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Abstract. Increases in free-tropospheric (FT) ozone based on
ozonesonde records from the early 1990s through 2008 over
two subtropical stations, Irene (near Pretoria, South Africa)
and Réunion (21◦ S, 55◦ E; ∼ 2800 km NE of Irene in the
Indian Ocean), have been reported. Over Irene a large in-
crease in the urban-influenced boundary layer (BL, 1.5–4
km) was also observed during the 18-year period, equiv-
alent to 30 % decade−1. Here we show that the Irene BL
trend is at least partly due to a gradual change in the sonde
launch times from early morning to the midday period. The
FT ozone profiles over Irene in 1990–2007 are re-examined,
filling in a 1995–1999 gap with ozone profiles taken dur-
ing the Measurements of Ozone by Airbus In-service Air-
craft (MOZAIC) project over nearby Johannesburg. A mul-
tivariate regression model that accounts for the annual ozone
cycle, El Niño–Southern Oscillation (ENSO) and possible
tropopause changes was applied to monthly averaged Irene
data from 4 to 11 km and to 1992–2011 Réunion sonde
data from 4 to 15 km. Statistically significant trends ap-
pear predominantly in the middle and upper troposphere
(UT; 4–11 km over Irene, 4–15 km over Réunion) in win-
ter (June–August), with increases∼ 1 ppbv yr−1 over Irene
and∼ 2 ppbv yr−1 over Réunion. These changes are equiv-
alent to∼ 25 and 35–45 % decade−1, respectively. Both sta-
tions also display smaller positive trends in summer, with a
45 % decade−1 ozone increase near the tropopause over Réu-
nion in December. To explain the ozone increases, we in-
vestigated a time series of dynamical markers, e.g., poten-

tial vorticity (PV) at 330–350 K. PV affects UT ozone over
Irene in November–December but displays little relationship
with ozone over Réunion. A more likely reason for winter-
time FT ozone increases over Irene and Réunion appears to
be long-range transport of growing pollution in the Southern
Hemisphere. The ozone increases are consistent with trajec-
tory origins of air parcels sampled by the sondes and with re-
cent NOx emissions trends estimated for Africa, South Amer-
ica and Madagascar. For Réunion trajectories also point to
sources from the eastern Indian Ocean and Asia.

1 Introduction

We are motivated to assess tropospheric ozone trends for two
reasons: (1) air quality, where surface data are typically used,
and (2) climate perturbations, where free-tropospheric ozone
exercises a positive radiative forcing (Shindell et al., 2006).
In the troposphere, under the influence of sunlight, ozone
is formed by chemical reactions among nitrogen oxides
(NOx = NO+ NO2), carbon monoxide (CO) and volatile or-
ganic compounds (VOCs) (Brunekreef and Holgate, 2002).
Ozone may also be transported vertically into the free tro-
posphere (FT) from the ozone-rich stratosphere; this mecha-
nism is known as stratosphere–troposphere exchange (STE;
Holton et al., 1995). Trend analysis must account for natural
variability in tropospheric ozone due to seasonal cycles and
climate oscillations that affect both STE and sources of the
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ozone precursors, NOx, CO and VOCs that originate from a
range of anthropogenic and natural processes (Oltmans et al.,
2013).

Most tropospheric ozone trend studies to date have fo-
cused on regional pollution in the Northern Hemisphere,
where sources are reasonably well characterized and inter-
continental transport links Asia, North America and Europe
as a global phenomenon (Cooper et al., 2012; Logan et al.,
2012; Parrish et al., 2012, 2013). Ozone measurements from
urban and rural background sites are usually used for trend
studies (Oltmans et al., 2013), with some mixture of ozone
data from ozonesondes and commercial aircraft monitoring
(Logan et al., 2012). Trends based on satellite ozone col-
umn estimates have been published (Beig and Singh, 2007),
but the various data products available are highly uncertain
(Doughty et al., 2011; Schoeberl et al., 2007; Stajner et al.,
2008; Thompson et al., 2012). Satellite data for the ozone
precursors NOx (van der A et al., 2008; Lourens et al., 2011;
Zien et al., 2014) and CO (Worden et al., 2010) are becoming
available, but only for the period after 1995. These studies
also focus on the Northern Hemisphere. In some cases, satel-
lite trends are based on multiple instruments with differing
algorithms and sampling characteristics and thus are highly
uncertain.

Data from a handful of South American megacities (Gal-
lardo et al., 2012) and rapidly growing cities in sub-
equatorial Africa represent most of our information about
the Southern Hemisphere (SH). Trends in South American
and African cities are hard to establish because a variety of
ozone measurement techniques have been employed, many
stations are only a few years old, and calibration checks are
sometimes irregular. An exception occurs in South Africa
(SA), where the Johannesburg–Pretoria (referred to below as
J-P) conurbation (blue star in Fig. 1) may already have at-
tained mega-city status (Liousse et al., 2012, 2014). Air qual-
ity monitoring in some parts of SA began in the 1970s, with
adoption of high-quality, regularly calibrated instrumenta-
tion in the late 1980s and early 1990s (Rorich and Galpin,
1998). At municipal levels, dozens of stations began operat-
ing after 2005 (http://www.saaqis.org.za). To the east of J-P,
at five monitoring sites over the partly rural, partly indus-
trialized regions of the Gauteng and Mpumalanga Highveld,
surface ozone exhibit pronounced sensitivity to the El Niño–
Southern Oscillation (ENSO) but little evidence of trends
over the period 1990–2007 (Balashov et al., 2014). Oltmans
et al. (2013) recently reported that the WMO/GAW (World
Meteorological Organization/Global Atmospheric Watch)
Cape Point station displayed a 15–20 % ozone increase from
1990 to 2000, followed by a period of zero-to-low growth.

