection, diagnosis and

selection of an ensemble, can produce more reliable results.

The procedure is contrasted with the often-used practice

of simply averaging model simulations, assuming different

models produce independent results, and using the diversity

of simulation as an illusory estimate of model uncertainty. It

is further and more importantly demonstrated how conclu-

sions can drastically change when future emission scenar-

ios are analysed using an un-inspected ensemble. The HTAP

multimodel ensemble analysis is only taken as an example of

a widespread and common practice in air quality modelling.

1 Introduction

A multimodel (MM) ensemble is defined as a group of sim-

ulations of the same case study, produced by formally dif-

ferent models, which are statistically treated in an attempt to

improve the quality of the result (Potempski and Galmarini,

2009). Given the ever-increasing collaborations of geophysi-

cal modelling communities in joint assessment studies, MM

ensembles are becoming very popular and an opportunity

to extend and generalize individual deterministic model re-

sults (Solazzo et al., 2012 and 2013; Solazzo and Galmarini,

2014; Galmarini et al., 2004; Vautard et al., 2012; Evans et

al., 2013; Bishop and Abramowitz, 2013; and many others).

In particular in atmospheric sciences, MM ensembles are

used extensively in climate and air quality predictions and as-

sessments. While in climate research and applications many

of the concepts applied and described here are well known

and correctly used, in air quality this is not always the case

and several are the examples of direct use of un-inspected

MM ensembles. We define an inspected MM ensemble (as

opposed to an un-inspected one) as a set of model results

whose properties and characteristics have been analysed in

an attempt to reduce the presence of redundant information

or elements that are not relevant to the determination of an

accurate result. An inspected ensemble is expected to pro-

duce a result that is more accurate than the simple average of

the MM results, at least in all the cases when the members

of the ensemble are not independent (e.g. Kioutsioukis and

Galmarini, 2014).

The motivations behind the necessity to inspect a MM en-

semble are connected to the way in which MM ensembles

are put together and to the nature of the participating models.

In fact, the selection of the models whose results are “ensem-

ble” is not, to the best of our knowledge and at least for air

quality applications, regulated by any science-based criteria

and there is no a priori specification that defines the char-

acteristics of a model that should or should not be part of

an ensemble. The constitution of a MM ensemble is merely

based on an opportunity to provide model simulations and

to participate in a community activity in which anyone is

welcome (ensemble of opportunity). Regarding the nature of

the models producing results for ensemble applications, one

should never forget that the best results are those produced by

ensembles of independent (and accurate) models (Potemp-

ski and Galmarini, 2009; Kioutsioukis and Galmarini, 2014;

Weigel et al., 2008; Pirtle et al., 2010; Knutti, 2010; Knutti et

al., 2010; Riccio et al., 2012). Formally, model m1 is defined

as independent of m2 if the joint probability p for a result of

m1 and m2 can be expressed as p(m1,m2)= p(m1)p(m2).

When many independent models are combined together their

bias can be randomly positive or negative, increasing the
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probability of cancelling out and of the sampled uncertainty

not overlapping (Knutti et al., 2010; Abramowitz, 2010; So-

lazzo et al., 2013). Models used in air quality (among oth-

ers) are not independent – they often share common assump-

tions, modules and input data. In most of the cases the mod-

els are different (phenotypical model difference; Potempski

and Galmarini, 2009) but are not independent. This leads to

the possibility that results obtained from an ensemble, rather

than representing a true alternative and independent solution,

would just be like in music composition a variation on the

theme, producing a false sense of variability which could lead

to coinciding (diverging) biased results and a false sense of

agreement (uncertainty).

MM ensembles derived from simply different models are

prone to redundancy and overconfidence. The inspection is

therefore primarily finalized at

– the identification of the level of diversity (communality)

shared by the model results

– retaining only those that are contributing with original

information

– removing the redundancy.

Techniques exist which allow such screenings that rely on the

existence of observations and the comparison of the ensem-

ble variability with the observational variability (Potemp-

ski and Galmarini, 2009; Solazzo et al., 2013; Riccio et al.,

2012).

