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Abstract. A significant difference, now of some 16 years’

duration, has been shown to exist between the observed

global surface temperature trend and that expected from the

majority of climate simulations. For its own sake, and to en-

able better climate prediction for policy use, the reasons be-

hind this mismatch need to be better understood. While an

increasing number of possible causes have been proposed,

the candidate causes have not yet converged.

With this background, this paper reinvestigates the rela-

tionship between change in the level of CO2 and two of the

major climate variables, atmospheric temperature and the El

Niño–Southern Oscillation (ENSO).

Using time-series analysis in the form of dynamic regres-

sion modelling with autocorrelation correction, it is shown

that first-difference CO2 leads temperature and that there

is a highly statistically significant correlation between first-

difference CO2 and temperature. Further, a correlation is

found for second-difference CO2 with the Southern Oscil-

lation Index, the atmospheric-pressure component of ENSO.

This paper also shows that both these correlations display

Granger causality.

It is shown that the first-difference CO2 and temperature

model shows no trend mismatch in recent years.

These results may contribute to the prediction of future

trends for global temperature and ENSO.

Interannual variability in the growth rate of atmospheric

CO2 is standardly attributed to variability in the carbon sink

capacity of the terrestrial biosphere. The terrestrial biosphere

carbon sink is created by the difference between photo-

synthesis and respiration (net primary productivity): a ma-

jor way of measuring global terrestrial photosynthesis is by

means of satellite measurements of vegetation reflectance,

such as the Normalized Difference Vegetation Index (NDVI).

In a preliminary analysis, this study finds a close correla-

tion between an increasing NDVI and the increasing climate

model/temperature mismatch (as quantified by the difference

between the trend in the level of CO2 and the trend in tem-

perature).

1 Introduction

Understanding current global climate requires an under-

standing of trends both in Earth’s atmospheric temperature

and the El Niño–Southern Oscillation (ENSO), a characteris-

tic large-scale distribution of warm water in the tropical Pa-

cific Ocean and the dominant global mode of year-to-year

climate variability (Holbrook et al., 2009). However, despite

much effort, the average projection of current climate mod-

els has become statistically significantly different from the

21st century global surface temperature trend (Fyfe et al.,

2013; Fyfe and Gillett, 2014) and has failed to reflect the sta-

tistically significant evidence that annual-mean global tem-

perature has not risen in the 21st century (Fyfe et al., 2013;

Kosaka and Shang-Ping, 2013).

The situation is illustrated visually in Fig. 1 which shows

the increasing departure over recent years of the global sur-

face temperature trend from that projected by a representative

mid-range global climate model (GCM) for global surface

temperature – the CMIP5, RCP4.5 scenario model (Taylor et

al., 2012).

It is noted that recent studies have reconsidered the correct

quantification of this model–observation difference: they re-
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Figure 1. Monthly data, Z-scored to aid visual comparison (see Sect. 1). To show their core trends for illustrative purposes, the four series

are fitted with sixth-order polynomials. Shown are: the output of an IPCC mid-range scenario model (CMIP5, RCP4.5 scenario) run for the

IPPC fifth assessment report (IPCC, 2014) (black curve)(polynomial fit (pn): red curve). Global surface temperature data sets: HadCRUT4

(purple curve) (pn: blue curve); Cowtan and Way (2014) (green curve) (pn: light green curve); Karl et al. (2015) (aquamarine curve) (pn:

brown curve).

port analysis suggesting that it is in effect less evident (Cow-

tan and Way, 2014; Karl et al., 2015).

The effect of these alternative quantifications on the

model–observation difference is also shown in Fig. 1.

Figure 1 shows the departure over recent years of a

standard time series of temperature (HadCRUT4) from

that projected by a representative mid-range global climate

model (GCM) for global surface temperature – the CMIP3,

SRESA1B scenario model (Meehl et al., 2007). The figure

also shows the alternative temperature series (Cowtan and

Way, 2014; Karl et al., 2015).

Figure 1 shows that the alternative quantifications reduce

the scale of the difference seen using HadCRUT4 but do not

eliminate it.

It is noted that the level of atmospheric CO2 is a

good proxy for the International Panel on Climate Change

(IPCC) models predicting the global surface temperature

trend: according to IPCC (2014), on decadal to interdecadal

timescales and under continually increasing effective radia-

tive forcing, the forced component of the global surface tem-

perature trend responds to the forcing trend relatively rapidly

and almost linearly.

Turning to ENSO, the extremes of its variability cause ex-

treme weather events (such as floods and droughts) in many

regions of the world. Modelling provides a wide range of

predictions for future ENSO variability, some showing an in-

crease, others a decrease, and some no change (Guilyardi et

al., 2012; Bellenger et al., 2014).

A wide range of physical explanations has now been pro-

posed for the global warming slowdown. These involve pro-

posals either for changes in the way the radiative mechanism

itself is working or for the increased influence of other physi-

cal mechanisms. Chen and Tung (2014) place these proposed

explanations into two categories. The first involves a reduc-

tion in radiative forcing: by a decrease in stratospheric wa-

ter vapour, an increase in background stratospheric volcanic

aerosols, by 17 small volcano eruptions since 1999, increas-

ing coal-burning in China, the indirect effect of time-varying

anthropogenic aerosols, a low solar minimum, or a combina-

tion of these. The second category of candidate explanation

involves planetary sinks for the excess heat. The major focus

for the source of this sink has been physical and has involved

ocean heat sequestration. However, evidence for the precise

nature of the ocean sinks is not yet converging: according

to Chen and Tung (2014) their study followed the original

proposal of Meehl et al. (2011) that global deep-ocean heat

sequestration is centred on the Pacific. However, their obser-

vational results were that such deep-ocean heat sequestration

is mainly occurring in the Atlantic and the Southern oceans.

Alongside the foregoing possible physical causes, Hansen

et al. (2013) have suggested that the mechanism for the pause

in the global temperature increase since 1998 might be the

planetary biota, in particular the terrestrial biosphere: that is

(IPCC, 2007), the fabric of soils, vegetation and other bio-

logical components, the processes that connect them and the

carbon, water and energy that they store.

It is widely considered that the interannual variability in

the growth rate of atmospheric CO2 is a sign of the operation

of the influence of the planetary biota.

Again, IPCC (2007) states the following: “the atmospheric

CO2 growth rate exhibits large interannual variations. The

change in fossil fuel emissions and the estimated variabil-

ity in net CO2 uptake of the oceans are too small to account
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for this signal, which must be caused by year-to-year fluctu-

ations in land–atmosphere fluxes.”

In the IPCC Fourth Assessment Report, Denman et

al. (2007) state (italics denote present author emphasis): “In-

terannual and inter-decadal variability in the growth rate of

atmospheric CO2 is dominated by the response of the land

biosphere to climate variations. . . . The terrestrial biosphere

interacts strongly with the climate, providing both positive

and negative feedbacks due to biogeophysical and biogeo-

chemical processes. . . . Surface climate is determined by the

balance of fluxes, which can be changed by radiative (e.g.

albedo) or non-radiative (e.g. water-cycle-related processes)

terms. Both radiative and non-radiative terms are controlled

by details of vegetation.”

Denman et al. (2007) also note that many studies have

confirmed that the variability of CO2 fluxes is mostly due to

land fluxes, and that tropical lands contribute strongly to this

signal. A predominantly terrestrial origin of the growth rate

variability can be inferred from (1) atmospheric inversions

assimilating time series of CO2 concentrations from differ-

ent stations, (2) consistent relationships between δ13CO2 and

CO2, (3) ocean model simulations and (4) terrestrial carbon

cycle and coupled model simulations. For one prominent es-

timate carried out by the Global Carbon Project, the land sink

is calculated as the residual of the sum of all sources minus

the sum of the atmosphere and ocean sinks (Le Quéré et al.,

2014).

The activity of the land sink can also be estimated directly.

The terrestrial biosphere carbon sink is created by photosyn-

thesis: a major way of measuring global land photosynthesis

is by means of satellite measurements of potential photosyn-

thesis from greenness estimates. The measure predominantly

used is the Normalized Difference Vegetation Index (NDVI)

(Running et al., 2004; Zhang et al., 2014). NDVI data are

available from the start of satellite observations in 1980 to

the present. For this period the trend signature in NDVI has

been shown to correlate closely with that for atmospheric

CO2 (Barichivich et al., 2013). This noted, we have not been

able to find studies which have compared NDVI data with the

difference between climate model outputs and temperature.

2 Methodological issues and objectives of the study

2.1 Methodological issues

Before considering further material, it is helpful now to con-

sider a range of methodological issues and concepts. The first

concept is to do with the notion of causality.

According to Hidalgo and Sekhon (2011) there are four

prerequisites to enable an assertion of causality. The first is

that the cause must be prior to the effect. The second pre-

requisite is “constant conjunction” between variables (Hume,

1751, cited in Hidalgo and Sekhon, 2011). This relates to the

degree of fit between variables. The final requirements are

those concerning manipulation and random placement into

experimental and control categories. It is noted that each of

the four prerequisites is necessary but not sufficient on its

own for causality.

With regard to the last two criteria, the problem for global

studies such as global climate studies is that manipulation

and random placement into experimental and control cate-

gories cannot be carried out.

One method using correlational data, however, approaches

more closely the quality of information derived from random

placement into experimental and control categories. The con-

cept is that of Granger causality (Granger, 1969). According

to Stern and Kaufmann (2014), a time-series variable “x”

(e.g. atmospheric CO2) is said to “Granger-cause” variable

“y” (e.g. surface temperature) if past values of x help to pre-

dict the current level of y, better than just the past values of

y do, given all other relevant information.

Reference to the above four aspects of causality will be

made to help structure the review of materials in the follow-

ing sections.

2.2 Objectives of the study

What has been considered to influence the biota’s creation of

the pattern observed in the trend in the growth rate of atmo-

spheric CO2? The candidates for the influences on the biota

have mainly been considered in prior research to be atmo-

spheric variations, primarily temperature and/or ENSO (e.g.

Kuo et al., 1990; Wang et al., 2013). Despite its proposed role

in global warming overall, CO2 (in terms of the initial state of

atmospheric CO2 exploited by plants at time A) has not gen-

erally been isolated and studied in detail through time-series

analysis as an influence in the way the biosphere influences

the CO2 left in the atmosphere at succeeding time B.

This lack of attention to the influence of the biosphere on

climate variables seems to have come about for two reasons,

one concerning ENSO, the other, temperature. For ENSO,

the reason is that the statistical studies are unambiguous that

ENSO leads rate of change of CO2 (e.g. Lean and Rind,

2008). On the face of it, therefore, this ruled out CO2 as the

first mover of the ecosystem processes. For temperature, the

reason was that the question of whether atmospheric temper-

ature leads rate of change of CO2 or vice versa is less settled.

In the first published study on this question, Kuo et al.

(1990) provided evidence that the signature of interannual

atmospheric CO2 (measured as its first difference) fitted tem-

perature (passing therefore one of the four tests for causality,

of close conjunction).

The relative fits of both the level of and change in the

level of atmospheric CO2 (measured as its first difference)

with global surface temperature up to the present are depicted

in Fig. 2. Attention is drawn to both signature (fine-grained

data structure) and, by means of polynomial smoothing, core

trend for each data series.

www.atmos-chem-phys.net/15/11571/2015/ Atmos. Chem. Phys., 15, 11571–11592, 2015
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Figure 2. Z-scored monthly data: observed global surface temperature (green dashed curve) compared with that projected from an IPCC

mid-range scenario global climate model (GCM) – the CMIP3, SRESA1B scenario run for the IPCC fourth assessment report (IPCC, 2007)

(blue curve). Also shown is the trend in first-difference atmospheric CO2 (smoothed by two 13-month moving averages) (red dotted curve).

To show their core trends for illustrative purposes, the three series are fitted with fifth-order polynomials.