In order to examine possible ozone trends in the FT in
the J-P region, Clain et al. (2009) used sonde data from
the SHADOZ (Southern Hemisphere Additional Ozoneson-
des; Thompson et al., 2003, 2012) station at Irene (25.9◦ S,
28.2◦ E). Clain et al. (2009) also studied FT ozone vari-
ability and trends at Réunion (20.8◦ S, 55.5◦ E; data from

Figure 1. Location of Irene soundings and Johannesburg MOZAIC
landing/takeoff profiles (blue star) and Réunion soundings (red
star). Also illustrated are typical recirculation patterns over southern
Africa and an outflow route to the Indian Ocean (maroon arrows).
Flows toward the southern African region and eastern Indian Ocean
from South America and southern Asia are indicated by blue arrows
(see Fig. 12).

1992 to 2008), a SHADOZ station∼ 2800 km northeast of
J-P (red star in Fig. 1). A regular linear regression approach
was employed to compare the 1990–1993 Irene record with
SHADOZ-period (Thompson et al., 2003, 2012; Diab et
al., 2004) soundings that spanned 1998–2008. The trends
were computed from∼ 1 km above the surface to 16 km
for the entire sampling period, with layers 2–6 km thick.
On average for Irene, only in the boundary layer (BL, in
this case 2–4 km) was there a statistically significant trend,
+14.4 (±4.0) % decade−1. A similar analysis was performed
with the Réunion sonde record, where, conversely, ozone
only increased significantly, by 12 (±6) % decade−1, above
10 km from 1992 to 2008.

Due to a pronounced seasonal cycle of ozone throughout
the troposphere, Clain et al. (2009) also computed trends for
each season: December-January-February (DJF, summer),
March-April-May (MAM, fall), June-July-August (JJA, win-
ter) and September-October-November (SON, spring). There
was a barely significant ozone increase in the middle
troposphere (MT; 6–10 km, 12.3 (±12.2) % decade−1) only
in JJA. In JJA there was also a significant trend of
18.30 (±9.51) % decade−1 in the 10–16 km layer. There were
no other Réunion trends during individual seasons. In JJA,
the Irene increase from 1990 to 2008 at 6–10 km was
11.4 (±5.1) % decade−1. Taking only the SHADOZ period,
1998–2008, that 6–10 km Irene increase more than dou-
bled in JJA, to 28 (±14) % decade−1. In the BL (2–4 km,
over Irene) there was a statistically significant increase from
1998 to 2008,+30.5 (±12.5) % decade−1, also roughly dou-
ble that over the 1990–2008 period. This∼ 30 % decade−1

increase was fairly uniform throughout the year, except for
a slightly higher value,+36 % decade−1, in MAM. Clain et
al. (2009) hypothesized that the Irene and Réunion ozone
growth in the lower and middle troposphere could be associ-
ated with increases in industrialization and biomass burning.
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Figure 2. Seasonal cycle of free- and upper-tropospheric ozone over Irene, based on monthly averages for two periods of observations for
Irene and Réunion:(a) Irene sondes from 4 to 15 km (1990–1993, 1999) with MOZAIC ozone from 4 to 11 km (1995–1999),(b) Irene
(SHADOZ) sondes from 2000 to 2007 and 2012 to 2013,(c) Réunion (pre-SHADOZ and SHADOZ) sondes launched in 1992–2001, and
(d) Réunion (SHADOZ) sondes from 2002 to 2011.

However, they pointed out that the Réunion UT ozone in-
creases occur when STE processes are most prevalent.

In this paper, the Irene sondes, with additional J-P ozone
profiles (1995–1999) from the Measurements of Ozone by
Airbus In-service Aircraft (MOZAIC) project, and extended
Réunion ozone profiles (1992–2011) are re-examined and
more accurate trends are presented. The BL trends reported
by Clain et al. (2009) for Irene are shown to be at least par-
tially an artifact of changing ozonesonde launch times. Sec-
ond, we merge the Irene and MOZAIC mid-tropospheric (4–
11 km) profiles that are unaffected by sampling times. We
use a multivariate regression model that accounts for the sea-
sonal cycle, potential vorticity (PV) and ENSO to compute
trends based on monthly averaged ozone mixing ratios. A
late fall–early winter (May and June) trend in the MT over
Irene turns out to be more than twice as large as reported by
Clain et al. (2009), with more vertically diffuse regions of
increase in summer (November–December). Between 4 and
5 km over Irene, ozone increases suggestive of BL change oc-
cur throughout the year, except at the local biomass burning
season (SON).

We also calculate ozone trends over Réunion. In that case,
we find a winter (July–August) trend from 1992 to 2011 that
is larger than over Irene,+35–45 % decade−1, above 8 km.
Due to the strength of UT ozone increases over Irene and
Réunion, we look for evidence of dynamical changes, using

potential vorticity as a proxy for stratospheric influence. Sim-
ilarly, assuming that growth in ozone precursors like NOx
and VOCs might account for the distinct ozone increases
in May–August, standard emissions databases are consulted.
Section 2 describes data sources and analytical methods. Sec-
tion 3 presents results and discussion. Section 4 provides a
summary and conclusions.