In this study we aim to demonstrate the importance of us-

ing existing good practices in the air quality MM ensemble

context. To that end we have selected a case study published

in the past which does not exploit the true value of hav-

ing multiple model results at hand. The case analysed is the

HTAP (Hemispheric Transport of Air Pollution) phase 1 mul-

timodel exercise (Dentener et al., 2010) and in particular the

multimodel ensemble activity performed within it and pre-

sented by Fiore et al. (2009). The study of Fiore et al. (2009)

is used here as merely representative of a widespread practice

in the air quality modelling communities at all scales and it

represents just an example of how things could be improved

further. The MM ensemble by Fiore et al. (2009) is origi-

nal in many aspects and, in particular, is used for sensitivity

studies with respect to emission reduction options. The in-

spection of the ensemble can have important consequences

also for emission scenarios as shown later, an aspect never

considered before in the literature.

2 The case study and MM ensemble inspection

In 2006 the Task Force on Hemispheric Transport of Air Pol-

lution (http://www.htap.org/) organized a comparison exer-

cise of global and hemispheric transport models, focusing on

the relationships between regional-scale emission perturba-

tions and the response in air-quality, ecosystem- and climate-

related variables. The information was used in an aggregated

form to evaluate air pollution abatement strategies and their

impact across the Northern Hemisphere. Results of the com-

parison exercise are summarized in Dentener et al. (2010),

Sanderson et al. (2008), Fry et al. (2012), Wild et al. (2012),

Jonson et al. (2010), Anenberg et al. (2009) and Fiore et

al. (2009).

We focus on the MM ensemble analysis of Fiore et

al. (2009) (henceforth FetA09). In FetA09, an average of

21 model results was used to investigate the monthly mean

surface ozone concentration in three subregions of Europe

(the Mediterranean, Central Europe with receptors between

0 and 1 km height, and Central Europe with receptors be-

tween 1 and 2 km height), five North American subregions

(Northeast, Southwest, Southeast, Great Lakes, and Moun-

tainous) and one Japanese subregion (EANET stations). Op-

erational scores (bias, correlation coefficient and standard

deviation) were calculated in each subregion making use of

ground-based measurements. The combined spatial and tem-

poral average of the modelled concentration values resulted

in smoothed monthly time series. The analysis of FetA09

reveals that the distribution of the results is rather symmet-

ric (Fig. 1). Supported by the agreement with observations,

the authors considered the MM ensemble mean to be the

best possible estimate as it “generally captures the observed

seasonal cycle and is close to the observed regional mean”

[FetA09], thus justifying the use of the MM ensemble mean

to quantify source–receptor relationships as well as ozone

concentration response to changes in the emissions scenar-

ios.

The analysis by FetA09 was not aimed at proving the ro-

bustness of the MM ensemble mean, and provides an ex-

ample of the widespread practice of averaging all available

members, assuming that the average of many model results

is always a better result than that of one model. That would

be true if the models were independent but there is no a pri-

ori proof of that. Some questions arise: how robust are the

results if the members are not independent models? How dif-

ferent would the result be should some model not taking part

in the activity or more outliers (like the one in Fig. 1) be

present? How generalized is the result since the selection of

the ensemble members is based on the voluntary participa-

tion to a joint activity and the MM ensemble does not contain

all possible results? Is there any duplication of information?

Is all the information contained in a MM ensemble relevant

and necessary? Since the construction of a MM ensemble is

not governed by scientific selection criteria, the subsequent

ensemble result strictly depends on aleatory factors and one

can presume that it lacks generality as it is supported by as-

sumptions known to be valid for independent members only.

The screening methodology we propose, and that we apply

as an example to the FetA09 set, is a good way to exploit an

abundance of model results in the best way, to transform the

aleatory gathering of information into a more robust result

that is based on general selection criteria. The large ensem-
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Figure 1. From Fiore et al. (2009): monthly mean surface O3 concentrations (ppb) for the year 2001. Observed values (black circles) represent

the average of all sites falling within the given latitude, longitude, and altitude boundaries and denoted by the symbols in Fig. 1; vertical black

lines depict the standard deviation across the sites. Monthly mean O3 in the surface layer of the SR1 simulations from the 21 models are first

sampled at the model grid cells containing the observational sites and then averaged within subregions (grey lines); these spatial averages

from each model are used to determine the multimodel ensemble median (black dotted line) and mean (black dashed line). Observations are

from CASTNET (http://www.epa.gov/castnet/) in the United States, from EMEP (http://www.nilu.no/projects/ccc/emepdata.html) in Europe,

and from EANET (http://www.eanet.cc/eanet.html) in Japan.

ble of model results becomes an opportunity to cherry-pick

those models whose combination produces the most accurate

MM ensemble and use only those to drive conclusions. The

analysis will help to identify the size of the non-redundant

ensemble and the subsets of members that produce skilled

results.