Concerning signature, while clearly first-difference CO2

and temperature are not identical, each is more alike than ei-

ther is to the temperature model based on the level of CO2.

As well, the polynomial fits show that the same likeness

groupings exist for core trend.

Kuo et al. (1990) also provided evidence concerning an-

other of the causality prerequisites – priority. This was that

the signature of first-difference CO2 lagged temperature (by

5 months). This idea has been influential. More recently,

Adams and Piovesan (2005) noted that climate variations act-

ing on ecosystems are believed to be responsible for varia-

tion in CO2 increment, but there are major uncertainties in

identifying processes, including uncertainty concerning in-

stantaneous (present authors’ emphasis) versus lagged re-

sponses. Wang et al. (2013) observed that the strongest cou-

pling is found between the CO2 growth rate and the concur-

rent (present authors’ emphasis) tropical land temperature.

Wang et al. (2013) nonetheless state in their conclusion that

the strong temperature–CO2 coupling they observed is best

explained by the additive responses of tropical terrestrial res-

piration and primary production to temperature variations,

which reinforce each other in enhancing temperature’s con-

trol (present author emphasis) on tropical net ecosystem ex-

change.

Another perspective on the relative effects of rising atmo-

spheric CO2 concentrations on the one hand and temperature

on the other has been provided by extensive direct experi-

mentation on plants. In a large-scale meta-analysis of such

experiments, Dieleman et al. (2012) drew together results on

how ecosystem productivity and soil processes responded to

combined warming and CO2 manipulation, and compared

it with those obtained from single-factor CO2 and temper-

ature manipulation. While the meta-analysis found that re-

sponses to combined CO2 and temperature treatment showed

the greatest effect, this was only slightly larger than for the

CO2-only treatment. By contrast, the effect of the CO2-only

treatment was markedly larger than for the warming-only

treatment.

In looking at leading and lagging climate series more gen-

erally, the first finding of correlations between the rate of

change (in the form of the first-difference) of atmospheric

CO2 and a climate variable was with the foregoing and the

Southern Oscillation Index (SOI) component of ENSO (Ba-

castow, 1976). Here evidence was presented that the SOI led

first-difference atmospheric CO2. There have been further

such studies (see Imbers et al., 2013, for overview) which,

taken together, consistently show that the highest correlations

are achieved with SOI leading temperature by some months

(3–4 months).

In light of the foregoing, this paper reanalyses by means

of time-series regression analysis which of first-difference

CO2 and temperature lead. The joint temporal relationship

between interannual atmospheric CO2, global surface tem-

perature and ENSO (indicated by the SOI) is also investi-

gated.

The foregoing also shows that a strong case can be made

for further investigating the planetary biota, influenced by at-

mospheric CO2, as a candidate influence on (cause of) cli-

mate outcomes. This question is also explored in this paper.

A number of Granger causality studies have been carried

out on climate time series (see review in Attanasio et al.,

2013). We found six papers which assessed atmospheric CO2

Atmos. Chem. Phys., 15, 11571–11592, 2015 www.atmos-chem-phys.net/15/11571/2015/
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and global surface temperature (Sun and Wang, 1996; Tri-

acca, 2005; Kodra et al., 2011; Attanasio and Triacca, 2011;

Attanasio et al., 2013; Stern and Kaufmann, 2014). Of these,

while all but one (Triacca, 2005) found Granger causality, it

was not with CO2 concentration as studied in this paper but

with CO2 radiative forcing (lnCO2, Attanasio and Triacca,

2011).

As well, all studies used annual rather than monthly data.

For Granger causality analysis, the data series used must dis-

play the statistical property of stationarity (see Sect. 3: Data

and methods). Such annual data for each of atmospheric CO2

and temperature are not stationary of themselves but must be

transformed into a new, stationary series by differencing (Sun

and Wang, 1996). Further, data at this level of aggregation

can “mask” correlational effects that only become apparent

when higher-frequency (e.g. monthly) data are used.

Rather than using a formal Granger causality analysis, a

number of authors have instead used conventional multiple

regression models in attempts to quantify the relative im-

portance of natural and anthropogenic influencing factors on

climate outcomes such as global surface temperature. These

regression models use contemporaneous explanatory vari-

ables. For example, see Lean and Rind (2008, 2009); Fos-

ter and Rahmstorf (2011); Kopp and Lean (2011); Zhou and

Tung (2013). This type of analysis effectively assumes a

causal direction between the variables being modelled. It is

incapable of providing a proper basis for testing for the pres-

ence or absence of causality. In some cases account has been

taken of autocorrelation in the model’s errors, but this does

not overcome the fundamental weakness of standard multi-

ple regression in this context. In contrast, Granger causality

analysis that we adopt in this paper provides a formal testing

of both the presence and direction of this causality (Granger

1969).

From such multiple regression studies, a common set of

main influencing factors (also called explanatory or predictor

variables) has emerged. These are (Lockwood, 2008; Folland

et al., 2013; Zhou and Tung, 2013): El Niño–Southern Oscil-

lation (ENSO), or Southern Oscillation Index (SOI) alone;

volcanic aerosol optical depth; total solar irradiance; and the

trend in anthropogenic greenhouse gas (the predominant an-

thropogenic greenhouse gas being CO2). In these models,

ENSO/SOI is the factor embodying interannual variation.

Imbers et al. (2013) show that a range of different studies

using these variables have all produced similar and close fits

with the global surface temperature.

With this background, this paper first presents an anal-

ysis concerning whether the first-difference of atmospheric

CO2 leads or lags global surface temperature. After assess-

ing this, questions of autocorrelation, strength of correlation,

and of causality are then explored. Given this exploration of

correlations involving first-difference atmospheric CO2, the

possibility of the correlation of second-difference CO2 with

climate variables is also explored.

Correlations are assessed at a range of timescales to seek

the time extent over which relationships are held, and thus

whether they are a special case or possibly longer term in

nature. The timescales involved are, using instrumental data,

over two periods starting, respectively, from 1959 and 1877;

and, using paleoclimate data, over a period commencing

from 1515. The correlations are assessed by means of re-

gression models explicitly incorporating autocorrelation us-

ing dynamic modelling methods. Granger causality between

CO2 and, respectively, temperature and SOI is also explored.

Atmospheric CO2 rather than emissions data are used, and

where possible at monthly rather than annual aggregation.

Finally, as noted, we have not been able to find studies which

have compared the gap between climate models and temper-

ature with NDVI data, so an assessment of this question is

carried out. All assessments were carried out using the time-

series statistical software packages Gnu Regression, Econo-

metrics and Time-series Library (GRETL) (available from:

http://gretl.sourceforge.net/, accessed 23 January 2014) and

IHS Eviews (IHS EViews 2011).

3 Data and methods

We present results of time-series analyses of climate data.

The data assessed are global surface temperature, atmo-

spheric carbon dioxide (CO2) and the Southern Oscillation

Index (SOI). The regressions are presented in several batches

based on the length of data series for which the highest tem-

poral resolution is available. The first batch of studies in-

volves the data series for which the available high resolu-

tion series is shortest: this is for atmospheric carbon diox-

ide (CO2) and commences in 1958. These studies are set at

monthly resolution.

The second batch of studies is for data able to be set at

monthly resolution not involving CO2. These studies begin

with the time point at which the earliest available monthly

SOI data commences, 1877.

The final batch of analyses utilises annual data. These

studies use data starting variously in the 16th or 18th cen-

turies.

Data from 1877 and more recently are from instrumen-

tal sources; earlier data are from paleoclimate sources. Data

from the mid-range outputs of two climate models are also

used.

For instrumental data sources for global surface temper-

ature, we used the Hadley Centre–Climate Research Unit

combined land SAT and SST (HadCRUT) version 4.2.0.0

(Morice et al., 2012), for atmospheric CO2, the US Depart-

ment of Commerce National Oceanic and Atmospheric Ad-

ministration Earth System Research Laboratory Global Mon-

itoring Division Mauna Loa, Hawaii, monthly CO2 series

(Keeling et al., 2009), and for volcanic aerosols the Na-

tional Aeronautic and Space Administration Goddard Insti-

tute for Space Studies Stratospheric Aerosol Optical Thick-

www.atmos-chem-phys.net/15/11571/2015/ Atmos. Chem. Phys., 15, 11571–11592, 2015
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ness series (Sato et al., 1993). Southern Oscillation Index

data (Troup, 1965) are from the Science Delivery Division of

the Department of Science, Information Technology, Inno-

vation and the Arts (DSITIA), Queensland, Australia. Solar

irradiance data are from J. Lean (personal communication,

2012).

With regard to the El Niño–Southern Oscillation, accord-

ing to IPCC (2014) the term El Niño was initially used to de-

scribe a warm-water current that periodically flows along the

coast of Ecuador and Peru, disrupting the local fishery. It has

since become identified with a basin-wide warming of the

tropical Pacific Ocean east of the dateline. This oceanic event

is associated with a fluctuation of a global-scale tropical and

subtropical surface atmospheric pressure pattern called the

Southern Oscillation. This atmosphere–ocean phenomenon

is coupled, with typical timescales of 2 to about 7 years, and

known as the El Niño–Southern Oscillation (ENSO).

The El Niño (temperature) component of ENSO is mea-

sured by changes in the sea surface temperature of the cen-

tral and eastern equatorial Pacific relative to the average tem-

perature. The Southern Oscillation (atmospheric pressure)

ENSO component is often measured by the surface pressure

anomaly difference between Tahiti and Darwin.

For the present study we choose the SOI atmospheric pres-

sure component rather than the temperature component of

ENSO to stand for ENSO as a whole. This is because it is

considered to be more valid to conduct an analysis in which

temperature is an outcome (dependent variable) without also

having temperature as an input (independent variable). The

correlation between SOI and the other ENSO indices is high,

so we believe this assumption is robust.

Palaeoclimate data sources are: atmospheric CO2, from

1500 – ice cores (Robertson et al., 2001); (NH) temperature,

from 1527 – tree ring data (Moberg et al., 2005); SOI, from

1706 – tree ring data (Stahle et al., 1998).

Normalized Difference Vegetation Index (NDVI) monthly

data from 1980 to 2006 are from the GIMMS (Global In-

ventory Modeling and Mapping Studies) data set (Tucker et

al., 2005). NDVI data from 2006 to 2013 were provided by

the Institute of Surveying, Remote Sensing and Land Infor-

mation, University of Natural Resources and Life Sciences,

Vienna. Data series projected from two representative mid-

range global climate models (GCMs) for global surface tem-

perature were used. Series were from the CMIP3, SRESA1B

scenario model (Meehl et al., 2007) and the CMIP5, RCP4.5

scenario model (Taylor et al., 2012).

Statistical methods used are standard (Greene, 2012). Cat-

egories of methods used are normalisation; differentiation

(approximated by differencing); and time-series analysis.

Within time-series analysis, methods used are smoothing;

leading or lagging of data series relative to one another to

achieve best fit; assessing a prerequisite for using data series

in time-series analysis, that of stationarity; including auto-

correlation in models by use of dynamic regression models;

and investigating causality by means of a multivariate time-

series model, known as a vector autoregression (VAR) and its

associated Granger causality test. These methods will now be

described in turn.

To make it easier to assess the relationship between the

key climate variables visually, the data were normalised us-

ing statistical Z scores or standardised deviation scores (ex-

pressed as “relative level” in the figures). In a Z-scored data

series, each data point is part of an overall data series that

sums to a zero mean and variance of 1, enabling comparison

of data having different native units. Hence, when several Z-

scored time series are depicted in a graph, all the time se-

ries will closely superimpose, enabling visual inspection to

clearly discern the degree of similarity or dissimilarity be-

tween them.

Individual figure legends contain details on the series

lengths.

