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Abstract. Information on what aerosol particle types are the

major sources of ice nucleating particles (INPs) in the atmo-

sphere is needed for climate predictions. To determine which

aerosol particles are the major sources of immersion-mode

INPs at a coastal site in Western Canada, we investigated

correlations between INP number concentrations and both

concentrations of different atmospheric particles and mete-

orological conditions. We show that INP number concen-

trations are strongly correlated with the number concentra-

tions of fluorescent bioparticles between −15 and −25 ◦C,

and that the size distribution of INPs is most consistent with

the size distribution of fluorescent bioparticles. We conclude

that biological particles were likely the major source of ice

nuclei at freezing temperatures between −15 and −25 ◦C at

this site for the time period studied. At −30 ◦C, INP num-

ber concentrations are also well correlated with number con-

centrations of the total aerosol particles≥ 0.5 µm, suggesting

that non-biological particles may have an important contri-

bution to the population of INPs active at this temperature.

As we found that black carbon particles were unlikely to be

a major source of ice nuclei during this study, these non-

biological INPs may include mineral dust. Furthermore, cor-

relations involving chemical tracers of marine aerosols and

marine biological activity, sodium and methanesulfonic acid,

indicate that the majority of INPs measured at the coastal site

likely originated from terrestrial rather than marine sources.

Finally, six existing empirical parameterizations of ice nucle-

ation were tested to determine if they accurately predict the

measured INP number concentrations. We found that none

of the parameterizations selected are capable of predicting

INP number concentrations with high accuracy over the en-

tire temperature range investigated. This finding illustrates

that additional measurements are needed to improve param-

eterizations of INPs and their subsequent climatic impacts.

1 Introduction

The formation of ice in the atmosphere can occur by two

primary mechanisms: homogeneous and heterogeneous ice

nucleation. Homogeneous nucleation can only occur at tem-

peratures below approximately −37 ◦C. However, heteroge-

neous nucleation can occur at all temperatures below 0 ◦C.

In the atmosphere, heterogeneous nucleation occurs on solid

or partially solid aerosol particles termed ice nucleating par-

ticles (INPs). INPs are a small subset of the total aerosol

population (Rogers et al., 1998) whose unique surface prop-

erties make them capable of lowering the energy barrier to

ice nucleation and hence cause freezing at warmer temper-

atures or lower supersaturations with respect to ice com-

pared to homogeneous nucleation. Four modes of nucleation

have been identified (Vali, 1985; Vali et al., 2015): deposi-

tion nucleation, where ice forms on the INP directly from

the gas phase; condensation freezing, where ice forms during
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the condensation of water onto the INP; immersion freezing,

where ice forms on an INP within a supercooled droplet; and

contact freezing, where the impact of a supercooled droplet

by an INP initiates freezing. In this study we focus on immer-

sion freezing, which is relevant to ice formation in mixed-

phase clouds.

The presence of INPs in the atmosphere can lead to

changes in the microphysical properties and lifetime of

clouds. As a result, a change in INP concentrations can in-

directly modify climate by changing cloud optical proper-

ties, lifetime, and cloud extent (e.g., Baker, 1997; Lohmann,

2002; Storelvmo et al., 2011; Creamean et al., 2013). Cur-

rently, the role of INPs in climate change is highly uncer-

tain (Boucher et al., 2013). To predict the role of INPs in

climate change and precipitation, information on what parti-

cle types are the major sources of INPs in the atmosphere is

needed. Possible candidates for INPs in the atmosphere in-

clude mineral dust, primary biological particles, and black

carbon (BC). Primary biological INPs are believed to be

dominant above −15 ◦C while below this temperature non-

biological INPs may be of greater importance (Murray et al.,

2012).

Mineral dust particles have long been known to be ef-

ficient INPs (Mason and Maybank, 1958). Numerous lab-

oratory studies have found that different types of mineral

dust particles can effectively nucleate ice in both the im-

mersion and deposition modes, for example kaolinite (Lüönd

et al., 2010; Wheeler and Bertram, 2012), Arizona test dust

(Kanji and Abbatt, 2010; Knopf and Koop, 2006; Marcolli

et al., 2007; Niedermeier et al., 2010), NX illite (Broadley

et al., 2012), natural Asian and Saharan dust samples (Field

et al., 2006; Kulkarni and Dobbie, 2010), and more re-

cently feldspar (Atkinson et al., 2013; Yakobi-Hancock et al.,

2013). Both field studies (DeMott et al., 2003; Cziczo et al.,

2004; Richardson et al., 2007; Klein et al., 2010; Chou et al.,

2011; Creamean et al., 2013) and modeling studies (Hoose et

al., 2010b) also suggest that mineral dust can be a dominant

INP in the atmosphere.

Primary biological particles have also been identified as a

possible source of INPs (e.g., Szyrmer and Zawadzki, 1997;

Möhler et al., 2007; Garcia et al., 2012; Hiranuma et al.,

2015). The ocean and continents are both potential sources

of ice-active primary biological particles (Hoose and Möhler,

2012; Murray et al., 2012). Model studies have shown that bi-

ological particles may not be important for ice nucleation on

a global and annual scale (Hoose et al., 2010a; Sesartic et al.,

2013; Spracklen and Heald, 2014) but may be important on

regional and seasonal scales, especially if concentrations of

biological particles are high or concentrations of other types

of INPs are low (Phillips et al., 2009; Sun et al., 2012; Bur-

rows et al., 2013; Creamean et al., 2013; Yun and Penner,

2013; Costa et al., 2014; Spracklen and Heald, 2014).

Ice-active biological particles from continental sources in-

clude bacteria (e.g., Maki et al., 1974; Lindow et al., 1978;

Maki and Willoughby, 1978; Kozloff et al., 1983), fungal

spores (e.g., Jayaweera and Flanagan, 1982; Tsumuki et al.,

1992; Richard et al., 1996; Iannone et al., 2011; Haga et al.,

2013; Morris et al., 2013), and pollen (e.g., Diehl et al., 2001,

2002; von Blohn et al., 2005; Pummer et al., 2012; Augustin

et al., 2013; Hader et al., 2014; O’Sullivan et al., 2015). In ad-

dition, strong correlations between number concentrations of

INPs and primary biological particles have been found dur-

ing studies in the Amazon and United States in forested re-

gions (Prenni et al., 2009, 2013; Huffman et al., 2013; Tobo

et al., 2013). Ice-active biological particles have also been

observed at high concentrations above a corn field during

combine harvesting (Garcia et al., 2012). Biological particles

have been observed in ice-crystal residuals of mixed-phase

clouds (e.g., Pratt et al., 2009), cloud water (e.g., Joly et al.,

2014), and snow samples (e.g., Christner et al., 2008; Morris

et al., 2008; Hill et al., 2014), and ice-active biological parti-

cles have also been associated with soils (Conen et al., 2011;

O’Sullivan et al., 2014; Tobo et al., 2014; Fröhlich-Nowoisky

et al., 2015).

Biological material found in the ocean that may be a

source of INP in the atmosphere include phytoplankton, bac-

teria, and biological material in the sea surface microlayer.