2.1 Inspecting a multimodel ensemble

In this section the MM ensemble of FetA09 is inspected. We

will concentrate on the ozone simulations over the same re-

gions presented in FetA09 and we will make use of exactly

the same model data and observations as used by FetA09,

as the main point of the investigation here is to show that

the results are different when an inspected MM ensemble is

adopted. The inspection is based on the following steps:

– determine to what extent the variability (standard devi-

ation about the ensemble mean as in Fortin et al., 2014)

present in the observation is reproduced by the ensem-

ble;

– determine the minimum number of models necessary to

represent the observed variability;

– identification of the models forming the reduced MM

ensemble used for subsequent analysis.

2.1.1 The “accounted for” variability: eigenanalysis

and ranked histogram technique

The goal of this first analysis is to determine to what extent

the observational variability is reproduced by the ensemble.

An optimal situation is one in which the variability of ob-

servations coincides with that produced by the ensemble of

models – in other words the ensemble of the results all to-

gether covers the same range of variation of the measure-

ments. Any deviation from this condition, namely a smaller

or a larger variability of the MM ensemble with respect to

the observed one, would show, on one hand, the incapacity

of the ensemble to span the observed reality, or on the other,

the addition of irrelevant information to the simulation of the

observed situation. Therefore, considering that a MM ensem-

ble is assembled on an opportunity basis rather than results

characteristics, this first step is of primary importance to es-
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timate to what extent the gathered set is appropriate for the

case study.

A technique to assess the variability and to estimate the

redundancy of the MM ensemble with respect to that of

the observations was suggested by Annan and Hargreaves

(2010) and applied in several MM ensemble modelling con-

texts (see e.g. Solazzo et al., 2013; Solazzo and Galmarini,

2014). It consists of projecting the observation anomalies

(the element-wise difference between the observations and

their mean) onto the principal components (PCs) of the co-

variance matrix of the deviation of the ensemble of models

from the MM mean (the element-wise difference between

each model realization and the MM ensemble mean). Princi-

pal component analysis (Jolliffe, 2002) is probably the most

well-known and widespread dimension reduction technique.

It is based on eigenanalysis to select uncorrelated directions

associated with the largest variances.

When applied to the HTAP 21-member ensemble analysed

by FetA09, this method shows that the first (largest) eigen-

value already explains more than 90 % of the observational

variability in most regions, the only exception being Japan

with 60 %. In other words, most of the ensemble members

have a significant projection onto the first eigenvector defin-

ing the major component, thus explaining the same portion

of variance. If too many models are projected on the same

eigenvector, it means that there are too many models pro-

ducing repeating or “overlapping” solutions (thus, the MM

ensemble is redundant and overconfident). A well-behaved

MM ensemble (not necessarily the theoretical case of in-

dependent models) should be made of a number of models

whose eigenvalues contribute to the explanation of as many

different components as the observational variability and the

ratio model-to-observed variance should be close to unity. In

the case of the HTAP MM ensemble, when all eigenvalues

are taken into account (and all of the associated eigenvec-

tors), the MM ensemble variance is 4.7, 6.0, 8.7 times the

variance of the observation anomalies for the EU Mediter-

ranean, Central 0–1 km and Central 1–2 km regions respec-

tively. Concerning the US Mountains, Great Lakes, SE, NE

and SW regions, the full MM ensemble mean accounts for

25.4, 9.1, 20.6, 10.7 and 5.6 times the observed variability,

respectively, and finally 4.7 times for the Japanese subre-

gion. According to the definition of Annan and Hargreaves

(2010) the ensemble is therefore wide, i.e. its variability is

larger than the observed one. Dealing with a wide ensemble

implies that there is a substantial amount of redundant vari-

ability, i.e. variability already accounted for by other models.