In the time-series analyses, SOI and global atmospheric

surface temperature are the dependent variables. We tested

the relationship between each of these variables and (1) the

change in atmospheric CO2 and (2) the variability in its rate

of change. We express these CO2-related variables as finite

differences. The finite differences used here are of both the

first- and second-order types (we label these “first” and “sec-

ond” differences in the text). Variability is explored using

both intra-annual (monthly) data and interannual (yearly)

data. The period covered in the figures is shorter than that

used in the data preparation because of the loss of some data

points due to calculations of differences and of moving aver-

ages.

Smoothing methods are used to the degree needed to pro-

duce similar amounts of smoothing for each data series in

any given comparison. Notably, to achieve this outcome, se-

ries resulting from higher levels of differences require more

smoothing. Smoothing is carried out initially by means of a

13-month moving average – this also minimises any remain-

ing seasonal effects. If further smoothing is required, then

this is achieved by taking a second moving average of the

initial moving average (to produce a double moving aver-

age) (Hyndman, 2010). Often, this is performed by means

of a further 13-month moving average to produce a 2× 13-

month moving average. For descriptive statistics to describe

the long-term variation of a time-series trend, polynomial

smoothing is sometimes used.

It is important to consider what effects this filtering of our

data may have on the ensuing statistical analysis. In these

analyses, only the CO2 series was smoothed and therefore

requires assessment. To do this, we tested if the smoothed

(2× 13-month moving average) first-difference CO2 series

used here has different key dynamics to that of the orig-

inal raw (unsmoothed) data from which the smoothed se-

ries was derived. Lagged correlogram analysis showed that

the maximum, and statistically significant, correlation of the

smoothed series with the unsmoothed series occurs when

there is no phase shift. This suggests that the particular

smoothing used should provide no problems in the assess-
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Figure 3. Z-scored monthly data: global surface temperature (red curve) compared to first-difference atmospheric CO2 smoothed by two

13-month moving averages (black dotted curve).

ment of which of first-difference CO2 and temperature has

priority.

Second, there is extensive evidence that while the effect

of seasonal adjustment (via smoothing) on the usual tests

for unit roots in time-series data is to reduce their power in

small samples, this distortion is not an issue with samples of

the size used in this study (see e.g. Ghysels, 1990; Franses,

1991; Ghysels and Perron, 1993; Diebold, 1993). Moreover,

Olekalns (1994) shows that seasonal adjustment by using

dummy variables also impacts adversely on the finite-sample

power of these tests, so there is little to be gained by con-

sidering this alternative approach. Finally, one of the results

emerging from the Granger causality literature is that while

such causality can be “masked” by the smoothing of the data,

apparent causality cannot be “created” from non-causal data.

For example, see Sims (1971), Wei (1982), Christiano and

Eichenbaum (1987), Marcellino (1999), Breitung and Swan-

son (2002) and Gulasekaran and Abeysinghe (2002).

Finally, seasonally adjusting the data by a range of al-

ternative approaches did not qualitatively change the results

discussed in the paper. The results of these assessments are

given in the Supplement.

This means that our results relating to the existence of

Granger causality should not be affected adversely by the

smoothing of the data that has been undertaken.

Variables are led or lagged relative to one another to

achieve best fit. These leads or lags were determined by

means of time-lagged correlations (correlograms). The cor-

relograms were calculated by shifting the series back and

forth relative to each other, 1 month at a time.

With this background, the convention used in this paper

for unambiguously labelling data series and their treatment

after smoothing or leading or lagging is depicted in the fol-

lowing example. The atmospheric CO2 series is transformed

into its first difference and smoothed twice with a 13-month

moving average. The resultant series is then Z-scored. This

is expressed as Z2x13mma1stDiffCO2.

Note that to assist readability in text involving repeated

references, atmospheric CO2 is sometimes referred to simply

as CO2 and global surface temperature as temperature.

The time-series methodology used in this paper involves

the following procedures.

First, any two or more time series being assessed by time-

series regression analysis must be what is termed stationary

in the first instance, or be capable of transformed into a new

stationary series (by differencing). A series is stationary if its

properties (mean, variance, covariances) do not change with

time (Greene, 2012). The (augmented) Dickey–Fuller test is

applied to each variable. For this test, the null hypothesis is

that the series has a unit root, and hence is non-stationary.

The alternative hypothesis is that the series is integrated of

order zero.

Second, the residuals from any time-series regression anal-

ysis then conducted must not be significantly different from

white noise. This is done seeking correct model specification

for the analysis.

After Greene (2012) it is noted that the results of standard

ordinary least squares (OLS) regression analysis assume that

the errors in the model are uncorrelated. Autocorrelation of

the errors violates this assumption. This means that the OLS

estimators are no longer the best linear unbiased estimators

(BLUE). Notably and importantly this does not bias the OLS

coefficient estimates. However statistical significance can be

overestimated, and possibly greatly so, when the autocorre-

lations of the errors at low lags are positive.
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Table 1. Lag of first-difference CO2 relative to surface tempera-

ture series for global, tropical, Northern Hemisphere and Southern

Hemisphere categories.

Lag in months of first-

difference CO2 relative to

global surface

temperature category

Hadcrut4SH −1

Hadcrut4Trop −1

Hadcrut4_nh −3

Hadcrut4Glob −2

Addressing autocorrelation can take either of two alterna-

tive forms: correcting for it (for example, for first-order au-

tocorrelation by the Cochrane–Orcutt procedure), or taking it

into account.

In the latter approach, the autocorrelation is taken to be a

consequence of an inadequate specification of the temporal

dynamics of the relationship being estimated. The method of

dynamic modelling (Pankratz, 1991) addresses this by seek-

ing to explain the current behaviour of the dependent vari-

able in terms of both contemporaneous and past values of

variables. In this paper the dynamic modelling approach is

taken.

To assess the extent of autocorrelation in the residuals

of the initial non-dynamic OLS models run, the Breusch–

Godfrey procedure is used. Dynamic models are then used

to take account of such autocorrelation. To assess the extent

to which the dynamic models achieve this, Kiviet’s Lagrange

multiplier F test (LMF) statistic for autocorrelation (Kiviet,

1986) is used.

Hypotheses related to Granger causality (see Introduction)

are tested by estimating a multivariate time-series model,

known as a vector autoregression (VAR), for level of and

first-difference CO2 and other relevant variables. The VAR

models the current values of each variable as a linear func-

tion of their own past values and those of the other variables.

Then we test the hypothesis that x does not cause y by eval-

uating restrictions that exclude the past values of x from the

equation for y and vice versa.

Stern and Kander (2011) observe that Granger causality is

not identical to causation in the classical philosophical sense,

but it does demonstrate the likelihood of such causation or

the lack of such causation more forcefully than does simple

contemporaneous correlation. However, where a third vari-

able, z, drives both x and y, x might still appear to drive y

though there is no actual causal mechanism directly linking

the variables (any such third variable must have some plausi-

bility – see Sect. 5).
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Figure 4. Correlograms of first-difference CO2 with surface tem-

perature for global (turquoise curve with crosses), tropical (blue

curve with triangles), Northern Hemisphere (purple curve with

boxes) and Southern Hemisphere (black curve with diamonds) cat-

egories.

4 Results

4.1 Relationship between first-difference CO2 and

temperature

4.1.1 Priority

Figure 2 shows that, while clearly first-difference CO2 and

temperature are not identical in signature, each is more alike

than either is to the temperature model based on the level of

CO2. As well, the figure shows that the same likeness rela-

tionships exist for the core trend. The purpose of the forth-

coming sections is to see the extent to which these impres-

sions are statistically significant.

The first question assessed is that of priority: which of

first-difference atmospheric CO2 and global surface temper-

ature leads the other? The two series are shown for the period

1959 to 2012 in Fig. 3.

To quantify the degree of difference in phasing between

the variables, time-lagged correlations (correlograms) were

calculated by shifting the series back and forth relative to

each other, 1 month at a time. These correlograms are given

in Fig. 4 for global and regional data. For all four relation-

ships shown, first-difference CO2 always leads temperature.

The leads differ as quantified in Table 1.

It is possible for a lead to exist overall on average but for

a lag to occur for one or other specific subsets of the data.

This question is explored in Fig. 5 and Table 2. Here the full

1959–2012 period of monthly data – some 640 months – for

each of the temperature categories is divided into three ap-

proximately equal sub-periods, to provide 12 correlograms.

It can be seen that in all 12 cases, first-difference CO2 leads

Atmos. Chem. Phys., 15, 11571–11592, 2015 www.atmos-chem-phys.net/15/11571/2015/
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Tropical 1959.87 to 1976.46

Tropical 1976.54 to 1993.21

Tropical 1993.29 - 2012.37

Global 1959.87 to 1976.46

Global 1976.54 to 1993.21

Global 1993.29 - 2012.37

NH 1959.87 to 1976.46

NH 1976.54 to 1993.21

NH 1993.29 - 2012.37

SH 1959.87 to 1976.46

SH 1976.54 to 1993.21

SH 1993.29 - 2012.37

Figure 5. Correlograms of first-difference CO2 with surface temperature for global, tropical, Northern Hemisphere and Southern Hemisphere

categories, each for three time-series sub-periods.

Table 2. Lag of first-difference CO2 relative to surface tempera-

ture series for global, tropical, Northern Hemisphere and Southern

Hemisphere categories, each for three time-series sub-periods.

Temperature Time period Lag of first-difference

category CO2 relative to

global surface

temperature series

NH 1959.87 to 1976.46 −6

NH 1976.54 to 1993.21 −6

Global 1959.87 to 1976.46 −4

SH 1959.87 to 1976.46 −3

Global 1976.54 to 1993.21 −2

Tropical 1959.87 to 1976.46 0

Tropical 1976.54 to 1993.21 0

Tropical 1993.29 to 2012.37 0

Global 1993.29 to 2012.37 0

NH 1993.29 to 2012.37 0

SH 1976.54 to 1993.21 0

SH 1993.29 to 2012.37 0

temperature. It is also noted that earlier sub-periods tend to

display longer first-difference CO2 leads. For the most re-

cent sub-period the highest correlation is when the series are

neither led nor lagged.

4.1.2 Correspondence between first-difference CO2

and global surface temperature curves

The second prerequisite for causality, close correspondence,

is also seen between first-difference CO2 and global surface

temperature in Fig. 3.

4.1.3 Time series analysis

Both first-difference CO2 being shown to lead temperature,

and the two series displaying close correspondence, are con-

sidered a firm basis for the time-series analysis of the sta-

tistical relationship between first-difference CO2 and tem-

perature which follows. For this further analysis, we choose

global surface temperature as the temperature series because,

while its maximum correlation with first-difference CO2 is

not the highest (Fig. 5), its global coverage by definition is

greatest. (In this section, TEMP stands for global surface

temperature (HadCRUT4), and other block capital terms are

variable names used in the modelling.)

The order of integration, denoted I (d), is an important

characteristic of a time series. It reports the minimum num-

ber of differences required to obtain a covariance stationary

series. As stated above, all series used in a time-series re-

gression must be series which are stationary without further

differencing (Greene, 2012); that is, display an order of inte-

gration of I (0). If a series has an order of integration greater

than zero, it can be transformed by appropriate differencing

into a new series which is stationary.

By means of the augmented Dickey–Fuller (ADF) test for

unit roots, Table 3 provides the information concerning sta-

tionarity for the level of, and first-difference of, CO2, as well

as for global surface temperature. Test results are provided

for both monthly and annual data. The test was applied with

an allowance for both a drift and deterministic trend in the

data, and the degree of augmentation in the Dickey–Fuller

regressions was determined by minimising the Schwartz in-

formation criterion.

The results show that for both the monthly and annual

series used, the variables TEMP and FIRST-DIFFERENCE

CO2 are stationary (I (0)); but the level of CO2 is not. The

www.atmos-chem-phys.net/15/11571/2015/ Atmos. Chem. Phys., 15, 11571–11592, 2015
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Table 3. Augmented Dickey–Fuller (ADF) tests for stationarity of unit roots in both monthly and annual data 1969 to 2012 for level of

atmospheric CO2, first-difference CO2 and global surface temperature.