Studies have indicated that bacteria and phytoplankton found

in seawater and sea ice are a potential source of INPs in the

atmosphere (Schnell, 1975, 1977; Schnell and Vali, 1975;

Jayaweera and Flanagan, 1982; Parker et al., 1985; Alpert

et al., 2011; Knopf et al., 2011). Material in the sea sur-

face microlayer has also been found to exhibit ice activity

(Wilson et al., 2015), and previous work has indicated that

biological material generated during phytoplankton blooms

may be a source of INPs in the atmosphere (Prather et al.,

2013; DeMott et al., 2015). The modeling work of Burrows

et al. (2013) indicates that ice-active primary biological par-

ticles from the ocean may be particularly important in remote

regions such as the Southern Ocean.

BC particles are another potential type of INP in the at-

mosphere (Kärcher et al., 2007). Field studies have produced

varying results on the relative importance of these particles

as a source of ice nuclei in the atmosphere (e.g., Lin et al.,

2006; Cozic et al., 2008; Kamphus et al., 2010; Twohy et al.,

2010; Ebert et al., 2011; Corbin et al., 2012; Cziczo et al.,

2013; Knopf et al., 2014; McCluskey et al., 2014). Labora-

tory studies suggest that the ability of BC particles to act as

INPs may depend strongly on the method of generating these

particles, such as the fuel type (e.g., Diehl and Mitra, 1998;

Gorbunov et al., 2001; Möhler et al., 2005; Dymarska et al.,

2006; Kärcher et al., 2007; DeMott et al., 2009; Petters et al.,

2009; Friedman et al., 2011; Cziczo et al., 2013; Brooks et

al., 2014). For example, the combustion of some biomass fu-

els emits more efficient INPs when compared to the combus-

tion of some fossil fuels (e.g., Petters et al., 2009; McCluskey

et al., 2014). BC is generally considered to be less efficient

than mineral dust in the immersion mode (Hoose and Möh-

ler, 2012; Murray et al., 2012; and references therein). Mod-

els have suggested that carbonaceous aerosols may have a
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significant indirect effect on climate if they efficiently nucle-

ate ice (e.g., Lohmann, 2002; Liu et al., 2009; Penner et al.,

2009; Yun and Penner, 2013).

To determine which aerosol particles are the major source

of INPs in the immersion mode at a coastal site in west-

ern Canada, we investigate correlations between INP num-

ber concentrations and both concentrations of different atmo-

spheric particle types and meteorological conditions. Mea-

surements were conducted in August 2013 as part of the

NETwork on Climate and Aerosols: addressing key un-

certainties in Remote Canadian Environments (NETCARE)

project (http://netcare-project.ca/). A primary goal of the

study was to investigate whether primary biological particles

and BC particles are major sources of INPs at this site and

determine if the ocean contributes to the measured INP pop-

ulation. In addition, we also test the ability of parameteriza-

tions reported in the literature at predicting the INP number

concentrations measured at this coastal site.

2 Methods

2.1 Site description and instrument location

Measurements were performed at Amphitrite Point

(48.92◦ N, 125.54◦W) on the west coast of Vancouver

Island in British Columbia, Canada. This was also the

location of studies on ozone (McKendry et al., 2014) and

cloud condensation nuclei (Yakobi-Hancock et al., 2014).

Amphitrite Point (Fig. 1) is located approximately 2.2 km

south of the town of Ucluelet (population of 1627 in 2011;

Statistics Canada, 2012). The largest nearby population

centers are Nanaimo 120 km to the east, Victoria 170 km to

the southeast, and Vancouver 180 km to the east. This region

has a temperate maritime climate, characterized by warm

summers, mild winters, and relatively high levels of cloud

cover and precipitation. According to the Köppen–Geiger

classification scheme (Kottek et al., 2006), the climate type

is Cfb, which denotes a mild midlatitude and moist climate

(C) with no dry season (f), and a moderate summer where

the average hottest-month temperature is < 22 ◦C and at

least 4 months have an average temperature > 10 ◦C (b).

Local forests contain predominantly coniferous tree species

including western hemlock, western redcedar, and Douglas

fir that is characteristic of most low-elevation sites along

the west coast of Canada (Austin et al., 2008). The Pacific

Ocean is west and south of the site, where the mixing of

iron-rich coastal waters with nitrate-rich oceanic waters

produces a zone of high primary productivity (Whitney et

al., 2005; Ribalet et al., 2010). Measurements were carried

out from 6 to 27 August 2013. Specifics on the sampling

times (i.e., start and end times) are given in Table S1 in the

Supplement.

Aerosol instrumentation was located in one of two mobile

laboratories; one specific to the NETCARE project (labeled

Figure 1. A satellite image of the sampling site: (1) location of

the MOUDIs and the WIBS-4A, (2) location of the MAAP, (3)

Amphitrite Lighthouse where most meteorological data was col-

lected, and (4) a station of the Canadian Coast Guard with sup-

porting infrastructure. The image was modified from Bing Maps,

2014 (http://www.bing.com/maps/). Inset: the location of the sam-

pling site in British Columbia, Canada.

1 in Fig. 1) and one operated by Environment Canada, the

British Columbia Ministry of Environment, and Metro Van-

couver (labeled 2 in Fig. 1). Aerosols were sampled through

louvered total suspended particulate inlets (Mesa Labs Inc.,

Butler, NJ, USA) or louvered PM10 inlets (Thermo Scien-

tific, Waltham, MA, USA) atop masts extending 5.5 m a.g.l.

The two mobile laboratories were approximately 20 m above

mean sea level and 100 m from the high tide line of the Pa-

cific Ocean (McKendry et al., 2014). A row of trees and

shrubs approximately 2–10 m in height stood between the

laboratories and the rocky shoreline. Adjacent to the labora-

tories, on their seaward side, were the Amphitrite Lighthouse

(labeled 3 in Fig. 1) and the Wild Pacific Trail, local tourist

attractions and a source of foot traffic during fair weather.

Immediately north and east of the site was a station of the

Canadian Coast Guard (labeled 4 in Fig. 1).

The majority of the meteorological parameters reported

in this study were measured at Amphitrite Lighthouse, lo-

cated approximately halfway between the mobile laborato-

ries and the ocean. Relative humidity and temperature were

monitored using an HMP45C probe (Campbell Scientific,

Logan, UT, USA) with accuracies of ±3 % and ±0.2 ◦C,

respectively. Wind direction and wind speed were deter-

mined by a model 05305L Wind Monitor (R. M. Young,

Traverse City, Michigan, USA) to a respective accuracy of

±3◦ and±0.2 m s−1. Measurements of wind speed were also

obtained from a moored buoy located in La Perouse Bank,

approximately 35 km to the WSW of the Amphitrite Point

sampling site (station 46206; 48.84◦ N, 126.00◦W; National

Data Buoy Center, 2013). The cup anemometer used to mea-

sure wind speed on the buoy was positioned at 5 m a.s.l.
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2.2 Ice nucleating particle measurements

INP number concentrations in the immersion mode were de-

termined using the micro-orifice uniform deposit impactor–

droplet freezing technique (MOUDI-DFT; Mason et al.,

2015). A Model II 120R MOUDI (MSP Corp., Shoreview,

MN, USA) collected size-fractionated aerosol samples by in-

ertial separation (Marple et al., 1991) onto hydrophobic glass

cover slips (HR3-215; Hampton Research, Aliso Viejo, CA,

USA). To compensate for the thickness of the hydrophobic

glass cover slips, spacers were placed between the MOUDI

stages. Custom substrate holders were added to the MOUDI

impaction plates to maintain consistent positioning of the hy-

drophobic glass cover slips within the impactor (Mason et

al., 2015). Samples from MOUDI stages 2–8 were used in

this study, corresponding to a particle size range of 0.18–

10 µm (50 % cutoff aerodynamic diameter). Thirty-four sets

of MOUDI samples were collected; 18 during the day and

16 at night. The average collection time of a MOUDI sample

was 7.8 h. Details of each INP sampling period are available

in Table S1.