Not all information contained in the ensemble is needed in

principle and needs to be reduced.

An alternative method to diagnose the variability spanned

by an ensemble of models to the eigenvalues used is the Ta-

lagrand or ranked histogram (RH) (Talagrand et al., 1998),

which provides an evaluation of the consistency of the en-

semble with an observed quantity. In a RH the observations

are ranked in a number of bins equal to the number of mod-

els making up the ensemble plus one for the extremes. The

ensemble members are sorted to define ranges or “bins” of

the modelled variable such that the probability of occurrence

of the observation within each bin is, ideally, equal. The bins

are determined by ranking the ensemble member from lowest

to highest. The interval between each pair of ranked values

forms a bin. An N -member ensemble corresponds to N + 1

bins (Hamill, 2001). The underlying assumption is that each

ensemble member in principle introduces an independent de-

gree of variability. An indication of an ill-constructed en-

semble is the ratio between the number of elements and the

number of data available per model. If there are N models

with time series each of size nt (elements of the time series),

the implication of N > nt is that there will be at least N − nt

empty bins in the RH, indicating redundancy of the ensem-

ble and that the ensemble is inappropriate for the case anal-

ysed. This same result could be visualized by looking at the

load factors resulting from the decomposition in PCs: many

projections would be null, as the number of eigenvectors is

larger than the number of data to project. For the HTAP MM

ensemble used in this example,N = 21 and nt = 12. The RH

for the nine subregions is reported in Fig. 2. Six (NA NE) to

nine (NA SW) bins out of 22 are populated, (i.e. contain non-

zero values), due to insufficient data and excess of redun-

dant information. The use of the RH reveals another impor-

tant problem with the FetA09 MM ensemble. Good ensemble

practice would require nt�N . The plots clearly show that

there are many empty bins (and therefore degrees of freedom

in the process that are not part of the reality as no observa-

tions are present in that range). The uneven distribution of

the histograms shows that much emphasis (overconfidence)

is given to some aspects of the process description, while

others are neglected – that is another way of representing the

redundancy obtained with PC analysis presented earlier.

2.1.2 Effective number of models

Having assessed that the ensemble is redundant it is im-

portant to determine the minimum number of models from

those available in the MM ensemble that would suffice to

describe the observational variability. A method developed

by Bretherton et al. (1999), and firstly applied to air qual-

ity models by Solazzo et al. (2013), quantifies the effective

number of models sufficient to reproduce the variability of

the observation as

Neff =

(
N∑
k=1

λk

)2

∑N
k=1λ

2
k

(1)

with λ eigenvalue of the corr(di,dj ) matrix, which con-

tains the linear correlation coefficient between any pair di ,

dj (i,j = 1, . . .,N), where d is a metric defined according to

Pennel and Reichler (2011):

dm = em−RMME, (2)
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Figure 2. Ranked histogram for the nine subregions subject to MM ensemble evaluation.

where the index “m” identifies the model, MME is the multi-

model error (the average of all individual model’s errors) and

R is the Pearson correlation coefficient between em (the error

of model m) and the MME. The removal of MME in Eq. (2)

makes model errors more dissimilar from one another and

uncovers “hidden” trends that are outweighed by overarching

commonalities. Indeed, the scope of the metric dm is to de-

termine similarities between models beyond the dominating

ones induced by shared inputs and/or common parametriza-

tions to the extent that the former are accounted for in the

average. The relationship (1) should be interpreted as: only

if all eigenvalues were equal to unity, would Eq. (1) take a

value of Neff =N , which corresponds to the situation where

all directions are equally important and all models add inde-

pendent contributions to the explanation of the observational

variability. On the other hand, if all error fields were similar,

only one eigenvalue would be non-zero and Neff = 1. Equa-

tion (1) provides an analytical estimate of the dimensions of

the subspace of models necessary to produce the information

of the whole ensemble.

For the HTAP MM ensemble of FetA09, Eq. (1) gives

Neff ranging between ∼ 2 and 4 for the regions analysed by

FetA09 compared to the original 21 models (Table 1). Thus,

approximately three-quarters of the available members par-

ticipate in the ensemble with already “accounted for” infor-

mation. This is a revealing result which indicates paradig-

matically the relevance of a pre-inspection of an ensemble.