Monthly data Annual data

ADF p value Order of Test ADF p value Order of Test

statistic∗ integration interpretation statistic∗ integration interpretation

Level of CO2 −0.956 0.9481 I (1) Non-stationary −0.309 0.991 I (1) Non-stationary

First-difference CO2 −17.103 5.72× 10−54 I (0) Stationary −4.319 0.003 I (0) Stationary

Temp −5.115 0.00011 I (0) Stationary −3.748 0.019 I (0) Stationary

∗ The Dickey–Fuller regressions allowed for both drift and trend; the augmentation level was chosen by minimising the Schwartz information criterion.

level of CO2 is shown to be I (1) because (Table 3) its first-

difference is stationary.

In contrast, Beenstock et al. (2012), using annual data, re-

port that their series for the level of atmospheric CO2 forcing

is an I (2) variable and therefore is stationary in second dif-

ferences. To reconcile these two results, we refer to Pretis and

Hendry (2013), who reviewed Beenstock et al. (2012). Pretis

and Hendry (2013) take issue with the finding of I (2) for the

anthropogenic forcings studied – including CO2 – and find

evidence that this finding results from the combination of two

different data sets measured in different ways which make up

the 1850–2011 data set which Beenstock et al. (2012) test.

Regarding this composite series, Pretis and Hendry (2013)

write the following:

“In the presence of these different measurements exhibit-

ing structural changes, a unit-root test on the entire sample

could easily not reject the null hypothesis of I (2) even when

the data are in fact I (1). Indeed, once we control for these

changes, our results contradict the findings in Beenstock et

al. (2012).”

Pretis and Hendry (2013) give their results for CO2 in their

Table 1. Note that in the table, the level of CO2 data are

transformed into first-difference data (Beenstock et al., 2012,

claim the level of CO2 is I (2); if that is the case, the first-

difference of the level of CO2 that Pretis and Hendry, 2013,

should find would be I (1)).

Pretis and Hendry (2013) also state the following:

“Unit-root tests are used to determine the level of integra-

tion of time series. Rejection of the null hypothesis provides

evidence against the presence of a unit-root and suggests that

the series is I (0) (stationary) rather than I (1) (integrated).

. . . based on augmented Dickey–Fuller (ADF) tests (see

Dickey and Fuller, 1981), the first-difference of annual radia-

tive forcing of CO2 is stationary initially around a constant

(over 1850–1957), then around a linear trend (over 1958–

2011). Although these tests are based on sub-samples cor-

responding to the shift in the measurement system, there is

sufficient power to reject the null hypothesis of a unit root.”

Hence for annual data Pretis and Hendry (2013) find first-

difference CO2 to be stationary – I (0), not I (1) – as is found

in this study (Table 3).

With this question of the order of integration of the

time series considered, we now turn to the next step of

the time-series analysis. As Table 3, above, and Pretis and

Hendry (2013) show, the variable of the level of CO2 is non-

stationary (specifically, integrated of order one, i.e. I (1)). At-

tempting to assess TEMP in terms of the level of CO2 would

result in an “unbalanced regression”, as the dependent vari-

able (TEMP) and the explanatory variable (CO2) have dif-

ferent orders of integration. It is well-known (e.g. Banerjee

et al., 1993, pp. 190–191, and the references therein) that in

unbalanced regressions the t statistics are biased away from

zero; that is, one can appear to find statistically significant re-

sults when in fact they are not present. In fact, this occurrence

of spurious significance is found when we regress TEMP on

CO2. This is strong evidence that any analysis should involve

the variables TEMP and FIRST-DIFFERENCE CO2, and not

TEMP and CO2.

For TEMP and FIRST-DIFFERENCE CO2, one must next

assess the extent to which autocorrelation affects the time-

series model. This is done by obtaining diagnostic statistics

from an OLS regression. This regression shows, by means

of the Breusch–Godfrey test for autocorrelation (up to order

12 – that is, including all monthly lags up to 12 months),

that there is statistically significant autocorrelation at lags of

1 and 2 months, leading to an overall Breusch–Godfrey test

statistic (LMF)= 126.901, with p value=P(F(12,626) >

126.901)= 1.06× 10−158.

Autocorrelation is a consequence of an inadequate specifi-

cation of the temporal dynamics of the relationship being es-

timated. With this in mind, a dynamic model (Greene, 2012)

with two lagged values of the dependent variable as addi-

tional independent variables has been estimated. Results are

shown in Table 4. The LMF test shows that there is now

no statistically significant unaccounted-for autocorrelation,

thus supporting the use of this dynamic model specification.

Table 4 shows that a highly statistically significant model

has been established. First it shows that the temperature in

a given period is strongly influenced by the temperature of

closely preceding periods (see Sect. 5 for a possible mecha-

nism for this). Further, it provides evidence that there is also

a clear, highly statistically significant role in the model for

first-difference CO2.
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Table 4. OLS dynamic regression between first-difference atmospheric CO2 and global surface temperature for monthly data for the period

1959–2012, with autocorrelation taken into account

Independent Dependent Independent Independent Whole model Whole model LM test for

variable/sa variablea variable variable adjusted p value autocorrelationb

regression p value R-squared

coefficients

Led2mx13mma1stdiff CO2 TEMP 0.097 < 0.00001 0.861 6.70× 10−273 0.144

Led1mTEMP 0.565 < 0.00001

Led2mTEMP 0.306 < 0.00001

a Z-scored. b Whole model: Lagrange multiplier (LM) test for autocorrelation up to order 12 – null hypothesis: no autocorrelation.

Table 5. Pairwise correlations (correlation coefficients (R)) between selected climate variables.

2x13mmafirstdiff CO2 Hadcrut4Global 3x13mma2nddiffCO2

Hadcrut4Global 0.7 1

3x13mma2nddiffCO2 0.06 −0.05 1

13mmaReverseSOI 0.25 0.14 0.37

4.1.4 Granger causality analysis

We now can turn to assessing if first-difference atmo-

spheric CO2 may not only correlate with, but also contribute

causatively to, global surface temperature. This is done by

means of Granger causality analysis.

Recalling that both TEMP and FIRST-DIFFERENCE

CO2 are stationary, it is appropriate to test the null hypothe-

sis of no Granger causality from FIRST-DIFFERENCE CO2

to TEMP by using a standard vector autoregressive (VAR)

model without any transformations to the data. The Akaike

information criterion (AIC) and the Schwartz information

criterion (SIC) were used to select an optimal maximum lag

length (k) for the variables in the VAR. This lag length was

then lengthened, if necessary, to ensure that:

i. the estimated model was dynamically stable (i.e. all of

the inverted roots of the characteristic equation lie inside

the unit circle);

ii. the errors of the equations were serially independent.

The relevant EViews output from the VAR model is enti-

tled VAR Granger causality/block exogeneity Wald tests and

documents the following summary results – Wald statistic

(p value): null depicts that there is no Granger causality from

FIRST-DIFFERENCE CO2 to TEMP; number of lagsK = 4;

chi-square 26.684 (p value= 0.000). A p value of this level

is highly statistically significant and means the null hypothe-

sis of no Granger causality is very strongly rejected; that is,

over the period studied there is strong evidence that FIRST-

DIFFERENCE CO2 Granger-causes TEMP.

We recognise that as temperature is stationary, while CO2

is not, these two variables cannot correlate in the usual sense.

However, given that Granger non-causality tests can have low

power due to the presence of lagged dependent variables, it

is sensible to seek support, or confirmation, for the result

just discussed. This can be done by testing for Granger non-

causality between the levels of CO2 and TEMP. In this case,

the testing procedure must be modified to allow for the dif-

ferences in the orders of integration of the data series.

Once again, the levels of both series are used. For each

VAR model, the maximum lag length (k) is determined,

but then one additional lagged value of both TEMP and

CO2 is included in each equation of the VAR. However,

the Wald test for Granger non-causality is applied only to

the coefficients of the original k lags of CO2. Toda and Ya-

mamoto (1995) show that this modified Wald test statistic

will still have an asymptotic distribution that is chi-square,

even though the level of CO2 is non-stationary. Here the rel-

evant Wald Statistic (p value): null depicts that there is no

Granger causality from level of CO2 to TEMP; number of

lags K = 4; chi-square 2.531 (p value= 0.470). The lack of

statistical significance indicated by the p value is strong con-

firmation that level of CO2 does not Granger-cause TEMP.

With the above two assessments done, it is significant that

with regard to global surface temperature we are able to

discount causality involving the level of CO2, but establish

causality involving first-difference CO2.

4.2 Relationship between second-difference CO2 and

temperature and Southern Oscillation Index

4.2.1 Priority and correspondence

Given the results of this exploration of correlations involving

first-difference atmospheric CO2, the possibility of the corre-

lation of second-difference CO2 with climate variables is also

explored. The climate variables assessed are global surface
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Figure 6. Z scored monthly data: global surface temperature (red curve) and first-difference atmospheric CO2 smoothed by two 13-month

moving averages (black dotted curve ) (left-hand scale); sign-reversed SOI smoothed by a 13-month moving average (blue dashed curve) and

second-difference atmospheric CO2 smoothed by three 13-month moving averages (green barred curve) (right-hand scale).

Table 6. Pairwise correlations (correlation coefficients (R)) between selected climate variables, phase-shifted as shown in the table.

Led2m2x13mmafirstdiffCO2 Hadcrut4Global Led4m3x13mma2nddiffCO2

Hadcrut4Global 0.71 1

Led4m3x13mma2nddiffCO2 0.23 0.09 1

13mmaReverseSOI 0.16 0.14 0.49

temperature and the Southern Oscillation Index (SOI). In this

section, data are from the full period for which monthly in-

strumental CO2 data are available, 1958 to the present. For

this period, the series neither led nor lagged appear as fol-

lows (Fig. 6). For the purpose of this figure, to facilitate de-

piction of trajectory, second-difference CO2 (left axis) and

SOI (right axis) are offset so that all four curves display a

similar origin in 1960.

Figure 6 shows that, alongside the close similarity be-

tween first-difference CO2 and temperature already demon-

strated, there is a second apparent distinctive pairing between

second-difference CO2 and SOI. The figure shows that the

overall trend, amplitude and phase – the signature – of each

pair of curves is both matched within each pair and different

from the other pair. The remarkable sorting of the four curves

into two groups is readily apparent. Each pair of results pro-

vides context for the other – and highlights the different na-

ture of the other pair of results.

Recalling that (even uncorrected for any autocorrelation)

correlational data still hold information concerning regres-

sion coefficients, we initially use OLS correlations without

assessing autocorrelation to provide descriptive statistics. Ta-

ble 5 includes, without any phase-shifting to maximise fit, the

six pairwise correlations arising from all possible combina-

tions of the four variables other than with themselves. Here

it can be seen that the two highest correlation coefficients (in

bold in the table) are firstly between first-difference CO2 and

temperature, and secondly between second-difference CO2

and SOI.

In Table 6, phase shifting has been carried out to maximise

fit (shifts shown in the titles of the variables in the table). This

results in an even higher correlation coefficient for second-

difference CO2 and SOI.

The link between all three variable realms – CO2, SOI

and temperature – can be further observed in Fig. 7 and Ta-

ble 7. Figure 7 shows SOI, second-difference atmospheric

CO2 and first-difference temperature, each of the latter two

series phase-shifted for maximum correlation with SOI (as in

Table 5). Looking at priority, Table 6 shows that maximum

correlation occurs when second-difference CO2 leads SOI. It

is also noted that the correlation coefficients for the correla-

tions between the curves shown in Table 6 have all converged

in value compared to those shown in Table 5.

