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Abstract. In cloud modeling studies, the time evolution

of droplet size distributions due to collision–coalescence

events is usually modeled with the Smoluchowski coagula-

tion equation, also known as the kinetic collection equation

(KCE). However, the KCE is a deterministic equation with

no stochastic fluctuations or correlations. Therefore, the full

stochastic description of cloud droplet growth in a coalescing

system must be obtained from the solution of the multivariate

master equation, which models the evolution of the state vec-

tor for the number of droplets of a given mass. Unfortunately,

due to its complexity, only limited results were obtained for

certain types of kernels and monodisperse initial conditions.

In this work, a novel numerical algorithm for the solution of

the multivariate master equation for stochastic coalescence

that works for any type of kernels, multivariate initial condi-

tions and small system sizes is introduced. The performance

of the method was seen by comparing the numerically cal-

culated particle mass spectrum with analytical solutions of

the master equation obtained for the constant and sum ker-

nels. Correlation coefficients were calculated for the turbu-

lent hydrodynamic kernel, and true stochastic averages were

compared with numerical solutions of the kinetic collection

equation for that case. The results for collection kernels de-

pending on droplet mass demonstrates that the magnitudes

of correlations are significant and must be taken into account

when modeling the evolution of a finite volume coalescing

system.

1 Introduction

The evolution of the size distribution of coalescing particles

has often been described by the kinetic collection (hereafter

KCE) or Smoluchowski coagulation equation, known under

a number of names (“stochastic collection”, “coalescence”).

The discrete form of this equation has the form (Pruppacher

and Klett, 1997)

∂N(i, t)

∂t
=

1

2

i−1∑
j=1

K(i− j,j)N(i− j)N(j)−N(i)

∞∑
j=1

K(i,j)N(j),

(1)

where N(i, t) is the average number of droplets with mass

xi , and K(i,j) is the collection kernel related to the prob-

ability of coalescence of two droplets of masses xi and xj .

In Eq. (1), the time rate of change of the average number of

droplets with mass xi is determined as the difference between

two terms: the first term describes the average rate of produc-

tion of droplets of mass xi due to coalescence between pairs

of drops whose masses add up to mass xi , and the second

term describes the average rate of depletion of droplets with

mass xi due to their collisions and coalescence with other

droplets.

Within the kinetic approach (Eq. 1), it is assumed that

fluctuations are negligibly small. This assumption can only

be correct if the volume and the number of particles are

infinitely large. An alternative approach considers the coa-

lescence process in a system of finite number of particles,

with fluctuations that are no longer negligible. This finite-

volume description is intrinsically stochastic and has been

pioneered by Marcus (1968) and Bayewitz et al. (1974) and

studied in detailed by Lushnikov (1978, 2004) and Tanaka

and Nakazawa (1993).

Within the finite volume description a system of particles

whose total mass is MT is considered. The mass distribution

of the particles is described by giving the number ni of par-

ticles with mass i, i.e., n1,n2,n3, . . . , nN . Then, the state

of the mass distribution of the particle system is described
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12316 L. Alfonso: Numerical solution of the multivariate master equation for stochastic coalescence

by the N -dimensional state vector n̄= (n1,n2, . . .,nN ). The

time evolution of the joint probability P(n1,n2, . . .,nN ; t)

that the system is in state n̄= (n1,n2, . . .,nN ) at time t is

calculated according to the equation (Tanaka and Nakazawa,

1993)

∂P (n̄)

∂t
=

N∑
i=1

N∑
j=i+1

K(i,j)(ni + 1)(nj + 1)

×P(. . .,ni + 1, . . .,nj + 1, . . .,ni+j − 1, . . .; t)

+

N∑
i=1

1

2
K(i, i)(ni + 2)(ni + 1)

×P(. . .,ni + 2, . . .,n2i − 1, . . .; t)

−

N∑
i=1

N∑
j=i+1

K(i,j)ninjP(n̄; t)

−

N∑
i=1

1

2
K(i, i)ni(ni − 1)P (n̄; t). (2)

The master Eq. (2) is a gain–loss equation for the probability

of each state n̄= (n1,n2, . . .,nN ). The sum of the first two

terms is the gain due to transition from other states, and the

sum of the last two terms is the loss due to transitions into

other states. The gain terms show that the system may be

reached from any state with an i-mer and a j -mer more, and

one (i+j)-mer less. In Eq. (2)K(i,j) is the collection kernel

and the transition rates are K(i,j)(ni + 1)(nj + 1) if i 6= j

andK(i, i)(ni+1)(ni+2) if i = j . From conservation of the

total probability, P(n̄; t) must satisfy the relation∑
n

P(n̄; t)= 1, (3)

where the sum is taken over all states. Moreover, the total

mass MT of the system must be conserved, and the particle

number ni should be non-negative for any mass xi :

N∑
i=1

xini =MT, ni ≥ 0, i = 1, . . .,N. (4)

Exact solutions of Eq. (2) are only known for a limited num-

ber of cases (constant, sum and product kernels) and for

monodisperse initial conditions. For these special cases the

master equation has been solved by Lushnikov (1978, 2004)

and Tanaka and Nakazawa (1993) in terms of the generating

function of P(n̄; t). For general, multidisperse initial condi-

tions, the solution of Eq. (2) is not known.