The ice-nucleating ability of particles collected by the

MOUDI was then determined by the droplet freezing tech-

nique (DFT; Koop et al., 2000; Iannone et al., 2011; Mason

et al., 2015; Wheeler et al., 2015). Within 24 h of collec-

tion, samples were placed in a temperature- and humidity-

controlled flow cell that was coupled to an optical micro-

scope (Axiolab; Zeiss, Oberkochen, Germany) with a 5×

magnification objective. At a sample temperature of 0 ◦C

a humidified gas flow was introduced, resulting in the for-

mation of water droplets on the sample. Following droplet

growth by condensation and coalescence, the droplet size

was decreased with a dry gas flow to a final size of approxi-

mately 80–160 µm in diameter. On average, more than 99 %

of particles on the surface of the hydrophobic glass cover

slip were incorporated into droplets by this procedure. Clos-

ing valves upstream and downstream of the cell then isolated

the flow cell, and the sample temperature was lowered at a

constant rate of −10 ◦C min−1 to −40 ◦C. This cooling rate

was chosen to minimize the freezing of a liquid droplet by

contact with a growing ice crystal. Recent work suggests that

changing the cooling rate by an order of magnitude may lead

to a shift in freezing temperatures of approximately 0.5–2 ◦C

(Murray et al., 2011; Broadley et al., 2012; Welti et al., 2012;

Wright and Petters, 2013; Wright et al., 2013; Wheeler et

al., 2015). During droplet growth, evaporation, and cooling,

a CCD camera connected to the optical microscope recorded

a digital video of the sample. Using the video timestamp and

a resistance temperature detector positioned within the flow

cell, which was calibrated against the melting point of wa-

ter droplets approximately 100 µm in diameter, the freezing

temperature of each droplet was found by manually noting

the increase in droplet opacity immediately following ice nu-

cleation.

Since a small fraction of the sampled particles (less than

1 % on average) was not included in the droplets, there was

the possibility of deposition nucleation as well. However,

based on an analysis of the videos recorded during the ice

nucleation experiments, fewer than 3 % of all freezing events

observed were the result of deposition nucleation. Due to

the low occurrence of deposition nucleation, only immersion

freezing results are reported.

The atmospheric number concentration of INPs within the

size cut of each MOUDI stage, [INPs(T )], was evaluated us-

ing the following equation:

[INPs(T )] = − ln

(
Nu(T )

No

)
No

(
Adeposit

ADFTV

)
fnufne, (1)

where Nu(T ) is the number of unfrozen droplets at temper-

ature T , No is the total number of droplets, Adeposit is the

total area of the sample deposit on the MOUDI impaction

plate, ADFT is the area of the sample analyzed by the DFT,

V is the volume of air sampled by the MOUDI, fnu is a

correction factor to account for changes in particle concen-

tration across each MOUDI sample (because the DFT an-

alyzes only a fraction of the entire sample), and fne is a

correction factor to account for the uncertainty associated

with the number of nucleation events in each experiment

following Koop et al. (1997). Additional details are avail-

able in Mason et al. (2015). Equation (1) takes into account

the possibility of multiple INPs being contained in a single

droplet using the method of Vali (1971). The total INP num-

ber concentration was found by summing the INP number

concentrations over all analyzed MOUDI stages. Here we

report INP data between −15 and −30 ◦C as few (1.3 %)

droplets froze at temperatures >−15 ◦C, whereas in some ex-

periments all droplets were frozen at temperatures <−30 ◦C,

which prohibited the calculation of INP number concentra-

tions by Eq. (1). INP number concentrations have been ad-

justed to standard temperature and pressure.

2.3 Total and fluorescent aerosol measurements with

sizes ≥ 0.5 µm

A model-4A waveband integrated bioaerosol sensor (WIBS-

4A; Droplet Measurement Technologies, Boulder, CO, USA)

was used to find both the total and fluorescent aerosol num-

ber concentrations with sizes ≥ 0.5 µm. Particles that enter

the WIBS-4A first transect a continuous-wave 635 nm diode

laser. The forward-scattered light from the continuous-wave

laser is detected with a quadrant photomultiplier tube for the

determination of particle size and asymmetry factor based

on the signal intensity and asymmetry, respectively. The de-

tected forward-scattered light also triggers excitation pulses

from xenon lamps, the first at a wavelength of 280 nm and

the second at 370 nm. The excitation pulses may lead to flu-

orescent emission from the particle, which is then collected

in two wavelength ranges: 310–400 nm (short wavelength re-

gion) and 420–650 nm (long wavelength region). This results
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in sample information provided for each particle in three flu-

orescence channels: excitation at 280 nm, emission in the

short wavelength region (FL1); excitation at 280 nm, emis-

sion in the long wavelength region (FL2); and excitation at

370 nm, emission in the long wavelength region (FL3). De-

tailed descriptions of the instrument can be found in Kaye et

al. (2005), Gabey et al. (2010), and Healy et al. (2012a). The

sample and total flow rates of the WIBS-4A were 0.63 and

2.3 L min−1, respectively, and number concentrations have

been adjusted to standard temperature and pressure.

The fluorescent channels used in the WIBS-4A allow for

the detection of fluorophores characteristic of biological ac-

tivity. These fluorophores include the amino acid tryptophan,

the cofactor NAD(P)H, and the micronutrient riboflavin.

While some non-biological species such as soot, mineral

dusts, polycyclic aromatic hydrocarbons, secondary organic

aerosols, and humic-like substances can produce a fluores-

cent signal (Pan et al., 1999; Sivaprakasam et al., 2004;

Bones et al., 2010; Gabey et al., 2011; Pöhlker et al., 2012;

Lee et al., 2013), the number of fluorescent particles is gen-

erally considered to be a lower limit to the number of pri-

mary biological particles (Huffman et al., 2010, 2012; Pöh-

lker et al., 2012). In addition, fluorescence microscopy mea-

surements of samples collected during this field study show

high concentrations of fluorescent biological particles (see

below). Therefore, fluorescent particles detected using the

WIBS-4A are hereafter referred to as fluorescent bioparti-

cles.

Although the WIBS was used to determine the total

and fluorescent aerosol number concentrations with sizes

≥ 0.5 µm, it should be noted that the counting efficiency of

the WIBS for polystyrene latex spheres with particle diame-

ters of 0.5 µm is roughly 50 % (Healy et al., 2012b). Hence,

the concentration of particles reported here in the 0.5–1 µm

size range should be considered as the lower limits.