Looking at the differences between the curves shown in

Fig. 7, two of the major departures between the curves coin-

cide with volcanic aerosols – from the El Chichon volcanic

eruption in 1982 and the Pinatubo eruption in 1992 (Lean

and Rind, 2009). With these volcanism-related factors taken

into account, it is notable (when expressed in the form of

the transformations in Fig. 7) that the signatures of all three
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Figure 7. Z-scored monthly data from 1960-2012: sign-reversed SOI (unsmoothed and neither led nor lagged) (dotted black curve); second-

difference CO2 smoothed by 2× 13 month moving average and led relative to SOI by 2 months (green dashed curve); and first-difference

global surface temperature smoothed by a 13-month moving average and led by 3 months (red curve).

Table 7. OLS dynamic regression between second-difference atmospheric CO2 and reversed Southern Oscillation Index for monthly data

for the period 1959–2012, with autocorrelation taken into account.

Independent Dependent Independent Independent Whole model Whole model LM test for

variable/sa variablea variable variable adjusted p value autocorrelationb

regression p value R-squared

coefficients

Led3m2x13mma 1stDiffCO2 ReverseSOI 0.07699 < 0.011 0.478 1.80× 10−89 0.214

Led1mReverseSOI 0.456 < 0.00001

Led2mreverseSOI 0.272 < 0.00001

a Z-scored. b Whole model: LM test for autocorrelation up to order 12 – null hypothesis: no autocorrelation.

curves are so essentially similar that it is almost as if all three

curves are different versions of – or responses to – the same

initial signal.

So, a case can be made that first- and second-difference

CO2 and temperature and SOI respectively all reflect differ-

ent aspects of the same process.

4.2.2 Time series analysis

We now assess more formally the relationship between

second-difference CO2 and SOI. As for first-difference CO2

and temperature above, stationarity has been established.

Again, there is statistically significant autocorrelation at lags

of 1 and 2 months, leading to an overall Breusch–Godfrey

test statistic (LMF) of 126.9, with p value=P(F(12,626) >

126.901)= 1.06× 10−158.

Table 7 shows the results of a dynamic model with the

dependent variable used at each of the two lags as further

independent variables; there is now no statistically significant

autocorrelation which has not been accounted for.

As Table 7 shows, a highly statistically significant model

has been established. As for temperature, it shows that the

SOI in a given period is strongly influenced by the SOI of

closely preceding periods. Again as for temperature, it pro-

vides evidence that there is a clear role in the model for

second-difference CO2.

With this established, it is noted that while the length of

series in the foregoing analysis was limited by the start date

of the atmospheric CO2 series (January 1958), high tempo-

ral resolution (monthly) SOI data go back considerably fur-

ther, to 1877. This long period SOI series (for background

see Troup, 1965) is that provided by the Australian Bureau of

Meteorology, sourced here from the Science Delivery Divi-

sion of the Department of Science, Information Technology,

Innovation and the Arts, Queensland, Australia. As equiva-

lent temperature data are also available (the global surface

temperature series already used above (HadCRUT4) goes

back as far as 1850), these two longer series are now plotted

in Fig. 8. Notable is the continuation of the striking similarity

between the two signatures already shown in Fig. 7 over this

longer period.
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Figure 8. Z-scored monthly data from 1877–2012: sign-reversed SOI (unsmoothed and neither led nor lagged) (red curve); and first-

difference global surface temperature smoothed by a 13-month moving average and led relative to SOI by 3 months (black dotted curve).

Table 8. OLS dynamic regression between first-difference global surface temperature and reversed Southern Oscillation Index for monthly

data for the period 1877–2012, with autocorrelation taken into account.

Independent Dependent Independent Independent Whole model Whole model LM test for

variable/sa variablea variable variable adjusted p value autocorrelationb

regression p value R-squared

coefficients

Led3m12mma1stDiffTEMP ReverseSOI 0.140 < 0.00001 0.466 3.80× 10−221 0.202

Led1mReverseSOI 0.465 < 0.00001

Led2mReverseSOI 0.210 < 0.00001

a Z-scored. b Whole model: LM test for autocorrelation up to order 3 – null hypothesis: no autocorrelation.

Turning to regression analysis, as previously the Breusch–

Godfrey procedure shows that for lags up to lag 12, the ma-

jority of autocorrelation is again restricted to the first two

lags. Table 8 shows the results of a dynamic model with the

dependent variable used at each of the two lags as further

independent variables.

In comparison with Table 7, the extended time series mod-

elled in Table 8 shows a remarkably similar R-squared statis-

tic: 0.466 compared with 0.478. By contrast, the partial re-

gression coefficient for second-difference CO2 has increased,

to 0.14 compared with 0.077. It is beyond the scope of this

study, but the relationship of SOI and second-difference CO2

means it is now possible to produce a proxy for monthly at-

mospheric CO2 from 1877 – a date approximately 75 years

prior to the start of the CO2 monthly instrumental record in

January 1958.

4.2.3 Granger causality analysis

This section assesses whether second-difference CO2 can be

considered to Granger-cause SOI. This assessment is carried

out using data for the period 1959 to 2012.

Results of stationarity tests for each series are given in Ta-

ble 9. Each series is shown to be stationary. These results

Table 9. Augmented Dickey–Fuller (ADF) test for stationarity

for monthly data 1959–2012 for second-difference CO2 and sign-

reversed SOI.

ADF p value Test

statistic interpretation

Second-difference CO2 −10.077 0.000 Stationary

Sign-reversed SOI −6.681 0.000 Stationary

imply that we can approach the issue of possible Granger

causality by using a conventional VAR model, in the levels

of the data, with no need to use a “modified” Wald test (as

used in the Toda and Yamamoto (1995) methodology).

Simple OLS regressions of SOI against separate lagged

values of second-difference CO2 (including an intercept)

confirm the finding that the highest correlation is when a two-

period lag is used.

A two-equation VAR model is needed for reverse-sign SOI

and second-difference CO2. Using SIC, the optimal maxi-

mum lag length is found to be 2 lags. When the VAR model

is estimated with this lag structure (Table 10), testing the null

hypothesis that there is no serial correlation at lag order h,

Atmos. Chem. Phys., 15, 11571–11592, 2015 www.atmos-chem-phys.net/15/11571/2015/
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Figure 9. Z-scored annual data: paleoclimate time series from 1500: ice core level of CO2 (blue curve), level of CO2 transformed into

first-difference form (green barred curve); and temperature from speleothem (red dashed curve) and tree ring data (black boxed curve).

Table 10. VAR Residual Serial Correlation LM Tests component of

Granger causality testing of relationship between second-difference

CO2 and SOI. Initial 2-lag model.

Lag order LM-Stat p value∗

1 10.62829 0.0311

2 9.71675 0.0455

3 2.948737 0.5664

4 9.711391 0.0456

5 10.67019 0.0305

6 37.13915 0

7 1.268093 0.8668

∗ p values from chi-square with 4 df.

shows that there is evidence of autocorrelation in the residu-

als.

This suggests that the maximum lag length for the vari-

ables needs to be increased. The best results (in terms of

lack of autocorrelation) were found when the maximum lag

length is 3. (Beyond this value, the autocorrelation results de-

teriorated substantially, but the conclusions below, regarding

Granger causality, were not altered.)

Table 11 shows that the preferred, 3-lag model, still suffers

a little from autocorrelation. However, as we have a relatively

large sample size, this will not impact adversely on the Wald

test for Granger causality.

The relevant EViews output from the VAR model is en-

titled VAR Granger causality/block exogeneity Wald tests

and documents the following summary results – Wald Statis-

tic (p value): null depicts that there is no Granger causal-

ity from second-difference CO2 to sign-reversed SOI; Chi-

Square 22.554 (p value= 0.0001).

The forgoing Wald statistic shows that the null hypothesis

is strongly rejected – in other words, there is very strong ev-

idence of Granger causality from second-difference CO2 to

sign-reversed SOI.

4.3 Palaeoclimate data

So far, the time period considered in this study has been

pushed back in the instrumental data realm to 1877. If non-

instrumental paleoclimate proxy sources are used, CO2 data

now at annual frequency can be taken further back. The fol-

lowing example uses CO2 and temperature data. The tem-

perature reconstruction used here commences in 1500 and

is that of Frisia et al. (2003), derived from annually lami-

nated speleothem (stalagmite) records. A second temperature

record (Moberg et al., 2005) is from tree ring data. The atmo-

spheric CO2 record (Robertson et al., 2001) is from fossil air

trapped in ice cores and from instrumental measurements.

The trends for these series are shown in Fig. 9.

Visual inspection of the figure shows that there is a strong

overall likeness in signature between the two temperature se-

ries, and between them and first-difference CO2. The simi-

larity of signature is notably less with level of CO2. It can be

shown that level of CO2 is not stationary and, even with the

two other series which are stationary, the strongly smoothed

nature of the temperature data makes removal of the au-

tocorrelation impossible. Nonetheless, noting that data un-

corrected for autocorrelation still provide valid correlations

(Greene, 2012) – only the statistical significance is uncertain

– it is simply noted that first-difference CO2 displays a bet-

ter correlation with temperature than level of CO2 for each

temperature series (Table 12).

4.4 Normalized Difference Vegetation Index (NDVI)

Using the Normalized Difference Vegetation Index (NDVI)

time series as a measure of the activity of the land biosphere,

this section now investigates the land biosphere as a candi-
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Figure 10. Z-scored monthly data: NDVIG (black dotted curve) compared to NDVIV (red curve).

Table 11. VAR Residual Serial Correlation LM Tests component of

Granger causality testing of relationship between second-difference

CO2 and SOI. Preferred 3-lag model.

Lag order LM-Stat p value∗

1 1.474929 0.8311

2 4.244414 0.3739

3 2.803332 0.5913

4 13.0369 0.0111

5 8.365221 0.0791

6 40.15417 0

7 1.698265 0.791

∗ p values from chi-square with 4 df.

date mechanism for the issue, identified in the Introduction,

of the increasing difference between the observed global sur-

face temperature trend and that suggested by general circula-

tion climate models.

The trend in the terrestrial CO2 sink is estimated annually

as part of the assessment of the well-known global carbon

budget (Le Quéré et al., 2014). It is noted that there is a risk

of circular argument concerning correlations between the ter-

restrial CO2 sink and interannual (first-difference) CO2 be-

cause the terrestrial CO2 sink is defined as the residual of

the global carbon budget (Le Quéré et al., 2014). By con-

trast, the Normalized Difference Vegetation Index (NDVI)

involves direct (satellite-derived) measurement of terrestrial

plant activity. For this reason and because, of the two series,

only NDVI is provided in monthly form, we will use only

NDVI in what follows.

Table 12. Correlations (R) between paleoclimate CO2 and temper-

ature estimates 1500–1940.

Temperature Temperature

(speleothem) (tree ring)

Level of CO2 (ice core) 0.369 0.623

First diff. CO2 (ice core) 0.558 0.721

4.4.1 Preparation of the global NDVI series used in

this paper

Globally aggregated GIMMS NDVI data from the Global

Land Cover Facility site are available from 1980 to 2006.

This data set is referred to here as NDVIG. Spatially disag-

gregated GIMMS NDVI data from the GLCF site is available

from 1980 to the end of 2013. An analogous global aggre-

gation of this spatially disaggregated GIMMS NDVI data –

from 1985 to end 2013 – was obtained from the Institute of

Surveying, Remote Sensing and Land Information, Univer-

sity of Natural Resources and Life Sciences, Vienna. This

data set is labelled NDVIV.

Pooling the two series enabled the longest time span of

data aggregated at global level. The two series were pooled

as follows. Figure 10 shows the appearance of the two se-

ries. Each series is Z-scored by the same common period

of overlap (1985–2006). The extensive period of overlap can

be seen, as can the close similarity in trend between the two

series. The figure also shows that the seasonal adjustment

smoothings vary between the two series. Seasonality was re-

moved for the NDVIV series using the 13-month moving av-

erage smoothing used throughout this paper. This required

two passes using the 13-month moving average (2× 13),

which leads to a smoother result than seen for the NDVIG

series.
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Figure 11. Z-scored monthly data: NDVI (black curve) compared to the difference between the temperature projected from an IPCC mid-

range scenario model (CMIP3, SRESA1B scenario) run for the IPPC fourth assessment report (IPCC, 2007) and global surface temperature

(red dotted curve).