2 Data and methods of analysis

2.1 Ozonesonde measurements at Irene and Réunion

The measurements at Irene are made with Vaisala RS-80 ra-
diosondes (prior to 2002) and RS92 radiosondes (from 2002
to 2008) coupled to Science Pump Corporation (SPC) elec-
trochemical concentration cell ozonesondes (Thompson et
al., 1996, 2003; Diab et al., 1996). A 1 % buffered KI solu-
tion is used; this gives a measurement of tropospheric ozone
with 5 % accuracy and precision (Johnson et al., 2002; Smit
et al., 2007; Smit and ASOPOS, 2011; Thompson et al.,
2007). Comparisons of total column ozone from integration
of the Irene sonde data from 1998 to 2008 (minus a gap from
2000 to 2004) with the colocated Dobson no. 89 spectropho-
tometer, and with Earth Probe TOMS (Total Ozone Map-
ping Spectrometer, 1999–2004) and OMI (Ozone Monitoring
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Figure 3 

Figure 3. (a)Ozone mixing ratio, averaged over 4–15 km, from the
Réunion sonde record that started in 1992.(b) Corresponding data
frequency of profiles used in(a) by month.

Instrument, 2005–2008), are within 1 %. This implies that to-
tal ozone from the Irene sondes is one of the most accurate
records in SHADOZ (seehttp://croc.gsfc.nasa.gov/shadoz;
Thompson et al., 2007, 2012).

Figure 2 presents a seasonal climatology of the annual cy-
cle of FT ozone over Irene (Fig. 2a, b) and Réunion (Fig. 2c,
d) based on monthly averages for each site. The earlier Irene
record, for the years 1990–1999, as in Fig. 2a, is based on the
1990–1993 sondes augmented by the MOZAIC record for
4–11 km for the years 1995–1999; from 1995 until late 1998
there were no sonde launches over Irene. The second Irene
climatology (Fig. 2b) is based on SHADOZ soundings for
2000–2007 with about a year of data from September 2012
through October 2013. The most recent sondes followed a
hiatus of more than 4 years in Irene launches that started
in early 2008. The structure of the two periods depicted in
Fig. 2 appears somewhat different in several time and altitude
zones. One is within the TTL (tropopause transition layer),
which is∼ 13–15 km for Irene, during June through Decem-
ber. Second, in the period of active southern African biomass
fires (August–November), from∼ 4 to 10 km, ozone appears
slightly lower or unchanged in the second period (Fig. 2b)
compared with the 1990s (Fig. 2a). Conversely, from April
through July or August, ozone below 11 km appears to have
increased.

Réunion ozonesondes have been launched since 1992 at
St. Denis airport (∼ 10 m a.s.l.) (Baldy et al., 1996; Baray
et al., 1998, 2006; Randriambelo et al., 1999) using SPC
and ENSCI (now Droplet Measurement Technology – DMT)
ECC ozonesondes with a 1 % buffered KI solution from 1992
to 1998 and a 0.5 % buffered KI solution after 1998. Sev-
eral types of radiosondes have been used: Vaisala RS-80 ra-
diosondes (prior to September 2007), Modem M2K2 son-

Figure 4 

Figure 4. (a) Launch times for Irene, South Africa (25.9◦ S,
28.2◦ E), balloon-borne ozonesonde–radiosonde packages during
1990–1993 (blue) and for SHADOZ from 1999 to early 2007
(green).(b) Mean ozone mixing ratio in the 1.5–4 km layer from
Irene sondes corresponding to the sampling times in(a), showing
the upward trend in ozone mixing ratio as launch times moved later
in the day.(c) Correlation between sonde launch times and ozone
mixing ratio from the time series in (a) and (b) as a function of
altitude in 0.1 km bins from the surface (1.5 km) to 11 km.

des (from September 2007 to March 2013) and Modem M10
(from March 2013 to now). The mean 4–15 km ozone mix-
ing ratio appears in Fig. 3a with the frequency of sonde
launches in Fig. 3b. The most recent evaluation of total
ozone over Réunion as measured by the sondes averages
within 2 % of the satellite reading (Thompson et al., 2012)
and the ground-based Système D’Analyse par Observations
Zénithales (SAOZ) instrument. Climatologies for 1992–2001
and 2002–2011, based on the soundings depicted in Fig. 3b,
are illustrated in Fig. 2c and d. Winter ozone increases above
4 km over Réunion are pronounced in JJA; in the MT there
appear to be increases in October and November as well.