Additionally, for stochastic coagulation, approximate so-

lutions were calculated by using Van Kampen’s system size

expansion or� expansion (Van Dongen and Ernst, 1987; Van

Dongen, 1987) which permits finding solutions of Eq. (2)

valid in the limit of a large system. However, the system size

expansion gives less reliable results when applied to systems

with a low number of particles or small volumes.

Then, in order to obtain solutions for more realistic ker-

nels (Brownian motion, differential sedimentation, etc.), a

small number of particles and general multidisperse initial

conditions, it has to be solved numerically. In this paper, we

present an algorithm that can be applied to obtain the solu-

tion of Eq. (2) for any type of kernel and initial conditions.

By applying this method, numerical solutions of the mas-

ter equation were obtained for realistic kernels relevant to

cloud physics, along with calculation of the correlations for

the number of droplets for different sizes.

It is worth mentioning that the stochastic simulation algo-

rithm (SSA) developed by Gillespie (1975) also accurately

reproduces the master equation. In Gillespie’s method, the

master equation is not solved directly, but a statistically cor-

rect trajectory (possible solution) of the master equation is

generated. At any time, expected values at each droplet size

can be obtained by averaging over many runs. However, a

large number of realizations are necessary in order to obtain

the desired accuracy at the large end of the droplet size distri-

bution. A detailed comparison between the two methods will

be made in Sect. 3.

The problem of calculating correlation coefficients was

also addressed by Wang et al. (2006), who derived what

they called the “true stochastic collection equation” (TSCE),

which is a mean field equation at the first order and contains

correlations among instantaneous droplets of different sizes.

The problem with this equation and similar ones is that the

rate of change of moments of order n depends on moments

of order (n+ 1), as was remarked by Marcus (1968).

In our work, we overcome this drawback by calculating

the true stochastic averages directly from the solution of the

master equation. The main idea is to reduce the dimension-

ality by restricting the state space only to those states which

have a finite probability of being accessed. It turns out that

this provides a considerable improvement in numerical effi-

ciency.

The paper is organized as follows: in Sect. 2, the numerical

algorithm is explained in detail. Numerical solutions for the

sum and constant kernels with a comparison with analytical

solutions and with the method of Gillespie (1975) are pre-

sented in Sect. 3. The numerical results for mass-dependent

kernels along with calculation of correlations for different

droplet sizes are presented in Sect. 4. Finally, in Sect. 5 we

briefly discuss the results and the possible applications of the

numerical algorithm.

2 The numerical algorithm

To solve Eq. (2) by brute force, the joint probabil-

ity P(n1,n2, . . .,nN ; t) must be discretized into a multi-

dimensional array. The main drawback of this approach is its

susceptibility to the curse of dimensionality (Bellman, 1961),

i.e., the exponential growth in memory and computational re-

quirements in the number of problem dimensions.
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For example, for a system with a monodisperse initial con-

dition P(50,0,0, . . .,0;0)= 1, even considering the restric-

tion (4), we would be in need to define a 50-dimensional ar-

ray with about 1.34× 1016 elements, which is computation-

ally prohibitive.

2.1 Calculation of all possible states

Instead of the brute force discretization of the multi-

dimensional joint probability distribution, the solution for

this problem lies on the generation of all possible states from

an initial configuration, and the posterior calculation of the

time evolution of the probability P(n̄; t) for each generated

configuration by using the master equation. From an arbi-

trary initial condition P(n01,n02, . . .,n0N ;0)= 1 all possible

states can be generated numerically. This can be performed

by taking into account that the only transitions allowed are of

the form n̄
(+)
1 → n̄1 if i 6= j and n̄

(+)
2 → n̄2 if i = j , where

n̄
(+)
1 , n̄1 and n̄

(+)
2 , n̄2 are the state vectors:

n̄
(+)
1 = (n1, . . .,ni + 1, . . .,nj + 1, . . .,ni+j − 1, . . .,nN ),

(5a)

n̄1 = (n1, . . .,ni, . . .,nj , . . .,ni+j , . . .,nN ), (5b)

n̄
(+)
2 = (n1, . . .,ni + 2, . . .,n2i − 1, . . .,nN ), (5c)

n̄2 = (n1, . . .,ni, . . .,n2i, . . .,nN ). (5d)

For a system consisting ofN monomers at t = 0,R(N) states

(or N -dimensional vectors) can be realized, where R(N) is

the number of solutions in integers n̄ of the Eq. (4) for con-

servation of mass. The number of possible configurations can

be approximated from the equation (Hall, 1967)

R(N)∼
1

4N
√

3
exp

(
π(2N/3)1/2.