2.4 Fluorescence microscopy

Aerosol samples were collected onto glass cover slips us-

ing a custom single-stage impactor operating at a flow rate

of 1.2 L min−1 with a 50 % cutoff aerodynamic diameter of

0.5 µm. Prior to sample collection, the substrates were coated

with a thin layer of high viscosity grease (Baysilone grease,

Bayer, Germany) to reduce particle bounce.

Fluorescence microscopy images were taken on a BZ-

9000 fluorescence microscope (Keyence, Inc., Osaka, Japan)

equipped with a 120 W super high-compression mercury

lamp and a 1.5-megapixel monochrome CCD camera. Im-

ages were obtained using the following fluorescence filters:

OP-66834 DAPI-BP (λex = 360/20 nm, λdichroic = 400 nm,

λabs = 460/25 nm), OP-66836 GFP-BP (λex = 470/20 nm,

λdichroic = 495 nm, λabs = 535/25 nm), and OP-66838

Texas Red (λex = 560/20 nm, λdichroic = 595 nm,

λabs = 630/30 nm). Filter specifications are given as

wavelength of maximum absorbance or excitation and full

width at half maximum (λ/FWHM).

2.5 Black carbon (BC) measurements

BC mass concentrations were measured using a multi-angle

absorption photometer (MAAP model 5012; Thermo Sci-

entific, Franklin, MA, USA). Detailed descriptions of the

MAAP are available in Petzold et al. (2002), Petzold and

Schönlinner (2004), and Petzold et al. (2005). Within the

MAAP, particles are continuously collected on a glass fiber

filter. The intensity of transmitted and forward-scattered light

through the aerosol particle layer and filter matrix is mea-

sured by a photodetector located beneath the filter at a fre-

quency of 1 Hz. The signal strength is attenuated by the

presence of both light-absorbing particles and particles that

cause backscattering. As the angular distribution of backscat-

tered light is related to the fraction of non-absorbing parti-

cles (Petzold and Schönlinner, 2004), four additional pho-

todetectors located above the filter are used to quantify the

non-absorbing component of the sample. The absorbance by

the collected aerosol is then related to a mass of BC using

a mass-specific absorption coefficient of 6.6 m2 g−1. Mass

concentrations have been adjusted to standard temperature

and pressure.

Non-BC material such as mineral dust and brown carbon

can also absorb 670 nm wavelength light used in the MAAP,

albeit with smaller absorption coefficients than BC (Yang

et al., 2009). We follow the recommendation of Petzold et

al. (2013) for BC data derived from optical absorption meth-

ods and hereafter refer to MAAP data as measurements of

equivalent black carbon (eBC).

2.6 Tracers of anthropogenic aerosols

Measurements of CO, NOx , and SO2 were used to iden-

tify anthropogenic contributions to the sampled air masses

as sources of these gases include fossil fuel combustion and

biomass burning (Galanter et al., 2000; Gadi et al., 2003;

United States Environmental Protection Agency, 2014). CO

concentrations were monitored using a Thermo Fisher Sci-

entific 48i-TL, an absorbance-based analyzer using infrared

light at a wavelength of 4.6 µm. NOx concentrations were

monitored using chemiluminescence with a Thermo Fisher

Scientific 42i. This instrument first converts NO2 to NO,

which then reacts with ozone to produce luminescence of in-

tensity in proportion to the level of NOx . A Teledyne API

T100U, using fluorescence emitted by SO2 under excita-

tion by ultraviolet light, monitored SO2 concentrations. Data

were collected for each instrument at a frequency of 1 min−1.

2.7 Ion measurements

Size-resolved aerosol samples were collected on Teflon® fil-

ters (Pall Corporation, Port Washington, NY, USA) using

a second MOUDI (model 110R). Samples were collected

www.atmos-chem-phys.net/15/12547/2015/ Atmos. Chem. Phys., 15, 12547–12566, 2015
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on the inlet, stage 1, and stages 7–10 of the MOUDI with

stages 2–6 being removed prior to collection. The flow rate

through the MOUDI was on average 24 L min−1, resulting in

a collected size range of 0.068 to > 20 µm (50 % cutoff aero-

dynamic diameter). Collection times ranged from approxi-

mately 45 to 49 h and samples were stored at 4 ◦C for a pe-

riod of 1 month before analysis.

Mass concentrations of sodium and methanesulfonic acid

(MSA) were found using cationic and anionic chromatogra-

phy following the method of Phinney et al. (2006). Briefly,

filters were extracted by sonication in 10 mL of deionized

water for 1 h, and samples were analyzed with a Dionex

DX600 ion chromatograph using an AS11-HC column and

a CS12 column for anions and cations, respectively. Filter

blanks were measured to be below the limit of detection for

both analytes. Mass concentrations were adjusted to standard

temperature and pressure.

2.8 Back trajectories

Back trajectories spanning a period of 72 h were calculated

for each sampling period using the Hybrid Single-Particle

Lagrangian Integrated Trajectory (HYSPLIT4) model of the

National Oceanographic and Atmospheric Administration

and the GDAS1 (Global Data Assimilation System) mete-

orological data archive (Draxler and Rolph, 2014). To deter-

mine if the air mass changed during a sampling period, back

trajectories were initiated at the beginning of the sampling

period and every 2 h until the end of the sampling period

from a height of 5.5 m. Trajectories were also initiated from

heights of 50 and 150 m a.g.l. for cases where the trajectories

approached ground level. The conclusions in this study were

not sensitive to the height at which the back trajectories were

initiated.

Back trajectories were used to assign each sampling period

to one of four general air mass categories: (i) coastal NW,

where boundary layer air (defined here as an altitude below

1000 m) had traversed land northwest of the sampling site

during its approach; (ii) coastal SE, where boundary layer air

had traversed land southeast of the sampling site during its

approach; (iii) Pacific Ocean, where boundary layer air had

approached directly from the ocean and had not encountered

land prior to arrival at the sampling site; and (iv) free tro-

posphere, where the air mass had spent more than 50 % of

the 72 h back trajectory in the free troposphere. In four sam-

pling periods, back trajectories initiated at different times in

the sampling period indicated that the air mass changed dur-

ing sampling, for example, as a change in the predominant

altitude of the air mass from the free troposphere to the ma-

rine boundary layer. In these situations, the air mass category

to which the majority of the back trajectories belonged was

selected as the air mass category of the sample.

Figure 2. The 72 h HYSPLIT4 back trajectories of the air masses

analyzed at the coastal site (black star) during INP sampling peri-

ods. Each back trajectory was initiated from a height of 5.5 m a.g.l.

and at the midpoint of the sampling period.

3 Results and discussion

3.1 Back trajectories and the dependence of INP

concentrations on air mass classification

The 72 h back trajectories that were initiated at the mid-

point of each INP sampling period are shown in Fig. 2. The

back trajectories indicate that 88 % of the air masses sam-

pled spent the majority of their 72 h prior to reaching the site

over the Pacific Ocean within the marine boundary layer (est.