The 1990–1993 Irene ozonesondes were launched at
07:30–08:30 local time (LT – UTC+2 h; Fig. 4a). When op-
erations were resumed for SHADOZ in late 1998, launches
were conducted∼ 09:30 LT. After 2002, launches fluctu-
ated from∼ 11:30 to 15:30 LT to accommodate overpasses
of ozone instruments on ENVISAT (SCanning Imaging
Absorption spectroMeter for Atmospheric CHartographY
– SCIAMACHY) and the Aura satellite (four ozone sen-
sors). The typical mean 1.5–4 km ozone mixing ratio in
1990–1993 (e.g., Fig. 5 in Thompson et al., 1996) was
∼ 25 ppbv in summer (DJF), with a spring maximum (SON)
at 70 ppbv (Fig. 4b). By 2006 the DJF (low-ozone season)
near-surface ozone had drifted upward to 30 ppbv and the
mean 1.5–4 km ozone exceeded 80 ppbv, levels not seen
in the early 1990s. Thus, the Clain et al. (2009) trend for
SON based on comparing the 2–4 km tropospheric ozone
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Figure 5. Difference between Irene ozonesonde climatology com-
bined from 1990 to 1993 and 1999 to 2007 and MOZAIC climatol-
ogy from 1995 to 1999. Hatched areas represent statistically signif-
icant deviations of climatologies (places where standard deviation
values from two climatologies do not overlap).

column amounts between 1990 and 2008 was a statistically
significant increase of+1.17 (±0.49) DU decade−1, equiva-
lent to 15 (±6.2) % decade−1. During the SHADOZ period
only, 1998–2008, with the sampling times drifting later into
the day, the 2–4 km-layer ozone increase for SON calcu-
lated by Clain et al. (2009) was 2.4 (±1.5) DU decade−1 or
28.9 (±18) % decade−1.

Figure 4c shows that, at Irene,∼ 1.5 km above sea level,
the correlation between ozone mixing ratio and launch time
is 0.6. The correlation drops sharply above 2 km but the cor-
relation coefficient is still > 0.2 at 2 km. Only above 4 km
does the ozone–launch-time correlation decrease to < 0.08.
Consequently, trends from sondes based on data below 4 km
are assumed to be unreliable. The apparent BL trend noted
by Clain et al. (2009) might be observed because midday sur-
face ozone in the Pretoria region (http://www.saaqis.org.za)
is typically 3–4 times greater than at 07:00 LT due to the daily
photochemical ozone cycle.

2.2 MOZAIC data selection

MOZAIC sampling with Johannesburg landing and takeoffs
began in 1995 and ended in 2009; coverage after 2001 was
less regular than in the 1990s, with some years skipped alto-
gether. The general coherence of the MOZAIC Johannesburg
and Irene ozone profiles up to∼ 12 km (200 hPa) has been
described by Diab et al. (2003) and Clain et al. (2009). More
detailed sonde–MOZAIC comparisons reported by Thouret
et al. (1998) found that, above 400 hPa, ozonesondes exhibit
higher values than the Airbus instrument. The MT and UT
air sampled by the aircraft at beginning of descent and end
of ascent is north of Johannesburg, largely over Zambia and

Zimbabwe. Those profile segments correspond to a lower
background ozone amount than over Irene, where most son-
des travel over the SA Highveld and often encounter higher
ozone from mid-latitude air and STE events (see, for exam-
ple, a comparison of soundings over Lusaka (Zambia) and
Irene in September 2000; Thompson et al., 2002). Below
400 hPa, agreement between MOZAIC and Irene profiles is
usually within 5 %, the stated uncertainty of the sonde in-
strument (Thouret et al., 1998). Because ozonesonde data
over Irene are missing for most of the 1994–1998 period,
we want to fill the gap with 4–11 km measurements from
the MOZAIC record. A check for instrument bias between
the Irene and MOZAIC ozone profiles appears in Fig. 5,
where the difference between the Irene ozonesonde climatol-
ogy combined from 1990 to 1993 and 1999 to 2007 and mean
ozone from MOZAIC in 1995–1999 is presented. Hatched
areas represent times and regions where, within the standard
deviation for each data set (sonde and MOZAIC), the means
of the two climatologies do not overlap. As expected, most
of the statistically significant differences are above 9 km.
The greatest differences appear in fall (MAM), not in win-
ter, which happens to show the largest ozone trends (Sect. 3).
Accordingly, for our analysis, the 1995–1999 MOZAIC and
Irene data are merged into a single time series (Fig. 6). Fur-
thermore, because Thouret et al. (1998) found no difference
in morning or evening MOZAIC profiles in the FT, all the
available data are included in the monthly averages in Fig. 6.

2.3 Dynamical factors and trend analysis

A number of studies point to significant dynamical influ-
ences that need to be taken into account in a trend analy-
sis of FT and TTL tropical ozone. For example, examination
of tropical tropospheric ozone variability with indicators of
ENSO (El Niño–Southern Oscillation) based on satellite and
sonde data (Chandra et al., 1998; Thompson and Hudson,
1999; Fujiwara et al., 1999; Thompson et al., 2001; Logan
et al., 2008) reveals a positive (increased) ozone response
in some regions and negative in others. Time-series analy-
ses of SHADOZ ozone profiles in the troposphere and lower
stratosphere (LS) have been carried out by Lee et al. (2010),
Randel and Thompson (2011) and Oman et al. (2011). At
the sites equatorward of 15◦ S/N, the ENSO signal exhibits
varying characteristics, with stations responding with posi-
tive ozone and temperature anomalies (for example, Kuala
Lumpur and San Cristóbal), negative at others (Natal and
Nairobi in Lee et al., 2010) and with distinct time lags (Ran-
del and Thompson, 2011). Using a different diagnostic, grav-
ity wave frequency (GWF), as inferred from ozone and po-
tential temperature laminae within the ozone and radiosonde
profiles, Thompson et al. (2011) found that ENSO signa-
tures during the SHADOZ record were most pronounced in
the TTL and less so in the MT. Over subtropical Irene and
Réunion, GWF is 2–3 times lower than over Kuala Lumpur,
Watukosek and San Cristóbal (Thompson et al., 2011).
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Figure 6 