Table 13. Order of integration test results for NDVI series for monthly data from 1981–2012. The Schwartz information criterion (SIC) was

used to select an optimal maximum lag length in the tests.

NDVI series Null hypothesis: the series has a unit root Probability of unit root

NDVIV Lag length: 16 (Automatic – based on SIC, maxlag= 16) 0.0122

NDVIG Lag length: 1 (Automatic – based on SIC, maxlag= 15) 7.23×−14

NDVIGV Lag length: 1 (Automatic – based on SIC, maxlag= 16) 4.18× 10−16

Pretis and Hendry (2013) observe that pooling data

(i) from very different measurement systems and (ii) display-

ing different behaviour in the sub-samples can lead to errors

in the estimation of the level of integration of the pooled se-

ries.

The first risk of error (from differences in measurement

systems) is overcome here as both the NDVI series are from

the same original disaggregated data set. The risk associ-

ated with the sub-samples displaying different behaviour and

leading to errors in levels of integration is considered in the

following section by assessing the order of each input series

separately, and then the order of the pooled series.

Table 13 provides order of integration test results for the

three NDVI series. The analysis shows all series are station-

ary (I (0)). It is, therefore, valid to pool the two series. Pool-

ing was done by appending the Z-scored NDVIV data to the

Z-scored NDVIG data at the point where the Z-scored ND-

VIG data ended (in the last month of 2006).

As discussed in the Introduction, Fig. 1 shows that since

around the year 2000 there is an increasing difference be-

tween the temperature projected by a mid-level IPCC model

and that observed. Any cause for this increasing difference

must itself show an increase in activity over this period.

The purpose of this section is, therefore: (i) to derive an

initial simple indicative quantification of the increasing dif-

ference between the temperature model and observation; and

(ii) to assess whether global NDVI is increasing. If NDVI

is increasing, this is support for NDVI being a candidate for

the cause of the temperature model–observation difference.

If there is a statistically significant relationship between the

two increases, this is further support for NDVI being a candi-

date for the cause of the model–observation difference, and

hence worthy of further detailed research. A full analysis of

this question is beyond the scope of the present paper.

4.4.2 Preparation of the indicative series for the

difference between the temperature projected

from a mid-level IPCC model and that observed

A simple quantification of the difference between the tem-

perature projected from a mid-level IPCC model and that

observed can be derived by subtracting the (Z-scored) tem-

perature projected from the IPCC mid-range scenario model

(CMIP3, SRESA1B scenario run for the IPCC fourth assess-

ment report; IPCC, 2007) shown in Fig. 1, from the observed

global surface temperature also shown in Fig. 1. This quan-

tification is depicted in Fig. 11 for monthly data and, to re-
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Figure 12. Z-scored data for periods each of 36 months, averaged: NDVI (black curve) compared to the difference between the temperature

projected from an IPCC mid-range scenario model (CMIP3, SRESA1B scenario) run for the IPPC fourth assessment report (IPCC, 2007)

and global surface temperature (red dotted curve).

duce the influence of noise and seasonality, in Fig. 12 for the

same data pooled into 3-year bins.

4.4.3 Comparison of the pooled NDVI series with the

difference between projected and observed global

surface temperature

Figure 11, displaying monthly data, compares NDVI with the

difference between the temperature projected from an IPCC

mid-range scenario model (CMIP3, SRESA1B scenario run

for the IPPC fourth assessment report; IPCC, 2007) and

global surface temperature (red dotted curve). Both curves

rise in more recent years.

The trends for the 36-month pooled data in Fig. 12 show

considerable commonality. OLS regression analysis of the

relationship between the curves in Fig. 12 shows that the

best fit between the curves involves no lead or lag. The cor-

relation between the curves displays an adjusted R-squared

value of 0.86. This is statistically significant (p= 0.00185).

As expected with such aggregated multi-year data, the re-

lationship shows little or no autocorrelation (test statistic:

LMF= 1.59 with p value=P(F(5,3) > 1.59)= 0.37). The

similarity between the trend in the NDVI and the difference

between IPCC temperature modelling and observed tempera-

ture is evidence supporting the possibility that the NDVI may

contribute to the observed global surface temperature depart-

ing from the IPCC modelling.

5 Discussion

The results in this paper show that there are clear links at

the highest standard of non-experimental causality – that

of Granger causality – between first- and second-difference

CO2 and the major climate variables of global surface tem-

perature and the Southern Oscillation Index, respectively.

Relationships between first- and second-difference CO2

and climate variables are present for all the timescales stud-

ied, including temporal start points situated as long ago as

1500. In the instances where time-series analysis accounting

for autocorrelation could be successfully conducted, the re-

sults were always statistically significant. For the further in-

stances (for those studies using data series commencing be-

fore 1877) the data were not amenable to time-series analy-

sis – and therefore also not amenable to testing for Granger

causality – due to the strongly smoothed nature of the tem-

perature data available which made removal of the autocor-

relation impossible (see Sect. 4.3). Nonetheless, the scale of

the non-corrected correlations observed was of the same or-

der of magnitude as those of the instances that were able to

be corrected for autocorrelation.

Given the timescales over which these effects are ob-

served, the results taken as a whole clearly suggest that the

mechanism observed is long-term, and not, for example, a

creation of the period of the steepest increase in anthro-

pogenic CO2 emissions, a period which commenced in the

1950s (IPCC 2014).

Taking autocorrelation fully into account in the time-series

analyses demonstrates the major role of immediate past in-

stances of the dependent variable (temperature, and SOI) in

influencing its own present state. This was found in all cases

where time-series models could be prepared. This was not to

detract from the role of first- and second-difference CO2 – in

all relevant cases, they were significant in the models as well.

According to Mudelsee (2010) and Wilks (2011), such au-

tocorrelation in the atmospheric sciences (also called persis-

tence or “memory”) is characteristic of many types of cli-

matic fluctuations.
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In the specific case of the temperature and first-difference

CO2 relationship, the significant autocorrelation for tempera-

ture occurred with present temperature being affected by the

immediately prior month and the month before that. As men-

tioned above, for atmospheric CO2 and global surface tem-

perature, others (Sun and Wang, 1996; Triacca, 2005; Kodra

et al., 2011; Attanasio and Triacca, 2011; Attanasio et al.,

2013; Stern and Kaufmann, 2014) have conducted Granger

causality analyses involving the use of lags of both depen-

dent and independent variables. These studies, however, are

not directly comparable with the present study. Firstly, while

reporting the presence or absence of Granger causality, the

studies did not report lead or lag information. Secondly, the

studies used annual data, so could not investigate the dy-

namics of the relationships at the interannual (monthly) level

where our findings were greatest.

The anthropogenic global warming (AGW) hypothesis has

two main dimensions (IPCC, 2007; Pierrehumbert, 2011):

(i) that increasing CO2 causes increasing atmospheric tem-

perature (via a radiative forcing mechanism) and (ii) that

most of the increase in atmospheric CO2 in the last hundred

years has been due to human causes – a result of accelerated

release of CO2 from the burning of fossil fuels. The evidence

for this (Levin and Hesshaimer, 2000) comes from the anal-

ysis of changes in the proportion of carbon isotopes in tree

rings from the past two centuries.

The results presented in this paper are supportive of the

AGW hypothesis for two reasons: firstly, increasing atmo-

spheric CO2 is shown to drive increasing temperature; and

secondly, the results deepen the evidence for a CO2 influ-

ence on climate in that second-difference CO2 is shown to

drive the SOI.

The difference between this evidence for the effect of CO2

on climate and that from the majority of GCM simulations is

that in the simulations, the temperature rises roughly linearly

with atmospheric CO2, whereas the present results show that

the climate effects result from persistence of previous effects

and from change in the level of CO2.

On the face of it, then, this model seems to leave little room

for the linear radiative forcing aspect of the AGW hypothesis.

However more research is needed in this area.

Reflection on Fig. 1 shows that the radiative mechanism

would be supported if a second mechanism existed to cause

the difference between the temperature projected for the ra-

diative mechanism and the temperature observed. The ob-

served temperature would then be seen to result from the ad-

dition of the effects of these two mechanisms.

As discussed in the Introduction, Hansen et al. (2013) have

suggested that the mechanism for the pause in the global tem-

perature increase since 1998 may be the planetary biota, in

particular the terrestrial biosphere. As an initial indicative

quantified characterisation of this possibility, Sect. 4.4 de-

rived a simple measure of the increasing difference between

the global surface temperature trend projected from a mid-

range scenario climate model and the observed trend. This

depiction of the difference displayed a rising trend. The time-

series trend for the globally aggregated Normalized Differ-

ence Vegetation Index – which represents the changing lev-

els of photosynthetic activity of the terrestrial biosphere –

was also presented. This was shown also to display a rising

trend.

If by further research, for example by Granger causal-

ity analysis, the global vegetation can be shown to embody

the second mechanism, this would be evidence that the ob-

served global temperature does result from the effects of two

mechanisms in operation together – the radiative, level-of-

CO2 mechanism, with the biological first-difference-of-CO2

mechanism.

Hence the biosphere mechanism would supplement, rather

than replace, the radiative mechanism.

Further comprehensive time-series analysis of the NDVI

data and relevant climate data, beyond the scope of the

present paper, could throw light on these questions.

The Supplement related to this article is available online

at doi:10.5194/acp-15-11571-2015-supplement.

Acknowledgements. The authors would like to acknowledge with

appreciation the support and advice of J. Gordon and C. Dawson,

and the comments of the two anonymous referees of the paper

which we consider to have improved it markedly.

Edited by: R. MacKenzie

References

Adams, J. M. and Piovesan, G.: Long series relationships between

global interannual CO2 increment and climate: Evidence for sta-

bility and change in role of the tropical and boreal-temperate

zones, Chemosphere, 59, 1595–1612, 2005.

Attanasio, A. and Triacca, U.: Detecting human influence on cli-

mate using neural networks based Granger causality, Theor.

Appl. Climatol., 103, 103–107, 2011.

Attanasio, A., Pasini, A., and Triacca, U.: Granger causality analy-

ses for climatic attribution, Atmospheric and Climate Sciences,

3, 515–522, 2013.

Bacastow, R. B.: Modulation of atmospheric carbon dioxide by the

southern oscillation, Nature, 261, 116–118, 1976.

Banerjee, A., Dolado, J., Galbraith, J. W., and Hendry, D. F.: Co-

integration, error-correction, and the econometric analysis of

non-stationary data, Oxford University Press, Oxford, 1993.

Barichivich, J., Briffa, K. R., Myneni, R. B., Osborn, T. J., Melvin,

T. M., Ciais, P., Piao, S., and Tucker, C.: Large-scale variations in

the vegetation growing season and annual cycle of atmospheric

CO2 at high northern latitudes from 1950 to 2011, Glob. Change

Biol., 19, 3167–3183, 2013.

Beenstock, M., Reingewertz, Y., and Paldor, N.: Polynomial cointe-

gration tests of anthropogenic impact on global warming, Earth

Syst. Dynam., 3, 173–188, doi:10.5194/esd-3-173-2012, 2012.

www.atmos-chem-phys.net/15/11571/2015/ Atmos. Chem. Phys., 15, 11571–11592, 2015

http://dx.doi.org/10.5194/acp-15-11571-2015-supplement
http://dx.doi.org/10.5194/esd-3-173-2012


11590 L. M. W. Leggett and D. A. Ball: Granger causality from changes in level of atmospheric CO2 to climate

Bellenger, H., Guilyardi, E., Leloup, J., Lengaigne, M., and Vialard,

J.: ENSO representation in climate models: from CMIP3 to

CMIP5, Clim. Dynam., 42, 1999–2018, 2014.

Breitung, J. and Swanson, N. R.: Temporal aggregation and spu-

rious instantaneous causality in multiple time series models, J.