< 1000 m). Furthermore, air masses approached the sampling

site from an onshore direction with minimal flow over land

apart from coastal regions. Average local wind directions of

89–297◦ during INP sampling support this finding. In Fig. S1

in the Supplement, the back trajectories shown in Fig. 2 are

color-coded by the classification of the air mass.

Shown in Fig. 3 is the number concentration of INPs as a

function of time, color-coded by the classification of the air

mass. There is no obvious trend between INP number con-

centrations and air mass type at temperatures between −15

and −25 ◦C. At −30 ◦C, INP number concentrations asso-

ciated with air masses from the coastal SE (red points) ap-

pear to be higher than INP number concentrations associated

with other air masses, but the statistics are low for the coastal

SE air masses, especially at −30 ◦C. Figure 4 shows that the

mean values for the different air mass types vary by less than

a factor of 2.6. We conclude that INP number concentrations

did not exhibit a strong dependence on the type of air mass

sampled. The correlation analysis presented in Sects. 3.2–3.5

uses the entire data set (i.e., the data were not differentiated

based on air mass type). We further explore the dependence

on air mass type in Sect. 3.6.
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Figure 3. INP number concentrations as a function of date deter-

mined at ice-activation temperatures of (a) −15, (b) −20, (c) −25,

and (d) −30 ◦C. Error bars represent the upper and lower bounds

to the INP number concentration as defined by uncertainty in the

MOUDI-DFT. The symbols are color-coded by air mass category

(see Sect. 2.8 for details). Fewer data points are available at−30 ◦C

as INP number concentrations can only be determined to the tem-

perature where all droplets are frozen and Eq. (1) becomes unde-

fined.

3.2 Are biological particles a major source of ice

nuclei?

To investigate if biological particles are an important source

of INPs at the coastal site, we determined correlations be-

tween INPs and fluorescent bioparticles. In the following cor-

relation analysis, WIBS-4A data are limited to particle sizes

of 0.5–10 µm to better match the size range of the MOUDI-

DFT. The correlation coefficients (R) of linear fits to the data

are presented in Table 1 with correlation plots at a freezing

temperature of −25 ◦C shown in Fig. 5 and plots at −15,

−20, and −30 ◦C given in the Supplement. Here we use the

scheme of Dancey and Reidy (2011) where correlations with

an R value of 0.1–0.3, 0.4–0.6, and 0.7–0.9 are classified as

weak, moderate, and strong, respectively. In the discussion,

correlations with statistical significance (P value < 0.05) are

emphasized.

With values of R between 0.74 and 0.83, INP number con-

centrations are strongly correlated with the number concen-

trations of fluorescent bioparticles for INPs active between

−15 and −25 ◦C (Figs. 5a, S3; Table 1). At these temper-

atures, fluorescent bioparticles have the largest correlation

coefficients with INPs compared to all of the other param-

eters investigated. This suggests that biological particles are

an important component of the INP population. Using similar

fluorescence techniques, others have also noted strong corre-

lations between INPs and primary biological particles during

ambient measurements (Prenni et al., 2009, 2013; Huffman

et al., 2013; Tobo et al., 2013).

Figure 4. Mean INP number concentrations found in each of the

four categories of air masses sampled at (a)−15, (b)−20, (c)−25,

and (d) −30 ◦C. The scheme for air mass classification is given in

Sect. 2.8. Uncertainties are given as the standard error of the mean.

To further investigate the relationship between biological

particles and INPs, we compared the size distributions of

INPs with the size distributions of total particles and flu-

orescent bioparticles, using samples where all three mea-

surements were available. Shown in Fig. 6a–d are the aver-

age number concentrations of INPs as a function of particle

size for droplet freezing temperatures ranging from −15 to

−30 ◦C. The shapes of all four INP size distributions were

nearly identical with a single mode at an aerodynamic diam-

eter of 3.2–5.6 µm.

Also shown in Fig. 6 are the average size distributions of

total particles and fluorescent bioparticles as measured with

the WIBS-4A over the size range of 0.5–10 µm. As men-

tioned in Sect. 2.3, due to the decrease in WIBS counting ef-

ficiency at particle sizes below approximately 0.7 µm (Healy

et al., 2012b), the number concentration of particles sized

0.5–1.0 µm should be considered a lower limit.

The size distribution of total particles (Fig. 6e) was found

to be unimodal with the mode at 0.5–1.0 µm. Fluorescent

bioparticles were bimodally distributed (Fig. 6f) with one

mode at 1.8–3.2 µm and another at 0.5–1.0 µm. Figure 6 il-

lustrates that the size distributions of INPs are more closely

related to the size distribution of fluorescent bioparticles than

total particles, suggesting that biological particles may have

had a greater contribution to the INP population than non-

biological particles.

In addition to the WIBS-4A, the presence of biological

material in sampled air was verified by fluorescence mi-

croscopy. Images of a sample collected on 11 August 2013

are shown in Fig. 7 as an example. The fraction of parti-

cles exhibiting fluorescence on this day based on the WIBS-

4A was close to the campaign average value; 7.1 % vs. an

average of 7.8 %. The image here shows a sample contain-
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Table 1. Correlation coefficients (R) for linear regression analyses of INPs vs. fluorescent bioparticles, total aerosol particles, eBC, sodium,

MSA, and wind speeda. Correlations with statistical significance (P < 0.05) are shown in bold.

Relation to the INP number concentration

−15 ◦C −20 ◦C −25 ◦C −30 ◦C

Measurement R P b nc R P n R P n R P n

Fluorescent

bioparticles 0.74 < 0.01 28 0.77 < 0.01 28 0.83 < 0.01 28 0.66 < 0.01 23

[0.5–10 µm]

Total particles

[0.5–10 µm] 0.33 0.04 28 0.36 0.03 28 0.49 < 0.01 28 0.66 < 0.01 23

eBC 0.47 < 0.01 34 0.59 < 0.01 34 0.60 < 0.01 34 0.25 0.11 27

Sodium −0.35 0.25 6 0.13 0.40 6 0.32 0.27 6 0.82 0.20 3

MSA 0.17 0.38 6 0.51 0.15 6 0.27 0.30 6 0.00 0.50 3

(Wind speed)3.41

Lighthouse 0.05 0.39 34 0.01 0.48 34 0.15 0.19 34 0.48 < 0.01 27

(Wind speed)3.41

Buoy 0.04 0.40 34 0.04 0.40 34 0.19 0.14 34 0.55 < 0.01 27

a Using the power law dependence of whitecap coverage on wind speed found by Monahan and Muircheartaigh (1980), wind speed was raised to the power of

3.41. b The P value is a conditional probability that is the probability of obtaining an R value equal to or greater than the given R value if there is no correlation

between INPs and the given parameter. c n represents the number of data points used in determining the correlation.

ing many biological particles, identified by their blue color

which is characteristic of biological fluorophores such as pro-

teins and coenzymes (Pöhlker et al., 2012). Most of these

biological particles exhibited similar morphology with an el-

lipsoidal shape, approximately 11.9 µm in length× 4.1 µm in

width, and transverse septa. Morphologically, many of these

appear to be fungal macroconidia, consistent with the phys-

ical attributes of ascospores (Carlile et al., 2001; Mahesh-

wari, 2005; Leslie and Summerell, 2006; Webster and We-

ber, 2007). Fungal spores can be ice-active at the tempera-

tures used here (Jayaweera and Flanagan, 1982; Pouleur et

al., 1992; Tsumuki et al., 1992; Richard et al., 1996; Iannone

et al., 2011; Haga et al., 2013, 2014; Fröhlich-Nowoisky et

al., 2015), and the size of the bioparticles observed in Fig. 7

(an estimated aerodynamic diameter of 4.8 µm assuming a

prolate spheroid shape and unit density) matches the mode in

the INP size distributions of Fig. 6. Predicting the optical di-

ameter that the WIBS-4A would measure for such a particle

is difficult, but it is reasonable that they could be detected as

slightly larger or smaller depending on the axis upon which

the incident light impinges.