Figure 6. (a) Ozone mixing ratio averaged 4–11 km, from the ear-
lier (1990–1993) Irene record (blue) and the SHADOZ Irene period
(1999–2007) (green). The red dots depict averaged ozone mixing ra-
tio, 4–11 km, from MOZAIC profiles acquired in 1995–1998 from
an instrumented commercial jet during landings and takeoffs at Jo-
hannesburg (JNB, O. R. Tambo) airport (Thouret et al., 1998; Clain
et al., 2009). The magenta dots represent the combined record of
MOZAIC and SHADOZ.(b) Corresponding data frequency of pro-
files used in(a) by month for Irene and JNB. Equipment changes
by the airlines have interrupted the commercial aircraft ozone sam-
pling project in MOZAIC (now IAGOS). Two field campaigns
(SAFARI-92/TRACE-A in September–October 1992; Diab et al.,
1996; Thompson et al., 1996) and SAFARI-2000 in September 2000
(Swap et al., 2003; Thompson et al., 2002) gave rise to more fre-
quent Irene launches.

STE is known to affect tropospheric ozone at Irene, espe-
cially during the spring. STE processes may occur slowly, as
through the Brewer–Dobson circulation (Holton et al., 1995).
Alternatively, meteorological phenomena such as intense
cumulus convection, tropopause folding associated with up-
per level troughs, and cutoff lows are the examples of faster
STE mechanisms (Rao et al., 2003). It is standard practice to
use potential vorticity (PV) as a dynamical tracer of strato-
spheric air intrusions into FT, as, for example, in tropopause
folds, where UT subsidence transports ozone-rich LS air
into the mid-troposphere (Keyser and Shapiro, 1986; Beek-
mann et al., 1994; Rao et al., 2003). Consequently, any dia-
batic heating processes can alter PV values without affecting
ozone.

Accordingly, FT ozone, at both Irene and Réunion is ana-
lyzed with a multivariate regression model that includes fac-
tors of the semi- and annual cycles, trend, ENSO, and PV
variability. Such statistical regression models are common in
the atmospheric sciences (Randel and Cobb, 1994; Ziemke
et al., 1997). The model can be presented as

T̂ (t) = α + β · t + γ · ENSO(t) + δ · PV(t) + ε (t) , (1)

Figure 7. Trend (change in % decade−1) computed from multivari-
ate regression model for combined 4–11 km, Irene–JNB MOZAIC
profile data, 1990–2007. Diagonal shading denotes statistical sig-
nificance. Increases below 5 km may be related to surface pollution.
Note that losses (blue in February-March-April and September–
October) are not statistically significant.

whereα is the seasonal cycle fit,β is the trend coefficient,
t is time in months,γ is the regression coefficient for the
time series ENSO(t), δ is the regression coefficient for the
PV(t) time series, and finallyε (t) is the residual that is cal-
culated by subtracting the modeled time seriesT̂ (t) from
the actual ozone time seriesT (t). For ENSO, the Southern
Oscillation index (SOI,http://www.esrl.noaa.gov/psd/data/
correlation/soi.data) is used as a proxy. Monthly PV anoma-
lies are calculated from the ECMWF 330 K PV fields over
Irene (box bounded by 25.5–32.2◦ S and 24.8–31.5◦ E) and
from the ECMWF 350 K PV data over Réunion (box within
18–25◦ S and 49.5–65.25◦ E) (Dee et al., 2011). Note that
including a PV term in Eq. (1) should partially account for
any influence of a changing tropopause height (Seidel et al.,
2008; Sivakumar et al., 2011). The error for each coeffi-
cient is 2 standard deviations (SD) and is estimated using
a moving-block bootstrap technique in order to account for
auto-correlation in the ozone time series (Wilks, 1997). The
model is applied to monthly mean ozone every 100 m from
4–11 km for Irene (Fig. 7) and over 4–15 km for Réunion
(Fig. 8). We note that the quasi-biennial oscillation (QBO)
also affects tropical ozone (e.g., Witte et al., 2008; Thomp-
son et al., 2011). Adding a term for the QBO in the regres-
sion model, Eq. (1), made no difference in the results, pre-
sumably because the ozone trends are mostly below 13 km,
where QBO impacts are small (Lee et al., 2010).
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Figure 8.Same as Fig. 7 except trend in Réunion profiles, 4–15 km,
from 1992 to 2011.

3 Results and discussion

3.1 Free-tropospheric trends at Irene and Réunion

Figures 7 and 8 display ozone mixing ratio trends (in
% decade−1) for Irene and Réunion, respectively, based on
the 100 m monthly mean ozone averages. Hatched areas,
which appear only with positive trends, denote 2-SD statis-
tical significance. At both of these stations, ozone increases
are most pronounced in the MT and UT, between 4 and 11 km
(Irene, Fig. 7) and between 4and 15 km (Réunion, Fig. 8) in
winter. Ozone increases begin earlier in the year (April, May,
June, late fall) between 4 and 6 km over Irene than over Réu-
nion. In addition, in the lower free troposphere (LFT, below
5 km), statistically significant Irene ozone increases occur in-
termittently after June and into December (Fig. 7). It is possi-
ble that surface ozone changes over the urbanizing J-P region
play a role in the LFT change. Note that, although Fig. 4 sug-
gests that the Irene data at 5 km are free of sampling artifacts,
some contamination in the 4–5 km trends (Fig. 7) might be
present.