)
(6)

Note that, although R(N) increases very quickly with N

(for example, R(50)= 217 590 and R(100)= 190 569 232),

a number of states that is manageable with an average com-

puter is obtained (compare with the 50-dimensional array

with 1.34× 1016 elements required for N = 50). Although

Eq. (6) slightly overestimates the number of states, it gives

estimates that can be used in order to check the performance

of the algorithm. For N = 6, 10, 20, and 30 we obtained

11, 42, 627, and 5604 with the numerical algorithm, and

13, 48, 692, and 6078 by using Eq. (6). As an example, the

11 possible configurations generated from the initial state

(6,0,0,0,0,0) are displayed in Fig. 1.

2.2 Time evolution of the probabilities P(n; t)

for each state

At t0 = 0 for the initial state P(n01,n02,n03,n04, . . ., ; t0)=

1, and the probabilities for the rest of the states are set equal

to 0. The probabilities of all generated configurations are up-

Figure 1. State space obtained from the initial condition

P(6,0,0,0,0,0;0)= 1 with the constraint
6∑
i=1

ini = 6.

dated according to the first-order finite difference scheme:

P (n̄; t0+1t)= P (n̄; t0)

+1t
N∑
i=1

N∑
j=i+1

K(i,j)(ni + 1)(nj + 1)

×P(. . .,ni + 1, . . .,nj + 1, . . .,ni+j − 1, . . .; t0)

+1t
N∑
i=1

1

2
K(i, i)(ni + 2)(ni + 1)

×P(. . .,ni + 2, . . .,n2i − 1, . . .; t0)

−1t
N∑

i,j=1

K(i,j)ninjP(n̄; t0)

−1t
N∑
i=1

1

2
K(i, i)ni(ni − 1)P (n̄; t0).

(7)

It is clear from Eq. (7) that the state probabilities

P (n̄; t0+1t) at t = t0+1t will increase if the states from

which transitions are allowed have a non-zero probability at

t = t0 (second and third terms in the right-hand side of Eq. 6)

and will decrease due to collisions of particles from the same

state at t = t0 (fourth and fifth terms in the right-hand side

of Eq. 7) if P(n̄; t0) is positive. The finite difference equa-

tion for P(1,0,0,0,1,0)was written to illustrate the method.

As can be seen from the generation scheme displayed in

Fig. 1, the only allowed transitions to (1,0,0,0,1,0) are

from the states (1,1,1,0,0,0) and (2,0,0,1,0,0). Conse-

quently, at t = t0+1t , P(0,1,0,1,0,0; t0+1t) will in-

crease if P(1,1,1,0,0,0; t0) and P(2,0,0,1,0,0; t0) are

positive at t = t0. On the other hand, P(1,0,0,0,1,0; t0+

1t) will decrease due to collisions from particles within the

same state at t = t0 if P(1,0,0,0,1,0; t0) is positive. Then,
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Figure 2. Time evolution of the probability for 5 of the 11 the states

for the initial condition P(6,0,0,0,0,0;0)= 1 and the collection

kernel K(i,j)= (i1/2+ j1/2)/40.

P(1,0,0,0,1,0; t0+1t) is calculated from the equation

P(1,0,0,0,0,1,0; t0+1t)= P (1,0,0,0,0,1,0; t0)

+1tK(2,3)(n2+ 1)(n3+ 1)

×P(1,1,1,0,0,0; t0)

+1tK(1,4)(n1+ 1)(n4+ 1)

×P(2,0,0,1,0,0; t0)

−1tK(1,5)(n1)(n5)

×P(1,0,0,0,1,0; t0). (8)

In the second term on the right-hand side of Eq. (8), n2+ 1

and n3+ 1 are set equal to 1, as they are the number of

particles in the second and third bins in the configuration

(1,1,1,0,0,0) at t = t0. In the third term, n1+ 1= 2 and

n4+ 1= 1 as they are defined from the state (2,0,0,1,0,0)

and, finally, n1 = n5 = 1 in the fourth and last term. As an

exercise, the time evolution of each state probability was cal-

culated for the coalescence kernelK(i,j)= (i1/2+j1/2)/40

from Marcus (1968). The results for 5 of the 11 possible con-

figurations are displayed in Fig. 2.

2.3 Calculation of the expected values of the number of

particles for each particle mass

The number of particles for a given mass n1, n2, . . . , nN
are discrete random variables whose probability distributions

can be obtained from

P(n,m; t)=
∑

Except nm

P (n1,n2, . . .,nm = n, . . .nN ; t) . (9)

Usually, the numerical implementation of Eq. (9) would

involve calculating the sum of all elements of a multi-

dimensional array, which is computationally very expensive.