3.3 Is black carbon a major source of ice nuclei?

Sources of BC at the sampling site include local marine ship

traffic. Atmospheric size distributions obtained at other lo-

cations demonstrate that most BC particles are smaller than

1 µm (Schwarz et al., 2008, 2013; Schroder et al., 2015). As

is shown in Fig. 6, the majority of INPs identified here were

larger than 1 µm at all of the temperatures studied. It is there-

fore likely that BC particles were not a major source of INPs

at the sampling site. As correlations between INPs and eBC

are moderate at−15 to−25 ◦C (R = 0.47–0.60, Table 1), we

also investigated correlations between INPs and the anthro-

pogenic tracers CO, NOx , and SO2. The correlations between

INPs and CO, NOx , and SO2 are not statistically significant

(see Table S2), further suggesting that BC was not a major

INP source.

3.4 Are particles from the ocean a major source of ice

nuclei?

Situated in a region of high oceanic primary productivity

(Whitney et al., 2005; Ribalet et al., 2010) with onshore

winds, particles of marine origin are a potential source of

INPs at the sampling site. Therefore, correlations between

INP number concentrations and tracers of marine aerosols

and marine biological activity were explored. Since primary

marine aerosols are ejected from the ocean by the bursting

of entrained bubbles (Blanchard and Woodcock, 1957; Blan-

chard, 1963, 1989; Andreas, 1998), sodium was used as a

tracer of primary particles from the ocean. The strength of

correlations between INPs and sodium are given in Table 1.

Although the correlations range from weakly-to-moderately

negative to strongly positive, the large P values (0.20 or

greater) indicate that the results are not statistically signif-

icant. Due in part to the long sampling times required for
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Figure 5. Number concentrations of INPs active at −25 ◦C plotted

against concentrations of (a) fluorescent bioparticles of 0.5–10 µm,

(b) total particles of 0.5–10 µm, (c) eBC, (d) sodium, (e) MSA, and

(f, g) (wind speed)3.41 based on the power law function of Monahan

and Muircheartaigh (1980) where wind speed was in units of meters

per second. Linear fits are shown with corresponding correlation

coefficients (R) and probability values (P).

the sodium measurements, only three to six data points were

available for the sodium correlation analysis.

MSA is often used as a marker for marine biological

productivity (Saltzman et al., 1986; Savoie et al., 1994;

Sorooshian et al., 2009; Gaston et al., 2010; Becagli et

al., 2013) because it is chemically stable and its precursor,

dimethyl sulfide, is produced by primary biological activ-

ity in the ocean (Andreae et al., 1985; Charlson et al., 1987;

Keller, 1989; Bates et al., 1992; Kettle et al., 1999). As INP

number concentrations are closely correlated to bioparticles

at warmer droplet freezing temperatures, one may expect cor-

relations of a similar magnitude between INPs and MSA if

the marine environment was indeed acting as an important

source of biological INPs. As is shown in Table 1, no statisti-

cally significant correlations are found as P values are large

(0.15–0.50).

Finally, correlations between wind speed and INP num-

ber concentration were investigated using wind speed data

Figure 6. Mean number concentrations as a function of size for

INPs active at (a) −15, (b) −20, (c) −25, and (d) −30 ◦C, and

total particles between 0.5 and 10 µm (e) and fluorescent bioparti-

cles between 0.5 and 10 µm (f). Here we use only samples where

both the MOUDI-DFT and WIBS-4A were operating. Uncertain-

ties are given as the standard error of the mean. As INP number

concentrations can only be determined at temperatures lower than

the temperature where all droplets are frozen and Eq. (1) becomes

undefined, fewer samples are represented at −30 ◦C. Number con-

centrations below 0.5 µm were not measured by the WIBS-4A for

panels (e) and (f) but plot axes are consistent for easier comparison

of the size distributions.

from both the site and an offshore buoy. As the dominant

source of bubble entrainment in the oceans is breaking waves

(O’Dowd and de Leeuw, 2007), the rate of sea-spray pro-

duction is dependent in part on wind speed. For this correla-

tion, wind speed was first raised to the power of 3.41 using

the power law of Monahan and Muircheartaigh (1980) that

relates whitecap coverage to wind speed. The correlations

found at −30 ◦C are statistically significant (P value < 0.05),

but the magnitude of the correlation coefficients is only mod-

erate (R = 0.48–0.55; see Table 1). The average wind speed

during INP sampling exceeded the onset speed for whitecap

formation, approximately 4 m s−1 (O’Dowd and de Leeuw,

2007), in only 47 and 56 % of samples when using the light-

house and buoy data, respectively, and daily observations at

the site noted infrequent wave activity. Furthermore, some of

the highest INP concentrations were found when the wind

speed was less than 4 m s−1. The correlation between local

wind direction and INP concentrations was also weak (R

ranged from −0.19 to −0.32; not shown).
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Figure 7. Fluorescence microscopy images of an aerosol sample

collected on 11 August 2013: (a) bright-field image, (b) an overlay

of red, green, and blue fluorescence channels. A blue coloration is

characteristic of biological material (Pöhlker et al., 2012).

All correlations between INPs and parameters indicative

of marine aerosols and marine biological activity are either

moderate at best or not statistically significant. For these rea-

sons, correlations involving sodium, MSA, and wind speed

do not provide strong evidence that marine particles were

a major contributor to the INP population. Recent measure-

ments have shown the presence of INPs in the sea surface

microlayer (Wilson et al., 2015). Our measurements do not

contradict these findings since we do not rule out the ocean as

a source of INPs. One possibility is that biological INPs re-

leased by local vegetation were present in sufficient numbers

to overwhelm the presence of any INPs from the ocean.

3.5 What is the major source of ice nuclei active at

−30 ◦C?

At warmer droplet freezing temperatures (−15 to −25 ◦C),

the strongest correlations are observed between number con-

centrations of fluorescent bioparticles and INPs. In contrast,

at −30 ◦C the strength of correlations between INPs and flu-

orescent bioparticles and INPs and total particles > 0.5 µm in

diameter are equal (R = 0.66; Table 1). It is therefore likely

that both biological and non-biological particles were impor-

tant sources of INPs active at −30 ◦C. Good correlations be-

tween INPs and total particles > 0.5 µm have also been ob-

served in several other field studies (e.g., DeMott et al., 2010;

Chou et al., 2011; Field et al., 2012; Prenni et al., 2013; Tobo

et al., 2013; Jiang et al., 2015).