At Réunion, there is a UT summer increase (Fig. 8; De-
cember, January, 8–15 km) that bears some similarity to
an Irene increase at 10–11 km in November and December
(Fig. 7), but the magnitude of the Réunion ozone change is
slightly greater than the Irene signal. In particular, the 13–
15 km layer over Réunion shows a significant ozone enhance-
ment during December and January. The PV term described
in Sect. 3.2.1 partially accounts for this enhancement. The
ozone increase in this layer is likely to be related to STE pro-
cesses in the UT. A striking result is that there are no signifi-
cant increases in MT ozone at either site during the southern
African biomass burning season, September–October (Fish-
man et al., 1991, 1996; Thompson et al., 1996; Swap et
al., 2002). One reason might be that predominant transport

from the most heavily burning regions south of 20◦ S at that
time of year tends to be southeast toward the Indian Ocean,
not along a SA Highveld–Réunion route (Swap et al., 2002;
Kanyanga, 2008).

3.2 Possible causes for free-tropospheric ozone increase

We briefly investigate possible reasons for the ozone in-
creases, considering dynamic factors and pollution sources.

3.2.1 Dynamical considerations

The two sources of ozone in the FT are in situ chemical
production and transport, where the former cause is gener-
ally believed to be at least several times greater than the
latter (Stevenson et al., 2006). In this section we consider
how meteorological parameters may influence both of these
sources. Can the positive trends in TTL and FT ozone be
explained by changes in the downward flow that transports
ozone into the troposphere from the ozone-rich stratosphere
during the wave-breaking process associated with Rossby
wave activity (Collins et al., 2003)? Because PV is a con-
venient dynamical tracer of the stratospheric air parcels, we
use it as a proxy for possible changes in STE events. We
calculate monthly PV averages at both locations from the
daily means of 12Z PV fields (for more details see Sect. 2.3)
and use these monthly averaged PV time series to calculate
monthly anomalies, which are used as a predictor in our re-
gression model (Eq. 1). A similar approach (but with differ-
ent goals) is used in Ziemke et al. (1997). Our results are
indicated in Fig. 9. Based on evaluating an ozone response
to PV changes over Irene, Fig. 9a shows a strong ozone sen-
sitivity to a 330 K PV time series in October and November,
when frequent STE episodes associated with wave breaking
occur over the SA Highveld (Tyson et al., 1997) and when
the ozone tropopause is at its lowest altitude (Sivakumar et
al., 2011; Thompson et al., 2012). However, ozone changes
at 9–11 km over Irene (corresponding to the 330 K level) are
only ∼ 15 % decade−1 in September and October, less than
the winter trends (Fig. 7).

We examined 350 K and 330 K PV May-June-July-August
(MJJA) anomalies over Irene (derived from the monthly
averaged PV time series described in Sect. 2.3) for the 1990–
2007 period to look for potential changes in STE activity dur-
ing the MJJA period, when the positive ozone trend is most
evident (Fig. 10). At the 350 K level (Fig. 10a), there is an
indication of slightly decreasing PV; this would be consis-
tent with findings of the well-characterized widening tropi-
cal belt (Seidel et al., 2008). However, such a perturbation
would tend to favor a higher tropopause, fewer STE events
and generally less ozone, the opposite of what is observed
(Fig. 7). Figure 10 also presents MJJA anomalies of tropo-
spheric temperature and specific humidity over the 1990–
2007 period. These are examined because it is known that up
to 300 hPa (Collins et al., 2000) temperature increases may
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Figure 9. (a) Irene tropospheric ozone (4–11 km layer) sensitiv-
ity toward the 330 K potential vorticity time series (ppbv 1 PV
unit−1) over the box bounded by 25.5–32.2◦ S and 24.8–31.5◦ E for
1990–2007.(b) Réunion tropospheric ozone (4–15 km layer) sensi-
tivity toward the 350 K potential vorticity time series (ppbv 1 PV
unit−1) over the box bounded by 18–25◦ S and 49.5–65.25◦ E for
1992–2011. Statistically significant response is shaded. Note that
the altitude scales are different for the stations.

lead to higher water vapor (H2O) mixing ratios and enhanced
photochemical destruction of ozone through the series of re-
actions that form OH: O3 + hv+ H2O. In Fig. 10, some tem-
perature increases are evident, but there is no consistent, pro-
portional response in specific humidity. Furthermore, if H2O
had increased in the 1990–2007 period, the tendency would
be to suppress FT ozone, again the opposite of what is ob-
served (Fig. 7). We conclude that the evidence for dynamical
change as the main driver for Irene FT winter ozone trends is
not compelling.

At Réunion, a site decidedly more tropical than Irene, the
STE effect (Fig. 9b) is statistically significant only during
the December–January period in the 13–15 km layer, corre-
sponding to the 350 K PV level (see Fig. 3 in Thompson et
al., 2012). Due to this sensitivity we think that the ozone
changes in that layer during that time are tied to STE pro-
cesses. Figure 11 (green curve) suggests that PV influence
on MT ozone (5–13 km) over Réunion is smaller than over
Irene (Fig. 11, blue curve), but STE events are known to oc-
cur at various times throughout the year (Baray et al., 1998;
Randriambelo et al., 1999; Clain et al., 2010). In September
and October, tropical low-pressure systems and the seasonal
lowering of the tropopause are similar to Irene (Sivakumar et
al., 2011). Greater PV values at Irene (Fig. 11, blue curve)
than at Réunion are not surprising given that Irene is closer
to the southern hemispheric subtropical jet. Similar to Irene,
we examined tropospheric PV, temperature, and specific hu-

midity anomalies over Réunion for 1992–2011 (not shown)
but did not find any noticeable changes.