Our approach is simpler: once the probabilities of all pos-

sible states are determined for all times, P(n,m; t) can be

calculated just by summing over all states that have nm = n:

P(n,m; t)=
∑

all states with nm = n,

P (n1,n2, . . .,nm = n, . . .nN ; t) . (10)

The expected values 〈nm〉 for the number of particles of mass

m are then calculated from the equation

〈nm〉 =
∑
n

nP (n,m; t). (11)

As an example, for the system from Fig. 1, the probability

distribution P(n,1; t) of having n particles with mass m= 1

is displayed in Table 1.

3 Comparison with analytical solutions and the

stochastic simulation algorithm (SSA) of Gillespie

3.1 Comparison with analytical solutions

The expected values for each particle mass calculated with

the numerical algorithm were tested against the analytical

solutions of the master equation reported in Tanaka and

Nakazawa (1993) for the constant (Eq. 12) and sum (Eq. 13)

kernels (K(i,j)= A, K(i,j)= B(xi + xj )) obtained for

the monodisperse initial condition P(N0,0,0, . . .,0;0)= 1.

They are

〈nm〉 = C
N0
m m!

N0−m+1∑
l=1

N0∑
k=l

(−1)k−1
(2k−1)C

N0−1

l−1 C
N0−m

l−1 C
N0−l

N0−k

(k+l−1)C
N0+k−1

k+l−1

×

{
(l− 1)/

m∏
i=1

(N0− i)

}
e
−k(k−1)

2
τ , (12)

〈nm〉 = C
N0
m

(
i

N0

)m−1{
1−

m

N0

(
1− eT

)}N0−m−1

× (1− e−T )m−1e−T . (13)

In Eqs. (12) and (13), N0 is the initial number of particles,

C
N0
m is the binomial coefficient and 〈nm〉 values are the true

stochastic averages for each particle mass m at time t . In

Eq. (12) τ = AN0t , whereA= 1.2×10−4 cm3 s−1 is the con-

stant collection kernel. Finally, in Eq. (13), T = BN0v0t ,

where v0 is the initial volume of droplets and B = 8.82×

102 cm3 g−1 s−1. Turning to a concrete numerical example,

the evolution of a cloud system with an initial monodisperse

droplet size distribution of N0 = 10 droplets of 10 µm in ra-

dius (droplet mass 4.189× 10−9 g) at t0, and a volume of

1 cm3 was calculated with the numerical algorithm. The time

Atmos. Chem. Phys., 15, 12315–12326, 2015 www.atmos-chem-phys.net/15/12315/2015/
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Table 1. Probability distribution P(n,1; t) of finding n particles of size m= 1 at time t , for a system with the initial condition

P(6,0,0,0,0,0;0)= 1.

Probability distribution P(n,1; t)

n= 0 P(0,1; t)= P(0,1,0,1,0,0, t)+P(0,0,2,0,0,0)+P(0,0,0,0,0,1)

n= 1 P(1,1; t)= P(1,1,1,0,0,0, t)+P(1,0,0,0,1,0)

n= 2 P(2,1; t)= P(2,2,0,0,0,0; t)+P(2,0,0,0,1,0; t)

n= 3 P(3,1; t)= P(3,0,1,0,0,0; t)

n= 4 P(4,1; t)= P(4,1,0,0,0,0; t)

n= 5 P(5,1; t)= 0

n= 6 P(6,1; t)= P(6,0,0,0,0,0; t)

Figure 3. For the sum kernel, size distribution obtained from the

analytical solution of the master equation (triangles) and the numer-

ical algorithm (squares) at t = 1200 s. Calculations were performed

with the initial condition P(10,0,0, . . .,0;0)= 1 and the sum ker-

nel K(i,j)= B(xi + xj ), with B = 8.82× 102 cm3 g−1 s−1.

step was set equal to 1t = 0.1 s. Comparisons between the

numerical and analytical results for both the sum and con-

stant kernels at t = 1200 s are shown in Figs. 3 and 4 with an

excellent agreement between the two approaches.

3.2 Comparison with the SSA of Gillespie

As was mentioned in the introduction, the algorithm of Gille-

spie generates a statistically correct trajectory of the stochas-

tic master equation. It was presented in Gillespie (1975), and

popularized in Gillespie (1977) were it was used to simulate

chemical systems. As we know, in Gillespie’s SSA, the en-

semble mean for the number of droplets at each droplet mass

Figure 4. Same as Fig. 3 but for the constant kernelK(i,j)= 1.2×

10−4 cm−3 s−1.

is calculated from the expression (Gillespie, 1975)

N(m; t)=
1

Nr

Nr∑
i=1

N i(m; t), (14)

whereNr is the number of realizations of the stochastic algo-

rithm, N i(m; t) is the number of droplets of mass m in the i

realization at time t , andN(m; t) is the ensemble mean. From

expression (14) it is clear that in order to obtain the correct

expected values (N(m; t)) at the large end of the droplet size

distribution, we will need a large number of realizations of

the SSA.