Since the INP size distributions of Fig. 6 and the correla-

tions of Table 1 do not provide strong evidence of BC par-

ticles or the ocean being a major source of INPs active at

−30 ◦C, it is possible that mineral dust was a major source of

INPs as mineral dust particles are known to efficiently nucle-

ate ice at this temperature (e.g., DeMott et al., 2003; Cziczo

et al., 2004; Field et al., 2006; Möhler et al., 2006; Marcolli et

al., 2007; Zimmermann et al., 2008; Klein et al., 2010; Nie-

dermeier et al., 2010; Chou et al., 2011; Atkinson et al., 2013;

Yakobi-Hancock et al., 2013; Wheeler et al., 2015). The size

distribution of INPs did not drastically change between −25

and −30 ◦C (Fig. 6c, d), and the dominant mode in the sur-

face area distribution of airborne mineral dust (Maring et al.,

2003) can occur at approximately the same size range as bio-

logical INPs (Després et al., 2012). While in a very different

ecosystem and climatic region, Prenni et al. (2009) noted that

the relative contribution of mineral dust particles to the total

number of INPs in the Amazon region increased as ice nu-

cleation temperature decreased. Only below −27 ◦C did the

amount of mineral dust significantly influence the number

of INPs, while above this temperature most INPs were bi-

ological (Prenni et al., 2009). The 10-day back trajectories

initiated at the midpoint of each INP sampling period are

available in Fig. S2. None of the trajectories pass over ma-

jor arid regions in Asia or Africa; however, this does not rule

out mineral dust or soils as a source of INPs in our measure-

ments.

3.6 Do the potential sources of ice nuclei change with

air mass classification?

In the preceding sections we did not differentiate data based

on air mass classification. Here we present correlations

within each of the four air mass categories introduced in

Sect. 2.8 to investigate if the major sources of INPs vary

with air mass type. The correlations for each air mass type

are given in Table 2. Correlations involving sodium and MSA

are not included due to insufficient data, and only statistically

significant correlations will be discussed (P < 0.05).

The general trends presented in Table 1 for the undiffer-

entiated data are also found in Table 2 for the various air

mass categories. In coastal NW, Pacific Ocean, and free tro-

pospheric air masses, INP number concentrations are well

correlated to those of fluorescent bioparticles at temperatures

between−15 and−25 ◦C withR values ranging from 0.64 to

0.99 (an average of 0.89), and in free tropospheric air masses

a very strong correlation is also found at −30 ◦C (R = 1.00).

In most cases, these are the strongest correlations noted at a

given temperature. This again suggests that many INPs may

have been biological.
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Table 2. Correlation coefficients (R) for linear regression analyses of INPs vs. fluorescent bioparticles, total aerosol particles, eBC, and wind

speeda within each category of air mass. Correlations with statistical significance (P < 0.05) are shown in bold.

Relation to the INP number concentration

−15 ◦C −20 ◦C −25 ◦C −30 ◦C

Air Mass Measurement R P b nc R P n R P n R P n

Coastal NW Fluorescent

bioparticles 0.94 < 0.01 9 0.94 < 0.01 9 0.96 < 0.01 9 0.65 0.08 6

[0.5–10 µm]

Total particles

[0.5–10 µm] 0.85 < 0.01 9 0.70 0.02 9 0.71 0.02 9 0.67 0.07 6

eBC 0.71 < 0.01 11 0.80 < 0.01 11 0.84 < 0.01 11 0.53 0.11 7

(Wind speed)3.41

Lighthouse −0.38 0.12 11 −0.39 0.12 11 −0.22 0.26 11 0.26 0.29 7

(Wind speed)3.41

Buoy −0.03 0.47 11 0.00 0.49 11 0.00 0.50 11 −0.02 0.48 7

Coastal SE Fluorescent

bioparticles −0.07 0.48 3 −0.53 0.32 3 −0.85 0.17 3 NAd

[0.5–10 µm]

Total particles

[0.5–10 µm] −0.17 0.45 3 −0.61 0.29 3 −0.90 0.14 3 NA

eBC 0.07 0.46 5 0.28 0.32 5 0.67 0.11 5 0.96 0.09 3

(Wind speed)3.41

Lighthouse −40.34 0.29 5 −0.27 0.33 5 −0.14 0.41 5 0.21 0.43 3

(Wind speed)3.41

Buoy −0.52 0.18 5 −0.37 0.27 5 −0.12 0.43 5 0.93 0.12 3

Pacific Ocean Fluorescent

bioparticles 0.80 < 0.01 12 0.74 < 0.01 12 0.64 0.01 12 0.23 0.24 12

[0.5–10 µm]

Total particles

[0.5–10 µm] 0.13 0.34 12 0.30 0.17 12 0.21 0.25 12 0.25 0.22 12

eBC 0.24 0.21 14 0.37 0.10 14 0.26 0.19 14 0.06 0.42 13

(Wind speed)3.41

Lighthouse −0.10 0.37 14 −0.26 0.18 14 −0.26 0.19 14 −0.21 0.25 13

(Wind speed)3.41

Buoy −0.18 0.27 14 −0.38 0.09 14 -0.48 0.04 14 −0.22 0.23 13

Free troposphere Fluorescent

bioparticles 0.97 0.02 4 0.99 < 0.01 4 0.99 < 0.01 4 1.00 < 0.01 4

[0.5–10 µm]

Total particles

[0.5–10 µm] 0.86 0.07 4 0.98 0.01 4 0.99 < 0.01 4 0.98 0.01 4

eBC 0.99 < 0.01 4 0.89 0.05 4 0.88 0.06 4 0.89 0.06 4

(Wind speed)3.41

Lighthouse −0.89 0.05 4 −0.70 0.15 4 −0.67 0.17 4 −0.68 0.16 4

(Wind speed)3.41

Buoy 0.62 0.19 4 0.39 0.31 4 0.38 0.31 4 0.42 0.29 4

a Using the power law dependence of whitecap coverage on wind speed found by Monahan and Muircheartaigh (1980), wind speed was raised to the power of 3.41. b The P value is a conditional

probability that is the probability of obtaining an R value equal to or greater than the given R value if there is no correlation between INPs and the given parameter. c n represents the number of

data points used in determining the correlation. d NA: not available due to insufficient data.
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In coastal NW and free tropospheric air masses, INPs and

total particles are also closely correlated. These correlations

are strong in the case of coastal NW air masses at ice acti-

vation temperatures of −15 to −25 ◦C (R = 0.70–0.85) and

very strong in air masses from the free troposphere between

−20 and −30 ◦C (R = 0.98–0.99). The correlation coeffi-

cients are significantly greater than those found in the un-

differentiated data of Table 1. With the average fraction of

particles that exhibited fluorescence in these air masses be-

ing close to the campaign average, the good correlations with

total particles suggest that non-biological INPs such as min-

eral dust may have also contributed to the INP population.