In summary, there is some evidence for a dynamical role
in UT ozone changes over Irene and Réunion, specifically
during October–December at Irene and during December–
January over Réunion. However, the large winter ozone
trends at both locations do not seem to be explained by me-
teorology.

3.2.2 Photochemistry and pollution

In a number of studies looking at southern African trans-
port in September–October 1992, when intensive radiosonde
and ozonesonde launches were made in Namibia and SA as
part of Southern African Fire-Atmospheric Research Initia-
tive/Transport and Atmospheric Chemistry near the Equator-
Atlantic (SAFARI-92/TRACE-A) experiments (e.g., Diab et
al., 1996; Garstang et al., 1996; Thompson et al., 1996;
Tyson et al., 1997), the Irene region was found to be in
transition. Generally, north of 20◦ S, easterlies took pollu-
tants toward the Atlantic (Fishman et al., 1990, 1996). On
the SA Highveld, where Irene is located, flows in the mid-
troposphere were often from the north or northeast, intro-
ducing layers of pollution from biomass fires, detected as
elevated ozone (Thompson et al., 1996; Tyson et al., 1997).
These layers recirculated and often exited Africa southeast
toward the Indian Ocean, where pollution was detected in
aircraft sampling (Heikes et al., 1996). This transport pattern,
designated the “river of smoke” as it appears in MODIS satel-
lite imagery, was confirmed during SAFARI-2000 (Swap et
al., 2003). In the mid–upper-tropospheric transition zone,
trajectories at 8–12 km showed that many air parcels arriv-
ing over Irene during SAFARI-92/TRACE-A (Thompson et
al., 1996) originated over South America. Irene soundings
displayed ozone layers that resulted from South American
biomass fire emissions that traveled toward Africa after they
had been lofted to the UT by deep convection (Pickering
et al., 1996; Thompson et al., 1997). This mechanism, aug-
mented by NO from lightning (Smyth et al., 1996), was in-
ferred from tracers measured on the DC-8 aircraft. Links
between Réunion ozone and biomass fires over Africa and
Madagascar are also well established (Baldy et al., 1996;
Randriambelo et al., 1999).

Figure 12, which displays air parcel origins for the Irene
and Réunion ozone soundings launched in May–August in
1992–2011, suggests that the springtime sources studied
in SAFARI-92 and SAFARI-2000 also pertain to winter.
Two levels are illustrated. For Irene (Fig. 12a) the 500 hPa
level trajectories (∼ 5.5 km) are in the middle of the 4–8 km
zone of +20–30 % decade−1 ozone increase in May and
June (Fig. 7). The origins of the 500 hPa level air parcels
over Irene are mainly located over the South Atlantic and
eastern South America. For the 4–8 km ozone increases
over Réunion (July and August in Fig. 8), the change is
also∼ 20 % decade−1. The origins of the corresponding air
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Figure 10 

Figure 10. Irene (25.5–32.2◦ S, 24.8–31.5◦ E) May-June-July-August (MJJA) temperature (T ) and specific humidity (q) anomalies for four
pressure levels and potential vorticity (PV) anomalies for two isotropic levels.Figure 11 

Figure 11. ECMWF potential vorticity (PV) daily climatologies
over Irene for 330 K and Réunion for 330 K and 350 K calculated,
respectively, over 1990–2007 and 1992–2011, by averaging day-of-
year values.

parcels over Réunion (Fig. 12c) are concentrated over Mada-
gascar, southern Africa and the eastern South Atlantic, where
tropospheric ozone tends to accumulate year-round due to re-
circulation within the south Atlantic gyre. Over 5-day transit
times from Irene at 300 hPa (Fig. 12b, 150 hPa parcels, not
shown, are similar), there is a high concentration of origins
over South America as well as Africa and the South Atlantic

(Fishman et al., 1990; Thompson et al., 2003; Jensen et al.,
2012).

Réunion back trajectories at 300 hPa (Fig. 12d) in addi-
tion to South American, Atlantic and African origins include
air parcels from the tropical Indian Ocean, which is subject
to pollution (Thompson et al., 2001; Chatfield et al., 2004).
A study of sources and transport patterns of winter CO over
Réunion (Duflot et al., 2010) shows that southern Africa and
Madagascar, as well as South America, contribute to CO en-
hancement in the FT below 11 km. Back-trajectory pathways,
determined from FLEXPART, are similar to those illustrated
in Fig. 12c and d. Duflot et al. (2011) present MOPITT (Mea-
surement of Pollution in the Troposphere) CO distributions
observed over Réunion source regions. During June–August
2007, elevated CO over Réunion is linked to high-CO re-
gions at 250 hPa over South America, the South Atlantic
and southern Africa as well as southeast Asia and Indone-
sia. The CO sources are assumed to be predominantly an-
thropogenic. Figure 12d also suggests potential Réunion pol-
lution sources from southeast Asia. In September and Octo-
ber there is a shift away from anthropogenic sources to more
biomass burning CO, detected by MOPITT near the surface
(Duflot et al., 2010), where Irene and Réunion (Figs. 7 and 8)
show no trend. The recent study of Zien et al. (2013) on NO2
transport inferred from GOME-2 (Global Ozone Monitoring
Experiment on MetOp-A) in 2007–2011 gives a mostly simi-
lar picture to MOPITT. The largest NO2 plumes in the South-
ern Hemisphere occur in JJA, with origins densely concen-
trated over South America, southern Africa and the oceans to
the southeast (Figs. 15, 16, 19 in Zien et al., 2013). However,
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Figure 12.Air mass origins of free-tropospheric ozone over Irene(a) for the sonde launch time at 500 hPa,(b) for 300 hPa) and Réunion(c,
d). Five-day back trajectories run using NCEP/NCAR re-analysis in the NASA/Goddard kinematic model. The ending points are summed
up for a 1◦ × 1◦ grid. Note different color bars for the two sites.