To further investigate this question, the evolution of a

cloud system with an initial monodisperse droplet size distri-

bution of N0 = 30 droplets of 14 µm in radius (droplet mass

1.1494× 10−8 g) at t0, and a volume of 1 cm3 was calcu-

lated with both the numerical algorithm and Gillespie’s SSA

for the sum kernel (K(i,j)= B(xi + xj ), with B = 8.82×

102 cm3 g−1 s−1). The results obtained by the two methods

www.atmos-chem-phys.net/15/12315/2015/ Atmos. Chem. Phys., 15, 12315–12326, 2015
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Figure 5. At t = 1200 s, comparison between the droplet size distributions obtained from the analytical solution of the master equation (line)

and (a) the SSA of Gillespie for 103 realizations (circles) and (b) the numerical algorithm (circles). Calculations were performed with the

initial condition P(30,0,0,0, . . .,0;0)= 1 for the sum kernel K(i,j)= B(xi + xj ), with B = 8.82× 102 cm3 g−1 s−1.

were then compared with the analytical solution of the master

equation (Eq. 13) obtained by Tanaka and Nakazawa (1993)

for the same conditions.

The averages calculated from Gillespie’s method for Nr =

103 realizations and the analytical solution at t = 1200 are

displayed in Fig. 5. As can be observed, both the Monte Carlo

averages and the analytical solution are closely coincident for

the small end of the droplet size distribution. However, due to

the small number of realizations, the SSA fails to reproduce

the distribution for the expected values at the large end (see

Table 1).

For a more detailed analysis, the expected number of par-

ticles for each droplet size calculated from the analytical so-

lution, the numerical algorithm and the SSA of Gillespie (for

1000 and 10 000 realizations) are displayed in Table 1. As

can be seen in the table, the size distributions are almost iden-

tical for the small end. However, they differ substantially at

the large end since the SSA produces no particles larger than

12 v0 and 16 v0 for 1000 and 10 000 realizations, respectively

(v0 = 1.1494× 10−8 g, mass of a 14 µm droplet).

For 1000 realizations, the Monte Carlo averages differ

from the analytical solution for bin numbers larger than 8.

For 10 000 realizations we have the same situation for bin

numbers larger than 13.

As expected, for 1000 and 10 000 realizations, no states

with droplets 30 times larger than monomer-sized ones were

realized. The numerical algorithm described in this paper

performed very well at the large end, with expected values

that are very close to the analytical solution (see Fig. 5 and

Table 3).

It can be concluded that our method will be suitable if

we need to accurately calculate the large end of the droplet

spectrum for small systems (with < 50 monomer droplets in

the initial state). As the SSA requires a large number of re-

alizations, it will be computationally very expensive. Then,

for a small number of particles, our algorithm will be a

good alternative, as it provides the desired accuracy to de-

tect the possible small differences between different numeri-

cal approaches. It can also work as a benchmark for different

Monte Carlo methods for the collision–coalescence process.

4 Kinetic vs. stochastic approach: calculation of

correlation coefficients and numerical results for

mass-dependent collection kernels

4.1 Numerical calculation of correlation coefficients

The evolution equation for the expected values of the random

variables can be obtained by multiplying Eq. (7) by nk and

summing over all states (see Bayewitz et al., 1974):

∂

∂t
〈nk〉 =

1

2

∑
i+j=k

K(i,j)
(〈
ninj

〉
−〈ni〉δi,j

)
−

∑
j

K(j,n)
(〈
njnk

〉
−
〈
nj
〉
δj,k

)
. (15)

The KCE is obtained from Eq. (15) by assuming that〈
ninj

〉
= 〈ni〉

〈
nj
〉
, i.e., that the correlation between the ran-

dom variables is zero. A form of Eq. (15) was deduced in

Tanaka and Nakazawa (1993) and in Wang et al. (2006) for

a general type of kernel. Bayewitz et al. (1974) have quan-

tified the deviation of the size distributions calculated with

the KCE from the exact distribution obtained from the mas-

ter equation for a constant kernel. From Eq. (15) it can be

concluded that as long as the correlations remain apprecia-

ble, the results of the KCE will not match the true stochastic

averages. The correlation (or correlation coefficient) between

two random variables ni and nj denoted as ρi,j is

ρi,j =
cov(ni,nj )√

Var(ni)Var(nj )
=

σninj

σniσnj
. (16)

Atmos. Chem. Phys., 15, 12315–12326, 2015 www.atmos-chem-phys.net/15/12315/2015/



L. Alfonso: Numerical solution of the multivariate master equation for stochastic coalescence 12321

Figure 6. Time evolution of the correlation coefficients ρ1,2 and ρ2,3 for the constant, sum and product kernels (in panels a, b and c,

respectively) for two systems with a volume of 1 cm−3 and containing 10 and 40 droplets of 14 µm.