Time Ser. Anal., 23, 651–665, 2002.

Canty, T., Mascioli, N. R., Smarte, M. D., and Salawitch, R. J.: An

empirical model of global climate – Part 1: A critical evalua-

tion of volcanic cooling, Atmos. Chem. Phys., 13, 3997–4031,

doi:10.5194/acp-13-3997-2013, 2013.

Chen, X. and Tung, K.: Varying planetary heat sink led to global-

warming slowdown and acceleration, Science 345, 897–903,

doi:10.1126/science.1254937, 2014.

Christriano, L. J. and Eichenbaum, M.: Temporal aggregation

and structural inference in macroeconomics, Carnegie-Rochester

Conference Series on Public Policy, 26, 63–130, 1987.

Cowtan, K. and Way, R. G.: Coverage bias in the HadCRUT4 tem-

perature series and its impact on recent temperature trends, Q. J.

Roy. Meteor. Soc., 140, 1935–1944, 2014.

Denman, K. L., Brasseur, G., Chidthaisong, G., Ciais, A., Cox, P. P.

M., Dickinson, P. M., Hauglustaine, R. E., Heinze, D., Holland,

C. E, Jacob, D., Lohmann, U., Ramachandran, S., da Silva Dias,

P. L., Wofsy, S. C., and Zhang, X.: Couplings between changes in

the climate system and biogeochemistry, Climate Change 2007:

The physical science basis. Contribution of working group I to

the fourth assessment report of the intergovernmental panel on

climate change, edited by: Solomon, S., Qin, D., Manning, M.,

Chen, Z., Marquis, M., Avery, K. B., Tignor, M., and Miller, H.

L., Cambridge University Press, Cambridge, United Kingdom

and New York, NY, USA, 2007.

Dickey, D. A. and Fuller, W. A.: Distribution of the estimators for

autoregressive time series with a unit root, J. Am. Stat. Assoc.,

74, 427–431, 1979.

Dickey, D. A. and Fuller, W. A.: Likelihood ratio statistics for au-

toregressive time series with a unit root, Econometrica, 49, 1057–

1072, 1981.

Diebold, F. X.: Discussion: Effect of seasonal adjustment filters on

tests for a unit root, J. Econometrics, 55, 99–103, 1993.

Dieleman, W. I. J., Vicca, S., Dijkstra, F. A., Hagedorn, F., Hov-

enden, M. J., Larsen, K. S., Morgan, J. A., Volder, A., Beier, C.,

Dukes, J. S., King, J., Leuzinger, S., Linder, S., Luo, Y., Oren, R.,

De Angelis, P., Tingey, D., Hoosbeek, M. R., and Janssens, I. A.:

Simple additive effects are rare: a quantitative review of plant

biomass and soil process responses to combined manipulations

of CO2 and temperature, Glob. Change Biol., 18, 2681–2693,

2012.

Ding, M., Chen, Y., and Bressler, S. L.: Granger causality: Basic

theory and applications to neuroscience, in: Handbook of Time

Series Analysis, edited by: Schelter, B., Winterhalder, M., and

Timmer, J., Wiley-VCH Verlag, Weinhem, 437–460, 2006.

Dufour, J.-M. and Renault, E.: Short run and long run causality in

time series: theory, Econometrica, 66, 1099–1125, 1998.

Elliott, G., Rothenberg, T. J., and Stock, J. H.: Efficient tests for an

autoregressive unit root, Econometrica, 64, 813–836, 1996.

Folland, C. K., Colman, A. W., Smith, D. M., Boucher, O., Parker,

D. E., and Vernier, J. P.: High predictive skill of global surface

temperature a year ahead, Geophys. Res. Lett., 40, 761–767,

2013.

Foster, G. and Rahmstorf, S.: Global temperature evolution

1979–2010, Environ. Res. Lett., 6, 044022, doi:10.1088/1748-

9326/6/4/044022, 2011.

Franses, P. H.: Moving average filters and unit roots, Econ. Lett.,

37, 399–403, 1991.

Frisia, S., Borsato, A., Preto, N., and McDermott, F.: Late Holocene

annual growth in three Alpine stalagmites records the influence

of solar activity and the North Atlantic Oscillation on winter cli-

mate, Earth Planet. Sc. Lett., 216, 411–424, 2003.

Fyfe, J. C. and Gillett, N. P.: Recent observed and simulated warm-

ing, Nature Climate Change, 4, 150–151, 2014.

Fyfe, J. C., Gillett, N. P, and Zwiers, F. W.: Overestimated global

warming over the past 20 years, Nature Climate Change, 3, 767–

769, 2013.

Geweke, J.: Measures of conditional linear dependence and feed-

back between time series, J. Am. Stat. Assoc., 79, 907–915,

1984.

Ghosh, S. and Rao, C. R. (Eds.): Design and Analysis of Experi-

ments, Handbook of Statistics, 13, North-Holland, 1996.

Ghysels, E.: Unit root tests and the statistical pitfalls of seasonal

adjustment: The case of U.S. postwar real gross national product,

Journal of Business and Economic Statistics, 8, 145–152, 1990.

Ghysels, E. and Perron, P.: The effect of seasonal adjustment filters

on tests for a unit root, J. Econometrics, 55, 57–98, 1993.

Granger, C. W. J.: Investigating causal relations by econometric

models and cross-spectral methods, Econometrica, 37, 424–438,

1969.

Greene, W. H.: Econometric Analysis, 7th Edn., Prentice Hall,

Boston, 2012.

Gribbons, B. and Herman, J.: True and quasi-experimental designs,

Practical Assessment, Research and Evaluation, 5, available at:

http://PAREonline.net/getvn.asp?v=5&n=14 (last access: 14 Oc-

tober 2015), 1997.

Guemas, V., Doblas-Reyes, F. J., Andreu-Burillo, I., and Asif, M.:

Retrospective prediction of the global warming slowdown in the

past decade, Nature Climate Change, 3, 649–653, 2013.

Guilyardi, E., Bellenger, H., Collins, M., Ferrett, S., Cai, W., and

Wittenberg, A.: A first look at ENSO in CMIP5, Clivar. Exch.,

17, 29–32, 2012.

Gulasekaran, R. and Abeysinghe, T.: The distortionary effects of

temporal aggregation on Granger causality, Working Paper No.

0204, Department of Economics, National University of Singa-

pore, 2002.

Hansen, J., Kharecha, P., and Sato, M.: Climate forcing growth

rates: doubling down on our Faustian bargain, Environ. Res.

Lett., 8, 011006, doi:10.1088/1748-9326/8/1/011006, 2013.

Hidalgo, F. and Sekhon, J.: Causality, in: International encyclopedia

of political science, edited by: Badie, B., Berg-Schlosser, D., and

Morlino, L., 204–211, 2011.

Holbrook, N. J. Davidson, J., Feng, M., Hobday, A. J., Lough, J.

M., McGregor, S., and Risbey, J. S.: El niño-southern oscillation,

in: A marine climate change impacts and adaptation report card

for Australia 2009, edited by: Poloczanska, E. S., Hobday, A. J.,

and Richardson, A. J., NCCARF Publication, 05/09, 2009.

Hume, D.: An enquiry into human understanding, cited in: Hidalgo

and Sekhon (2011), 1751.

Hyndman, R. J.: Moving averages, in: International encyclopedia

of statistical science, edited by: Lovirc, M., 866–869, Springer,

New York, 2010.

Atmos. Chem. Phys., 15, 11571–11592, 2015 www.atmos-chem-phys.net/15/11571/2015/

http://dx.doi.org/10.5194/acp-13-3997-2013
http://dx.doi.org/10.1126/science.1254937
http://dx.doi.org/10.1088/1748-9326/6/4/044022
http://dx.doi.org/10.1088/1748-9326/6/4/044022
http://PAREonline.net/getvn.asp?v=5&n=14
http://dx.doi.org/10.1088/1748-9326/8/1/011006


L. M. W. Leggett and D. A. Ball: Granger causality from changes in level of atmospheric CO2 to climate 11591

IHS EViews: EViews 7.2, IHS Global Inc., Irvine, California, 2011.

Imbers, J., Lopez, A., Huntingford, C., and Allen, M. R.: Testing

the robustness of the anthropogenic climate change detection

statements using different empirical models, J. Geophys. Res.-

Atmos., 118, 3192–3199, 2013.

IPCC: Climate Change 2007: The physical science basis. Contri-

bution of working group I to the fourth assessment report of

the intergovernmental panel on climate change, edited by: Qin,

D., Manning, M., Chen, Z., Marquis, M., Avery, K. B., Tignor,

M., and Miller, H. L., Cambridge University Press, Cambridge,

United Kingdom and New York, NY, USA, 2007.

IPCC: Climate Change 2013: The Physical Science Basis. Contri-

bution of Working Group I to the Fifth Assessment Report of the

Intergovernmental Panel on Climate Change, edited by: Stocker,

T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung,

J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge

University Press, Cambridge, United Kingdom and New York,

NY, USA, 1535 pp., 2014.

Karl, T. R., Arguez, A., Huang, B., Lawrimore, J. H., McMahon,

J. R., Menne, M. J., Peterson, T. C., Vose, R. S., and Zhang, H.-

M.: Possible artifacts of data biases in the recent global surface

warming hiatus, Science, 348, 1469–1472, 2015.

Kaufmann, R. K., Kauppi, H., and Stock, J. H.: Emissions, con-

centrations, and temperature: a time series analysis, Climatic

Change, 77, 249–278, 2006.

Keeling, R. F., Piper, S. C., Bollenbacher, A. F., and Walker,

S. J.: Carbon Dioxide Research Group, Scripps Institution of

Oceanography (SIO), University of California, La Jolla, Cali-

fornia USA 92093-0444, available at: http://cdiac.ornl.gov/ftp/

trends/co2/maunaloa.co2 (last access: 14 July 2014), 2009.

Kiviet, J. F.: On the rigour of some misspecification tests for mod-

elling dynamic relationships, Rev. Econ. Stud., 53, 241–261,

1986.

Kodra, E., Chatterjee, S., and Ganguly, A. R.: Exploring Granger

causality between global average observed time series of carbon

dioxide and temperature, Theor. Appl. Climatol., 104, 325–335,

2011.

Kopp, G. and Lean, J. L.: A new, lower value of total solar irradi-

ance: evidence and climate significance, Geophys. Res. Lett., 38,

L01706, doi:10.1029/2010GL045777, 2011.

Kosaka, Y. and Shang-Ping, X.: Recent global-warming hiatus

tied to equatorial Pacific surface cooling, Nature, 501, 403–407,

doi:10.1038/nature12534, 2013.

Kuo, C., Lindberg, C., and Thomson, D. J.: Coherence established

between atmospheric carbon dioxide and global temperature, Na-

ture, 343, 709–714, 1990.

Lean, J. L. and Rind, D. H.: How natural and anthro-

pogenic influences alter global and regional surface tem-

peratures: 1889 to 2006, Geophys. Res. Lett., 35, L18701,

doi:10.1029/2008GL034864, 2008.

Lean, J. L. and Rind, D. H.: How will Earth’s surface tempera-

ture change in future decades?, Geophys. Res. Lett., 36, L15708,

doi:10.1029/2009GL038932, 2009.

Le Quéré, C., Peters, G. P., Andres, R. J., Andrew, R. M., Boden,

T. A., Ciais, P., Friedlingstein, P., Houghton, R. A., Marland,

G., Moriarty, R., Sitch, S., Tans, P., Arneth, A., Arvanitis, A.,

Bakker, D. C. E., Bopp, L., Canadell, J. G., Chini, L. P., Doney,

S. C., Harper, A., Harris, I., House, J. I., Jain, A. K., Jones, S.

D., Kato, E., Keeling, R. F., Klein Goldewijk, K., Körtzinger, A.,

Koven, C., Lefèvre, N., Maignan, F., Omar, A., Ono, T., Park,

G.-H., Pfeil, B., Poulter, B., Raupach, M. R., Regnier, P., Röden-

beck, C., Saito, S., Schwinger, J., Segschneider, J., Stocker, B.