Correlations of INPs with eBC are strong (R = 0.71–0.84)

at −25 ◦C and above in coastal NW air masses and very

strong (R = 0.99) at −15 ◦C in air masses from the free tro-

posphere. Correlations of INPs with CO and SO2 in these

air masses are also moderate to very strong in some cases

(see Table S3). However, more than 84 and 100 % of INPs

active at these temperatures were larger than 1 µm in size in

air masses from the coastal NW and the free troposphere,

respectively. Vegetation NW of the sampling site closely fol-

lows that of the region, and potential sources of supermicron

INPs from the coastal NW include forests of coastal western

hemlock. Given the dominance of supermicron INPs in these

two air mass types, it is unlikely that BC was an important

source of INPs.

3.7 Can existing parameterizations accurately predict

measured INP concentrations?

Empirical parameterizations have been developed to predict

ice nucleation in atmospheric models. Here we investigate

whether or not a number of these parameterizations are con-

sistent with the current measurements. In total we tested

six different parameterizations: those of Fletcher (1962),

hereafter F62; Cooper (1986), hereafter C86; Meyers et

al. (1992), hereafter M92; DeMott et al. (2010), hereafter

D10; and two from Tobo et al. (2013), hereafter T13total and

T13fluorescent. Details on these parameterizations are given in

the Supplement.

In Fig. 8 we compare measured INP number concentra-

tions with predicted INP number concentrations based on

the parameterizations discussed above. The parameteriza-

tions of D10, T13total, and T13fluorescent require knowledge

of either total particle or fluorescent bioparticle number con-

centrations with sizes > 0.5 µm. Here we use the data from

the WIBS-4A over its full size range (0.5–23.7 µm) to better

match the sampling conditions used in D10 and T13. Note

that the parameterization of T13fluorescent based on fluores-

cent bioparticle number concentrations was formulated us-

ing measurements from an ultraviolet aerodynamic particle

sizer (UV-APS), whereas this study uses a WIBS-4A. As

noted in Healy et al. (2014), there may be discrepancies be-

tween the number concentrations of fluorescent bioparticles

detected by the UV-APS and WIBS-4A. With more fluores-

Figure 8. Predicted vs. measured INP number concentrations based

on the parameterizations of (a) Fletcher (1962), (b) Cooper (1986),

(c) Meyers et al. (1992), (d) DeMott et al. (2010), and (e, f) Tobo et

al. (2013). Details on these parameterizations are given in the Sup-

plement. Data color represents ice nucleation temperatures. This

figure uses the format of Fig. 9 in Tobo et al. (2013).

cent channels and more sensitive electronics, the WIBS-4A

may probe different fluorophores than the UV-APS, thus de-

tecting greater concentrations of fluorescent bioparticles and

in turn leading to greater predicted INP number concentra-

tions. Also, the INP number concentrations measured by the

MOUDI-DFT are for particle sizes of 0.18–10 µm, whereas

the INP measurements used to formulate the parameteriza-

tions of M92, D10, and T13 were for particles≤ 3,≤ 1.6, and

≤ 2.4 µm, respectively. As a result, when reporting measured

INP number concentrations in Fig. 8 we limit the MOUDI-

DFT data to particle sizes that overlap with those used to

formulate the parameterizations (see the Supplement for de-

tails).

It is evident in Fig. 8 that none of the parameterizations

are able to consistently predict the measured INP number

concentrations within a factor of 5 over the entire temper-

ature range investigated. The most accurate parameterization

is that of C86 (Fig. 8b), predicting 25 and 57 % of the INP

number concentrations within a factor of 2 and 5, respec-
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tively, of the solid 1 : 1 line. While the C86 parameterization

works reasonably well at temperatures of −15 to −25 ◦C, at

lower temperatures it becomes increasingly inaccurate, pos-

sibly due to it being applied outside the temperature range

over which it was developed (−5 to −25 ◦C).

The parameterizations of D10, T13total, and T13fluorescent

incorporate measurements of total particles or fluorescent

bioparticles but are found to be poor predictors of the values

measured in this study as on average only 41 % of INP num-

ber concentrations are predicted within a factor of 5 (Fig. 8d–

f). A number of data sets from diverse locations were used

in the development of the D10 parameterization, but those

with a strong marine influence were not included because

sea salt is not known to be an efficient ice nucleus under

the conditions investigated (immersion freezing at temper-

atures above −35 ◦C). Given the proximity of our sampling

site to the Pacific Ocean (Fig. 1) and the back trajectories

of the sampled air masses (Fig. 2), a marine influence in

our samples may contribute to the somewhat poor perfor-

mance of the D10 parameterization and the overestimation

of INPs shown in Fig. 8d. The T13total and T13fluorescent pa-

rameterizations were developed using data from a forested

site in Colorado. Differences in the composition, concentra-

tion, and ice-nucleating ability of both biological and non-

biological particles between the continental forest of T13 and

the coastal site of this study may have contributed to the in-

accuracy of the T13total and T13fluorescent parameterizations

(Fig. 8e, f).

Figure 8 suggests that additional measurements of INPs in

other environments, times of year, and altitudes are needed to

further test and improve current empirical parameterizations

of INPs. The results presented in Fig. 8 also indicate that the

application of INP parameterizations to locations dissimilar

to that of the original study used to generate the parameteri-

zations should be done with care.

4 Summary and conclusions

The number concentrations of 0.18–10 µm INPs active in the

immersion mode were determined at a coastal site in west-

ern Canada during the summer of 2013 as part of the NET-

CARE project. We investigated the strength of linear corre-

lations between these INP values and measurements of total

particles, fluorescent bioparticles, eBC, sodium, MSA, and

wind speed and also compared their size distributions where

these measurements were available. We found that (1) bio-

logical particles, possibly from local vegetation, were likely

the major source of ice nuclei at freezing temperatures be-

tween −15 and −25 ◦C; (2) non-biological particles such as

mineral dust may also have had an important contribution to

the population of INPs active at−30 ◦C; (3) the prevalence of

supermicron INPs makes BC particles an unlikely source of

ice nuclei; and (4) there was no evidence of marine particles

being a significant source of ice nuclei, although the ocean as

a source of INPs cannot be ruled out. One possibility is that

biological INPs released by nearby vegetation were present

in sufficient numbers at this site to overwhelm the presence

of any INPs from the ocean.

Six empirical parameterizations of ice nucleation for use

in atmospheric models were tested to determine the accu-

racy with which they predict INP number concentrations at

this coastal site. Overall, none of the parameterizations were

found to be suitable, predicting only 1–57 % of INPs within

a factor of 5 of the measured value. This highlights the need

for the development of INP parameterizations that are appro-

priate for this complex environment.

In this paper we assumed that particles were externally

mixed. In future studies it would be useful to include mix-

ing state measurements together with studies similar to those

presented here to quantify the extent of external vs. inter-

nal mixing. In addition, studies that identify INPs followed

by chemical composition measurements of these particles by

electron microscopy (e.g., Knopf et al., 2014) or fluorescence

microscopy would be useful to supplement the information

gained from correlation analyses of collocated instruments.

The Supplement related to this article is available online

at doi:10.5194/acp-15-12547-2015-supplement.
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