In Eq. (16), the covariance (cov(ni,nj )) is calculated accord-

ing to

cov(ni,nj )= E
[
(ni −〈ni〉)

(
nj −

〈
nj
〉)]

= E
(
ninj

)
−〈ni〉

〈
nj
〉
. (17)

Where E
(
ninj

)
is the expected value of the product ninj

which, for the bivariate case, is

E
(
ninj

)
=

∑
ni

∑
nj

ninjf (ni,nj ). (18)

In Eq. (18), f (ni,nj ) is the two-dimensional joint probabil-

ity mass function (pmf) which was calculated similarly to

how it was done in the univariate case (see Eq. 10):

f (n, l)= P(n, i; l, j ; t)=
∑

all states with

ni = n and nj = l,

P
(
n1,n2, . . .,ni = n, . . .,nj = l, . . .,nN ; t

)
. (19)

In the former equation, P(n, i; l, j ; t) is the probability of

having n droplets of mass i and l droplets of mass j .

4.2 Numerical results for the constant, sum and

product kernels

Correlation coefficients (ρ1,2 and ρ2,3) were obtained by

Wang et al. (2006) using the analytical solution obtained

by Bayewitz et al. (1974) for a constant collection kernel.

They found that, even for this case, the magnitude of corre-

lations could be quite large. We will extend their analysis by

calculating the time evolution of the correlation coefficients

ρ1,2 and ρ2,3 for the constant, sum and product kernels (see

Fig. 6). For each case, the simulations were conducted for

two systems containing 10 and 40 droplets of 14 µm in ra-

dius, respectively, and a volume of 1 cm−3. As can be ob-

served in the figure, in all the cases we have non-zero cor-

relations. From the evolution of ρ1,2 for all the kernels, we

can infer that the random variables n1 and n2 are, at the be-

ginning of the simulation, strongly anticorrelated. This is due

to the fact that in the initial stage of evolution of the system

we have mainly collisions between size 1 droplets to form

size 2 droplets. On the other hand, the random variables n2

and n3 are also anticorrelated, because a decrease of n2 due
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Figure 7. Comparison of the size distributions obtained from the stochastic master equation (solid line) with that of the KCE (dashed line) at

t = 1800 s for a 1 cm3 system containing initially 40 droplets of 14 µm. The expectation values are shown for the constant, sum and product

kernels (in panels a, b and c, respectively). For the small end the size distributions are closely coincident, for the large end the two equations

give different values.

Figure 8. For the turbulent hydrodynamic kernel, comparison of the size distributions obtained from the stochastic master equation (solid

line) with that of the KCE (dashed line) at t = 1200 and 1800 s for a 1 cm3 system containing initially 20 droplets of 14 µm and 10 droplets

of 17 µm. For the small end the size distributions are closely coincident, for the large end the two equations give different values.

to collisions with size 1 droplets will increase the number of

size 3 droplets (Wang et al., 2006).

At t = 1800 s, the true stochastic averages (see Eq. 11) ob-

tained numerically from the master equation are displayed in

Atmos. Chem. Phys., 15, 12315–12326, 2015 www.atmos-chem-phys.net/15/12315/2015/
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Figure 9. Time evolution of the correlation coefficients ρ1,3 and

ρ1,5 for a 1 cm3 system modeled with the turbulent hydrodynamic

kernel and containing initially 20 droplets of 14 µm and 10 droplets

of 17 µm.

Table 2. Analytical size distributions of the kinetic collection equa-

tion (KCE) calculated with monodisperse initial conditions.

K(xi ,xj ) N(i, t)

B(xi + xj ) N0(1−φ)
(iφ)i−1

0(i+1)
exp(−iφ) φ = 1− exp(−BN0ν0t)

C(xi × xj ) N0
(iT )i−1

i0(i+1)
exp(−iT ) T = CN0ν

2
0
t

A 4N0
(T )i−1

(T+2)i+1 T = AN0t

Note: parameters β, B and C are constants, x and y are the masses of the colliding drops. N0
is the initial concentration and v0 is the initial volume of droplets. The index i represents the

bin size.

Fig. 7, together with the mean values for each droplet mass

calculated from the analytical solutions of the KCE (see Ta-

ble 2). For the three cases, at the large end of the spectrum,

results differ substantially. This is in agreement with the an-

alytical study of Tanaka and Nakazawa (1994), who demon-

strated that the true stochastic averages coincide well with

those obtained from the kinetic collection Eq. (1) if the bin

mass k satisfies the inequality k2
�M0, where M0 is the to-

tal mass of the system.