D., Takahashi, T., Tilbrook, B., van Heuven, S., Viovy, N., Wan-

ninkhof, R., Wiltshire, A., and Zaehle, S.: Global carbon budget

2013, Earth Syst. Sci. Data, 6, 235–263, doi:10.5194/essd-6-235-

2014, 2014.

Levin, I. and Hesshaimer, V.: Radiocarbon – a unique tracer of

global carbon cycle dynamics, Radiocarbon, 42, 69–80, 2000.

Lockwood, M.: Recent changes in solar outputs and the global mean

surface temperature. III. Analysis of contributions to global mean

air surface temperature rise, P. Roy. Soc. Math. Phy., 464, 1387–

1404, 2008.

Marcellino, M.: Some consequences of temporal aggregation in em-

pirical analysis, Journal of Business and Economic Statistics, 17,

129–136, 1999.

Meehl, G. A., Covey, C., Delworth, T., Latif, M., McAvaney, B.,

Mitchell, J. F. B., Stouffer, R. J., and Taylor, K. E.: The WCRP

CMIP3 multi-model dataset: A new era in climate change re-

search, B. Am. Meteorol. Soc., 88, 1383–1394, 2007.

CMIP3 data used available at: http://climexp.knmi.nl/data/itas_

cmip3_ave_mean_sresa1b_0-360E_-90-90N_na.txt, last access:

10 June 2014.

Meehl, G. A., Arblaster, J. M., Fasullo, J. T. I., Hu, A., and Tren-

berth, K. E.: Model-based evidence of deep-ocean heat up-

take during surface-temperature hiatus periods, Nature Climate

Change, 1, 360–364, doi:10.1038/NCLIMATE1229, 2011.

Moberg, A., Sonechkin, D. M., Holmgren, K., Datsenko, N. M., and

Karlén, W.: Highly variable Northern Hemisphere temperatures

reconstructed from low- and high-resolution proxy data, Nature,

433, 613–617, 2005.

Morice, C. P., Kennedy, J. J., Rayner, N. A., and Jones, P. D.:

Quantifying uncertainties in global and regional tempera-

ture change using an ensemble of observational estimates:

the HadCRUT4 dataset, J. Geophys. Res., 117, D08101,

doi:10.1029/2011JD017187, 2012.

HadCRUT4 data used available at: http://www.metoffice.gov.

uk/hadobs/hadcrut4/data/current/time_series/HadCRUT.4.4.0.0.

monthly_ns_avg.txt, last access: 12 September 2015.

Mudelsee, M.: Climate Time Series Analysis, Springer, Switzer-

land, 2010.

Olekalns, N.: Testing for unit roots in seasonally adjusted data,

Econ. Lett., 45, 273–279, 1994.

Pankratz, A.: Forecasting with Dynamic Regression Models, Wiley,

New York , 1991.

Pierrehumbert, R.: Infrared radiation and planetary temperature,

Phys. Today, 64, 33–38, 2011.

Pretis, F. and Hendry, D. F.: Comment on “Polynomial cointegration

tests of anthropogenic impact on global warming” by Beenstock

et al. (2012) – some hazards in econometric modelling of climate

change, Earth Syst. Dynam., 4, 375–384, doi:10.5194/esd-4-375-

2013, 2013.

Robertson, A., Overpeck, J., Rind, D., Mosley-Thompson, D.

E., Zielinski, G., Lean, J., Koch, D., Penner, J., Tegen, I.,

and Healy, R.: Hypothesized climate forcing time series for

the last 500 years, J. Geophys. Res., 106, 14783–14803,

doi:10.1029/2000JD900469, 2001.

Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves,

M. C., and Hashimoto, H.: A continuous satellite-derived mea-

www.atmos-chem-phys.net/15/11571/2015/ Atmos. Chem. Phys., 15, 11571–11592, 2015

http://cdiac.ornl.gov/ftp/trends/co2/maunaloa.co2
http://cdiac.ornl.gov/ftp/trends/co2/maunaloa.co2
http://dx.doi.org/10.1029/2010GL045777
http://dx.doi.org/10.1038/nature12534
http://dx.doi.org/10.1029/2008GL034864
http://dx.doi.org/10.1029/2009GL038932
http://dx.doi.org/10.5194/essd-6-235-2014
http://dx.doi.org/10.5194/essd-6-235-2014
http://climexp.knmi.nl/data/itas_cmip3_ave_mean_sresa1b_0-360E_-90-90N_na.txt
http://climexp.knmi.nl/data/itas_cmip3_ave_mean_sresa1b_0-360E_-90-90N_na.txt
http://dx.doi.org/10.1038/NCLIMATE1229
http://dx.doi.org/10.1029/2011JD017187
http://www.metoffice.gov.uk/hadobs/hadcrut4/data/current/time_series/HadCRUT.4.4.0.0.monthly_ns_avg.txt
http://www.metoffice.gov.uk/hadobs/hadcrut4/data/current/time_series/HadCRUT.4.4.0.0.monthly_ns_avg.txt
http://www.metoffice.gov.uk/hadobs/hadcrut4/data/current/time_series/HadCRUT.4.4.0.0.monthly_ns_avg.txt
http://dx.doi.org/10.5194/esd-4-375-2013
http://dx.doi.org/10.5194/esd-4-375-2013
http://dx.doi.org/10.1029/2000JD900469


11592 L. M. W. Leggett and D. A. Ball: Granger causality from changes in level of atmospheric CO2 to climate

sure of global terrestrial primary production, BioScience, 54,

547–560, 2004.

Sato, M., Hansen, J. E., McCormick, M. P., and Pollack, J. B.:

Stratospheric aerosol optical depths, 1850–1990, J. Geophys.

Res., 98, 22987–22994, 1993.

Data used available at: http://data.giss.nasa.gov/modelforce/

strataer/tau.line_2012.12.txt, last access: 10 August 2014.

Sims, C. A.: Distributed lag estimation when the parameter space

is explicitly infinite, Dimensional. Ann. Math. Statist., 42, 1622–

1636, 1971.

Stahle, D. W., D’Arrigo, R. D., Krusic, P. J., Cleaveland, M. K.,

Cook, E. R., Allan, R. J., Cole, J. E., Dunbar, R. B., Therrell,

M. D., Gay, D. A., Moore, M. D., Stokes, M. A., Burns, B. T.,

Villanueva-Diaz, J., and Thompson, L. G.: Experimental dendro-

climatic reconstruction of the Southern Oscillation, B. Am. Me-

teorol. Soc., 79, 2137–2152, 1998.

Stern, D. I. and Kander, A.: The role of energy in the industrial

revolution and modern economic growth, CAMA Working Paper

Series, Australian National University, 2011.

Stern, D. I. and Kaufmann, R. K.: Anthropogenic and natural

causes of climate change, Climatic Change, 122, 257–269,

doi:10.1007/s10584-013-1007-x, 2014.

Sun, L. and Wang, M.: Global warming and global dioxide emis-

sion: an empirical study, J. Environ. Manage., 46, 327–343,

1996.

Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of

CMIP5 and the experiment design, B. Am. Meteorol. Soc., 93,

485–498, doi:10.1175/BAMS-D-11-00094.1, 2012.

CMIP5 data used available at: http://climexp.knmi.nl/data/

icmip5_tas_Amon_modmean_rcp45_0-360E_-90-90N_n_++

+a.txt, last access: 3 September 2015.

Toda, H. Y. and Yamamoto, T.: Statistical inferences in vector au-

toregressions with possibly integrated processes, J. Economet-

rics, 66, 225–250, 1995.

Triacca, U.: Is Granger causality analysis appropriate to investigate

the relationship between atmospheric concentration of carbon

dioxide and global surface air temperature?, Theor. Appl. Cli-

matol., 81, 133–135, 2005.

Troup, A. J.: The Southern Oscillation, Q. J. Roy. Meteor. Soc., 91,

490–506, 1965.

SOI data used available at: https://www.longpaddock.qld.gov.au/

seasonalclimateoutlook/southernoscillationindex/soidatafiles/

MonthlySOI1887-1989Base.txt, last access: 25 August 2014.

Tucker, C. J., Pinzon, J. E., Brown, M. E., Slayback, D., Pak, E.

W., Mahoney, R., Vermote, E., and El Saleous, N.: An extended

AVHRR 8-km NDVI data set compatible with MODIS and SPOT

vegetation NDVI data, Int. J. Remote Sens., 26, 4485–5598,

2005.

Wang, W., Ciais, P., Nemani, R. R., Canadell, J. G., Piao, S., Sitch,

S., White, M. A., Hashimoto, H., Milesi, C., and Myneni, R. B.:

Variations in atmospheric CO2 growth rates coupled with trop-

ical temperature, P. Natl. Acad. Sci. USA, 110, 13061–13066,

2013.

Wei, W. W. S.: The effect of systematic sampling and temporal ag-

gregation on causality – a cautionary note, J. Am. Stat. Assoc.,

77, 316–319, 1982.

Wilks, D. S.: Statistical methods in the atmospheric sciences: an

introduction, Academic Press, London, 2011.

Zhang, Y., Guanter, L., Berry J. A., Joiner, J., van der Tol, C., Huete,

A., Gitelson, A., Voigt, M., and Köhler, P.: Estimation of vegeta-

tion photosynthetic capacity from space-based measurements of

chlorophyll fluorescence for terrestrial biosphere models, Glob.

Change Biol., 20, 3727–3742, doi:10.1111/gcb.12664, 2014.

Zhou, J. and Tung, K.: Deducing multidecadal anthropogenic global

warming trends using multiple regression analysis, J. Atmos.

Sci., 70, 1–8, 2013.

Atmos. Chem. Phys., 15, 11571–11592, 2015 www.atmos-chem-phys.net/15/11571/2015/

http://data.giss.nasa.gov/modelforce/strataer/tau.line_2012.12.txt
http://data.giss.nasa.gov/modelforce/strataer/tau.line_2012.12.txt
http://dx.doi.org/10.1007/s10584-013-1007-x
http://dx.doi.org/10.1175/BAMS-D-11-00094.1
http://climexp.knmi.nl/data/icmip5_tas_Amon_modmean_rcp45_0-360E_-90-90N_n_+++a.txt
http://climexp.knmi.nl/data/icmip5_tas_Amon_modmean_rcp45_0-360E_-90-90N_n_+++a.txt
http://climexp.knmi.nl/data/icmip5_tas_Amon_modmean_rcp45_0-360E_-90-90N_n_+++a.txt
https://www.longpaddock.qld.gov.au/seasonalclimateoutlook/southernoscillationindex/soidatafiles/MonthlySOI1887-1989Base.txt
https://www.longpaddock.qld.gov.au/seasonalclimateoutlook/southernoscillationindex/soidatafiles/MonthlySOI1887-1989Base.txt
https://www.longpaddock.qld.gov.au/seasonalclimateoutlook/southernoscillationindex/soidatafiles/MonthlySOI1887-1989Base.txt
http://dx.doi.org/10.1111/gcb.12664

	Abstract
	Introduction
	Methodological issues and objectives of the study
	Methodological issues
	Objectives of the study

	Data and methods
	Results
	Relationship between first-difference CO2 and temperature
	Priority
	Correspondence between first-difference CO2 and global surface temperature curves
	Time series analysis
	Granger causality analysis

	Relationship between second-difference CO2 and temperature and Southern Oscillation Index
	Priority and correspondence
	Time series analysis
	Granger causality analysis

	Palaeoclimate data
	Normalized Difference Vegetation Index (NDVI)
	Preparation of the global NDVI series used in this paper
	Preparation of the indicative series for the difference between the temperature projected from a mid-level IPCC model and that observed
	Comparison of the pooled NDVI series with the difference between projected and observed global surface temperature


	Discussion
	Acknowledgements
	References