What seemed like a largely populated ensemble turns out to

be incapable of capturing several degrees of freedom of ob-

servations and 2–4 members of 21 are sufficient to describe

the observational variability. One may ask: if so, why is the

average of the 21 models fitting so well with the observations

as presented in FetA09? The answers could be: pure chance,

since finally the model results participated out of good will,

and happened to be there in the right mixture. Just consider

what would have happened to the mean of the models should

one of the two most evident outliers in Fig. 1 decide to with-

draw from the exercise. Alternatively an explanation could be

the massive smoothing due to the monthly averaging along

with the high level of tuning of the models around specific

solutions that are normally distributed around the average ob-

served data.

2.1.3 Reducing ensembles

As demonstrated in the previous sections, the HTAP MM en-

semble is redundant and in particular 2–4 members are suffi-

cient to represent the observational variability while the rest

do not add any new information. Similarly, the extra elements

are likely to deteriorate any evaluation metrics applied to the

ensemble. At this point we know that the number of models

that are necessary and sufficient is smaller than 21 but we do

not know which combination of members for every grouping

produces the optimal ensemble.

Given N members, there are G=N !/[r!(N − r)!] possi-

ble groups of r elements. A straightforward way to identify

the optimal ensemble (optimal subset) and maximize the ac-

curacy of the ensemble is to analyse all the G combinations

www.atmos-chem-phys.net/15/2535/2015/ Atmos. Chem. Phys., 15, 2535–2544, 2015
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Figure 3. Maximum (dash-dotted), average (dashed), and minimum (continuous line) RMSE for all subsets of MM combinations and for the

nine subregions subject to MM ensemble evaluation.

Table 1. Number of effective models Neff for the subregions ob-

ject of the analysis – with reference to Fig. 2 of Fiore et al. (2009)

top panel, based on corr(di ,dj ). The nrec is the number of surface

receptors used for evaluation.

Subregion Neff

EU Mediterranean region (nrec = 6) 4.0

EU central region 0–1 km (nrec = 24) 3.1

EU central region 1–2 km (nrec = 11) 3.5

NE USA (nrec = 13) 1.9

SW USA (nrec = 5) 1.8

SE USA (nrec = 6) 1.9

Great Lakes USA (nrec = 8) 2.0

Mountainous USA (nrec = 10) 1.8

Japan EANET (nrec = 10) 2.6

of subsets of models and identify the one that minimizes the

root mean square error (RMSE). The latter is a measure of

the accuracy (the even distribution of model results from the

observed value), and high accuracy also improves precision

(a reduced spread/scatter of the model results around the ob-

served value). In principle, measurement errors should be

also taken into account in the procedure for reducing the en-

semble, but in cases where they are significantly smaller than

the model ones, the RMSE is sufficient measure.

In Fig. 3 we report the curves of minimum, mean and

maximum RMSE for the nine subregions used by FetA09

as a function of the number of members of ensembles (r =

2, . . .,21). The figure confirms the results on the number of

models necessary to maximize the ensemble performance

and tells us which combination of the 2–4 models out of 21

produces such improvement. The scores of the reduced en-

semble are reported in Table 2 and are compared against the

ones produced by the full ensemble mean. In all cases the

mean of the reduced ensemble improves the accuracy (from

31 % for NA NW to 71 % for NA Mountain and NA Lakes)

and precision (most notably for NA SE and NA NE). It can be

seen that in several regions the use of the full MM ensemble

of opportunity produces a clear deterioration in the ensemble

statistics. In Table 2 we report also the ranking of the mod-

els contributing to minimize the error in the subregions. As

can be seen from the table it is often the case that the er-

ror is minimized by a mixed rank (good performing and bad

performing) group of members. In fact, if the two best mod-

els have a high chance of being also highly correlated then

they would share some portion of information, thus resulting

in some redundancy. Therefore when considering the ensem-

ble mean of these two models, very little decrease in error

would be found compared to the individual models. Mathe-

matically, the theorems by Elashoff et al. (1967) and Cover

(1974) have proven two important results on the selection of

members and evaluation of individual scores: the best two

models are seldom the combination of two models that max-

imizes the score of an ensemble average, and furthermore,

the best single model may not appear in the ensemble max-

Atmos. Chem. Phys., 15, 2535–2544, 2015 www.atmos-chem-phys.net/15/2535/2015/
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Table 2. RMSE ranking and scores of the reduced MM ensemble mean for the subregions object of the analysis (RMSE: root mean square

error; PCC: Pearson correlation coefficient; σ : ratio of the modelled to the observed standard deviation).