4.3 Numerical results for the turbulent hydrodynamic

collection kernel

Collisions between droplets under pure gravity conditions

are simulated with a collection kernel of the form

Kg(xi,xj )= π(ri + rj )
2
∣∣V (xi)−V (xj )∣∣E(ri, rj ). (20)

The hydrodynamic kernel (Eq. 19) does not take into ac-

count the turbulence effects and considers that droplets with

different masses (xi and xj and corresponding radii ri and

rj ) have different settling velocities. In Eq. (20), E(xi,xj )

are the collection efficiencies calculated according to Hall

(1980). In turbulent air, the hydrodynamic kernel should be

enhanced due to an increase in relative velocity between

droplets (transport effect) and an increase in the collision ef-

ficiency (the drop hydrodynamic interaction). These effects

were taken into account by implementing the turbulence-

induced collision enhancement factor PTurb(xi,xj ) calcu-

lated in Pinsky et al. (2008) for a cumulonimbus cloud

with dissipation rate, ε = 0.1 m2 s−3, and Reynolds number,

Reλ = 2× 104 for cloud droplets with radii ≤ 21 µm. Then,

the turbulent collection kernel has the form

KTurb(xi,xj )= PTurb(xi,xj )Kg(xi,xj ). (21)

In the simulation for turbulent air, a system corresponding to

a cloud volume of 1 cm3 and a bidisperse droplet distribution

was considered: 20 droplets of 14 µm in radius and another

10 droplets of 17.64 µm in radius, corresponding to a liquid

water content (LWC) of 0.436 gm−3. For the turbulent col-

lection kernel the true stochastic averages at t = 1200 and

1800 s are displayed in Fig. 8, and compared with the mean

values for each droplet mass calculated numerically from the

KCE with kernel (20). Also, for this case, at the large end

of the spectrum, results obtained from the KCE differ sub-

stantially from the stochastic means. The time evolution of

the correlation coefficients ρ1,5 and ρ1,3 displayed in Fig. 9

confirms the fact that correlations cannot be neglected.

Finally, the time variations of 〈n1〉, 〈n5〉, 〈n15〉 and 〈n20〉

were calculated and compared with the time evolution of the

averages calculated from the KCE with the same initial con-

ditions and coalescence rate. We can see from Fig. 10 that

for the small masses k = 1 and 5, both solutions are closely

coincident up to 1800 s, and that for the larger masses k = 15

and 20, the results are different at all times.

5 Discussion and conclusions

The full stochastic description of the growth of cloud droplets

in a coalescing system is a challenging problem. For finite

volume systems or in systems of small populations, statisti-

cal fluctuations become important and the mathematical de-

scription relies on the master equation which has analytical

solutions for a limited number of cases. In an effort to solve

this problem, we have introduced a new approach to numer-

ically calculate the solution of the coalescence multivariate

master equation that works for any type of kernel and initial

conditions.

For the constant, sum and product kernels, the true

stochastic averages calculated numerically were compared

with analytical solutions of the master equation, with an ex-

cellent agreement between the two approaches.

A numerical procedure to calculate the correlation co-

efficients was implemented, which were calculated for
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Figure 10. For the turbulent hydrodynamic kernel, comparison of the expected values 〈nk〉 obtained from the stochastic master equation

(solid line) with that of the KCE (dashed line), for a 1 cm3 system containing initially 20 droplets of 14 µm and 10 droplets of 17 µm. The

time evolution of the expected values are shown for k = 1, 5, 15 and 20 (panels a, b, c and d, respectively). For the small masses k = 1 and

5, both solutions are closely coincident up to 1800 s. For the larger masses k = 15 and 20, the results are different at all times.

mass-dependent kernels (sum, product, and kernels modified

by turbulent processes). Also numerical solutions of the mas-

ter equation for bivariate initial conditions and collection ker-

nels modified by turbulent processes were obtained and com-

pared with size distributions obtained from the numerical in-

tegration of the KCE. The two equations give different values

at the large end of the droplet size distribution. It was also

shown that, for small k, the true stochastic averages 〈nk〉 and

the solution of the KCE are closely coincident up to 1800 s.

For larger masses, the results are different at all times.

A topic of discussion can be the limits of applicability of

the finite volume approach to problems of precipitation for-

mation, since such small volumes would not remain undis-

turbed for a long time in a real cloud. However, in defense

of the finite system approach, it might be argued that in the

early stages of cloud development, due to small terminal ve-

locities of the droplets, the coalescence process is a fairly lo-

calized process; i.e., two droplets in widely separated parts of

the cloud are not going to be coalescing with each other. This

was the approach followed by Bayewitz et al. (1974) (and en-

dorsed in Gillespie, 1975). In their paper, for comparing the

stochastic and kinetic approaches, they partitioned the cloud

into many sub-volumes, with no collisions being permitted

for two droplets of different sub-volumes. However, interac-

tions between sub-volumes through sedimentation, diffusion

or other physical processes were not considered.

For a constant collection kernel, a more complex model

that uses the master equation formalism and introduces

the interactions between the sub-volumes was developed

by Merkulovich and Stepanov (1990, 1991). This model is

based on a scheme proposed by Nicolis and Prigogine (1977)

for chemical reactions. Within this theory, the whole system

is subdivided into sub-volumes (coalescence cells) that can

be considered spatially homogeneous. Coalescence events

are permitted only between droplets from the same sub-

volume, and interactions between neighbors occur through

the diffusion process. That leads to a set of master equations

for each sub-volume. Although very complex, it could be a
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Table 3. Expected values for each droplet mass obtained at t = 1200 s for the analytical solution, the numerical algorithm pro-

posed in this work, and Gillespie’s SSA (for Nr = 1000, 10 000 realizations). Calculations were performed with the initial condition

P(30,0,0,0, . . .,0;0)= 1, and the sum kernel K(i,j)= B(xi + xj ) with B = 8.82× 102 cm3 g−1 s−1.