due to the shorter NO2 lifetime, a link to southeast Asia and
Indonesia does not appear.

Is there any evidence for increasing pollution over south-
ern Africa and South America in the 1990–2011 period?
The evidence is inconclusive. A recent study of global sur-
face and lower tropospheric 20–40-year trends by Oltmans et
al. (2013) indicates that ozone at Southern Hemisphere moni-
toring stations is increasing, apparently due to anthropogenic
activity. For Cape Point, SA, which experiences a winter-
time brown haze, Oltmans et al. (2013; Fig. 15) showed a
∼ 25 % surface ozone increase from 1990 to 2010, most of
it in the 1990s. Our recent trend analysis of SA Highveld
stations 50–125 km east and southeast of Irene (Balashov et
al., 2014) showed little change in surface ozone or NOx. Is
there other evidence that would explain the large FT ozone
increases seen in Figs. 7 and 8? Satellite imagery of col-
umn NO2 from SCIAMACHY (2002–2012; A. Richter and
J. Burrows, personal communication, 2013) shows no signif-
icant change over south-central Africa but a significant in-
crease in a small region over the highveld. Figures 13 and
14 are based on standard emissions data (http://edgar.jrc.ec.
europa.eu/index.php) that include mobile transport, indus-
trial, domestic and biomass fires. In general, biomass burning
over Africa and South America does not appear to be increas-
ing, but industrial emissions are estimated to have increased
over these continents 20–30 % from 1990 to 2010. Our re-

sults are consistent with these values but suggest that they
may be underestimates for winter.

In summary, it is hard to argue that FT ozone increases
do not partially result from growing NOx, but further obser-
vations and source-tagged modeling are needed to better es-
tablish a link between changing emissions and the strongly
seasonal ozone increases observed in the sonde record.

4 Summary and conclusions

The Irene and Réunion free-tropospheric ozonesonde records
for 1990–2007 have been analyzed with a multivariate re-
gression model that accounts for the annual cycle, poten-
tial vorticity time series and ENSO. In contrast to an ear-
lier study (Clain et al., 2009), by using monthly averaged
data, we are able to capture well-defined features through-
out the annual cycle. Striking increases throughout the FT,
20–30 % decade−1 over Irene and up to 50 % decade−1 over
Réunion, appear in winter (JJA), with smaller and more ver-
tically diffuse increases in November and December. Be-
low 5 km over Irene, ozone increased 15–25 % decade−1 in
late fall (April–June) and December. No statistically signifi-
cant trends appear in September and October, when biomass
burning impacts on the SA Highveld are most pronounced.
There are subtle differences between the Irene and Réunion
ozone changes. The Irene increase starts in April or May and
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Figure 13 

Figure 13. EDGAR annual emissions (total country EDGAR V4.2 emissions fromhttp://edgar.jrc.ec.europa.eu/index.php), in Gg (giga-
grams) of the principal tropospheric ozone precursors(a) nitrogen oxides (NOx), (b) carbon monoxide (CO) and(c) non-methane volatile
organic compounds (NMVOC) over selected African countries that correspond to trajectory origins in Fig. 12.

Figure 14 

Figure 14.Same as Fig. 13 except for selected South American countries: Bolivia, Brazil, Paraguay and Uruguay. The countries were chosen
based on the trajectories in Fig. 12.

is concentrated between 4 and 8 km, almost separate from
a June–July zone of ozone growth between 8 and 10.5 km.
Over Réunion the ozone increase is largely confined to July
and August, with a single feature from 4 to 15 km. The mech-

anism(s) responsible for the ozone growth is not clear. Not-
ing that both sites are in the influence of the subtropical jet,
increases above 10 km are suggestive of dynamical changes
near the tropopause. However, there is no clear evidence for
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the latter; indeed, likely changes in TTL properties would
lead to ozone losses, not increases.

Mid-tropospheric ozone increases would be consistent
with increases in Southern Hemisphere pollution. Trajectory
analysis links Irene and Réunion air parcel origins to regions
over Africa and the South Atlantic, where ozone tends to
accumulate throughout the year. At the 300 hPa level (9 km),
air parcel origins extend over South America and the eastern
Pacific. Estimated NOx emissions increases, 20–30 % from
1990 to 2010, would be consistent with the ozone trends ob-
served over Irene and Réunion. However, surface ozone and
NOx trends over the SA Highveld in 1990 to 2007 do not ap-
pear to be consistent with such large growth. More observa-
tions are needed, along with a better knowledge of emissions.
Model studies are called for as well as further studies of re-
gional dynamics.
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