Domain Ranking of the

Min RMSE

combination

Score

EU central 0–1 km 1, 15, 19 RMSE= 1.69 (2.65)

PCC= 0.98 (0.96)

σ = 0.99

EU central 1–2 km 7, 17, 18 RMSE= 3.35 (9.2)

PCC= 0.98 (0.95)

σ = 1.03

EU Medit 4, 6, 13, 15, 19 RMSE= 0.76 (1.44)

PCC= 0.99 (0.98)

σ = 1.0

NA SW 8, 10, 11, 15 RMSE= 2.0 (2.9)

PCC= 0.95 (0.96)

σ = 0.87

NA SE 1, 2, 4, 8 RMSE= 3.61 (10.27)

PCC= 0.77 (0.62)

σ = 0.83

NA NE 3, 5, 6, 7 RMSE= 3.01 (7.8)

PCC= 0.93 (0.90)

σ = 0.90

NA Mountain 1, 5, 12 RMSE= 1.53 (5.33)

PCC= 0.93 (0.90)

σ = 1.04

NA Lakes 1, 5, 6 RMSE= 1.89 (6.58)

PCC= 0.97 (0.91)

σ = 1.03

Japan EANET 12, 15 RMSE= 3.11 (5.70)

PCC= 0.96 (0.79)

σ = 0.66

imizing the feature score. As a result, the simple method of

making ranked combinations of models with the best individ-

ual features may prove unsuccessful, as also demonstrated

by e.g. Solazzo et al. (2013), Hannan and Hargreaves (2011),

Kioutsioukis and Galmarini (2014), Knutti et al. (2010) and

others. This confirms the importance of the inspection of the

available results prior to their use and of having at disposal

a large pool of models from which optimal subsets can be

extracted.

3 Impact on the results of emission sensitivity analysis

of an inspected vs. uninspected ensemble

An important part of FetA09 relates to the sensitivity study

on emission reduction. As part of the HTAP programme

the consequences of an emission reduction of 20 % anthro-

pogenic NOx in a specific part of the globe were investigated

using the MM ensemble available. Since we have demon-

strated that the MM ensemble used in FetA09 is redundant

and having identified the optimal number of elements and

the most accurate set of models, one may wonder how the

predicted consequences of the emission reduction on ozone

concentration would change if we used the reduced ensem-

ble.

We focused the analysis on the North American region

only. In FetA09 the use of the mean of the full ensem-

ble produced an average response in ozone concentration of

−0.76 ppb in the NA region as a consequence of the reduc-

tion of NOx emission by 20 %. Note that the NA region is

subjected to the emission reduction and therefore the inves-

tigation includes the whole of the USA and part of Mexico

(Fig. 1 of FetA09), and thus it has a spatial extension that

includes the five NA subregions described in Sect. 2 for the

evaluation. Furthermore, of the 21 models participating to the

www.atmos-chem-phys.net/15/2535/2015/ Atmos. Chem. Phys., 15, 2535–2544, 2015
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evaluation part of the exercise, only 14 model results were

made available for the simulation with reduced emission sce-

narios. Therefore, for the sake of consistency, we repeated

the redundancy inspection for the 14-member ensemble and

calculated the most accurate set through the minimization of

RMSE as described in Sect. 2.1.3. The size of the newly cal-

culated subsets ranges between 3 for the Lakes, Northeast,

Southwest and Southeast of the USA, and 4 for the Moun-

tainous region. The newly calculated set obtained from the

original 14-member ensemble produced an ozone concen-

tration reduction of 2.32 ppb on average across all regions,

which is 300 % more than that found by FetA09. The largest

variation is obtained for the Southeast region of the USA,

with an ozone concentration decrease of 5.30 ppb, which is

fivefold that obtained by FetA09. Such an analysis demon-

strates how conclusions can change if the ensemble is not

inspected a priori and reduced if necessary.