Expected values for each droplet size: < ni >, t = 1200 s

Bin number Analytical solution Numerical algorithm SSA SSA

(Nr = 1000) (Nr = 10 000)

1.000 1.5633E+01 1.5622E+01 1.5612E+01 1.5619E+01

2.000 3.5302E+00 3.5303E+00 3.5250E+00 3.5425E+00

3.000 1.1754E+00 1.1762E+00 1.1870E+00 1.1712E+00

4.000 4.5543E−01 4.5609E−01 4.4800E−01 4.5050E−01

5.000 1.9017E−01 1.9057E−01 2.2300E−01 1.9600E−01

6.000 8.2592E−02 8.2824E−02 7.2000E−02 8.2000E−02

7.000 3.6583E−02 3.6709E−02 3.6000E−02 3.6800E−02

8.000 1.6320E−02 1.6387E−02 1.6000E−02 1.6100E−02

9.000 7.2696E−03 7.3034E−03 3.0000E−03 6.5000E−03

10.000 3.2117E−03 3.2284E−03 2.0000E−03 3.5000E−03

11.000 1.3997E−03 1.4077E−03 1.0000E−03 1.2000E−03

12.000 5.9891E−04 6.0263E−04 0.0000E+00 4.0000E−04

13.000 2.5049E−04 2.5216E−04 0.0000E+00 4.0000E−04

14.000 1.0197E−04 1.0269E−04 0.0000E+00 3.0000E−04

15.000 4.0229E−05 4.0529E−05 0.0000E+00 0.0000E+00

16.000 1.5312E−05 1.5431E−05 0.0000E+00 1.0000E−04

17.000 5.5954E−06 5.6404E−06 0.0000E+00 0.0000E+00

18.000 1.9526E−06 1.9687E−06 0.0000E+00 0.0000E+00

19.000 6.4672E−07 6.5217E−07 0.0000E+00 0.0000E+00

20.000 2.0189E−07 2.0361E−07 0.0000E+00 0.0000E+00

21.000 5.8917E−08 5.9419E−08 0.0000E+00 0.0000E+00

22.000 1.5913E−08 1.6048E−08 0.0000E+00 0.0000E+00

23.000 3.9295E−09 3.9622E−09 0.0000E+00 0.0000E+00

24.000 8.7349E−10 8.6634E−10 0.0000E+00 0.0000E+00

25.000 1.7127E−10 1.7176E−10 0.0000E+00 0.0000E+00

26.000 2.8809E−11 2.8765E−11 0.0000E+00 0.0000E+00

27.000 3.9922E−12 3.9906E−12 0.0000E+00 0.0000E+00

28.000 4.2746E−13 4.2803E−13 0.0000E+00 0.0000E+00

29.000 3.1450E−14 3.1525E−14 0.0000E+00 0.0000E+00

30.000 1.1930E−15 1.1962E−15 0.0000E+00 0.0000E+00

starting point in order to consider the interactions between

small coalescence volumes through sedimentation or other

physical mechanisms.

However, fluctuations will be also very important, if the

collection kernel K(i,j) increases sufficiently rapidly with

i and j and a giant droplet with mass comparable to the to-

tal mass of the system is formed. In that case, the total mass

predicted by the KCE starts to decrease. This is usually in-

terpreted to mean that the system exhibits a phase transition

(also called gelation). After this moment, the true averages

calculated from the master equation will differ from the av-

erages obtained from Eq. (1) and there is a transition from

a system with a continuous droplet distribution to one with

a continuous distribution plus a giant cluster (Alfonso et al.,

2013). After the sol–gel transition the KCE breaks down: the

second moment of the size distribution diverges at the gel

point and, as was remarked, the first moment decays, i.e.,

mass is not conserved.

The limitation of the KCE equation arises from the fact

that it is a deterministic equation with no fluctuations or cor-

relations included. Then it describes an inherently stochas-

tic process with a single metric, the mean cluster distribu-

tion (Matsoukas, 2015). Then, in order to model properly the

system behavior after the giant cluster is formed, the role of

fluctuations should be considered.

By using the finite volume approach, the expected values

at the large end of the droplet size distribution can be ob-

tained in the post-gel region (Lushnikov, 2004; Matsoukas,

2015) and be compared with the expected values obtained

from the kinetic approach. As a result, it is expected to obtain

broader droplet mass distributions by using the stochastic ap-

proach. A follow-up paper will be devoted to a more detailed

analysis of all these problems.
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