In the exploration of scenario or sensitivity for ideal con-

ditions like that presented in HTAP, one may be tempted to

construct an ensemble that only groups the best-preforming

model results in the evaluation against measurements, using

only those in the sensitivity or scenario case study, group-

ing them in an ensemble. This would be wrong in principle

or in other words would not produce the best ensemble by

definition, as demonstrated by the already cited theorems of

Elashoff et al. (1967) and Cover (1974).

4 Conclusions

Use of the multimodel ensemble is becoming very popu-

lar in geophysical studies. In this paper we have contrasted

the results from an ensemble of opportunity casually assem-

bled model of phenotypically different driving elements, with

the results obtained for when the same pool of models is

screened to eliminate redundancy and the optimal combina-

tion is used.

The case of HTAP phase 1 is taken here as an example

of a practice that is widespread, especially in the realm of

air quality, for atmospheric dispersion at all scales. A very

limited amount of studies correctly apply the technique. The

HTAP case has been selected for two main reasons:

– the very large number of models that participated in the

initiative and that were available for the ensemble anal-

ysis;

– the ensemble results were also used as the basis to assess

the consequences of an emission reduction strategy on

ozone in several regions of the world.

The HTAP ensemble has been assessed against available

measurements and the following conclusion were obtained:

– In spite of the large number of participating models, the

scarcity of time steps produces an important level of re-

dundancy as seen from the simple analysis of a ranked

histogram.

– A smaller subset of models performs much better when

compared to measurements and it is statistically more

significant.

– In the case of HTAP [FetA09] the objective of the study

was to determine, through a multi-model ensemble, the

impact of emission changes produced in one continent

on another. The analysis conducted on the impact over

the same continent where the emissions are produced,

reveals that the conclusions remain the same as those

produced by FetA09 but the values found are between 3

and 5 times higher when using a non-redundant ensem-

ble.

These are problems that are common to many multi model

studies and for which a minimum set of good practice rules

should be taken into account (Kioutsioukis and Galmarini,

2014). Among these, we point out that in order to have any

reasonable statistics the number of measurements should be

much greater than the number of ensemble members. Other-

wise the rank histogram is simply not a proper tool for the

analysis.

On a more general level, it is clear that the use of un-

inspected ensembles of opportunities is a mispractice that

could lead to under-exploitation of the latter and in some

case even wrong conclusions. Quantitative practices guaran-

tee the best possible diagnosis of the ensemble potential and

its full exploitation. The availability of monitoring informa-

tion is essential for the performance of the analysis presented

here and it could be argued that the optimal ensemble identi-

fication is prone to the time and spatial representativity of the

observations. This is true for the evaluation of any individual

model result that depends on the space and time distribution

of observation and the phenomenology represented.

The hemispheric transport case analysed here also raises

the issue of the space- and timescale in which a set of mod-

els verified in a certain area could be used. Verification of

the effect that an optimal set of an ensemble, based on data

pertaining to a specific region and time frame, has in another

region remains an important element of research – whether,

in other words, an optimal set selected for region A using

observations in region A can be used for a region B and in

a scenario or sensitivity analysis mode. Scale dependence of

the atmospheric processes involved could become an issue in

this case, and will have to be verified. On the other hand we

consider the use of the optimal set for scenario and sensitivity

study in the area where the observations used for its selection

have been collected much more appropriate than the use of

a full ensemble of opportunity. The selection of the optimal

set through observations on a base case scenario is equiva-

lent to the evolution of a single deterministic model and its

application for speculative scenario analysis or forecast ap-

plications.

The representativity of the multi-model ensemble com-

pared to observation and the minimization of redundancy

remain important issues. In the light of what we specu-
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late here, the use of multiscale multimodel ensembles, con-

structed with combinations of models covering different por-

tions of the atmospheric power spectrum, could greatly im-

prove representativity and provide coverage of the problem

in a much more detailed form. The combination of global-

and regional-scale results, for example, in one ensemble is a

possibility that will be explored in the framework of the next

phase of HTAP.
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