
Atmos. Chem. Phys., 14, 7941–7951, 2014
www.atmos-chem-phys.net/14/7941/2014/
doi:10.5194/acp-14-7941-2014
© Author(s) 2014. CC Attribution 3.0 License.

Production and growth of new particles during two cruise
campaigns in the marginal seas of China

X. H. Liu 1, Y. J. Zhu1, M. Zheng2, H. W. Gao1, and X. H. Yao1,3

1Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China,
Qingdao 266100, China
2State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental
Sciences and Engineering, Peking University, Beijing 100871, China
3Qingdao Collaborative Center of Marine Science and Technology, Qingdao 266100, China

Correspondence to:X. H. Yao (xhyao@ouc.edu.cn) and M. Zheng (mzheng@pku.edu.cn)

Received: 21 November 2013 – Published in Atmos. Chem. Phys. Discuss.: 28 January 2014
Revised: 12 May 2014 – Accepted: 8 June 2014 – Published: 11 August 2014

Abstract. In this paper, we investigated production and
growth of new particles in the marine atmosphere during
two cruise campaigns in China Seas using a Fast Mobil-
ity Particle Sizer. Only eight new particle formation (NPF)
events (> 30 min) occurred on 5 days out of 31 sampling
days, and the subsequent growth of new particles was ob-
served only in five events. Apparent formation rates of new
particles (in the range of 5.6–30 nm) varied from 0.3 to 15.2
particles cm−3 s−1 in eight events, and growth rates ranged
from 2.5 to 10 nm h−1 in five NPF events. Modeling results
simulated by US EPA Community Multi-scale Air Quality
Model (CMAQ) showed that ammonium nitrate (NH4NO3)

was newly formed in the atmosphere over the correspond-
ing sea zone during 2 out of 5 events, in which new particles
partially or mostly grew over 50 nm. However, in the remain-
ing three events, new particles cannot grow over 30 nm, and
the modeling results showed that no NH4NO3 was newly
formed in the corresponding marine atmosphere. Modeling
results also showed that formation of secondary organics oc-
curred through all new particle growth periods. Difference
between the two types of new particle growth patterns sug-
gested that a combination of ammonium nitrate and organics
newly formed likely contributed to the growth of new par-
ticles from 30 nm to larger size. However, the findings were
obtained from the limited data, and the simulations of CMAQ
also suffered from several weaknesses such as only having
three size bins for different particles, lack of marine aerosol
precursors, etc. More future studies are thereby needed for
confirmation.

1 Introduction

Atmospheric particles play important roles in regional vis-
ibility deterioration and global climate change by directly
scattering and absorbing the sunlight and indirectly acting as
cloud condensation nuclei (CCN) (Sloane et al., 1991; Cur-
tius, 2006; IPCC, 2007; Luo and Yu, 2011), and they have
primary and secondary origins (Holmes, 2007; Kulmala and
Kerminen, 2008; Pierce et al., 2012; Riipinen et al., 2011,
2012; Yao and Zhang, 2011). Nucleation has been reported
as an important secondary source of atmospheric particles
because it can quickly increase the number concentration of
atmospheric particles from hundreds to dozens of thousands
particles per cubic centimeter air in a few hours (Kulmala and
Kerminen, 2008). However, atmospheric particles < 30 nm
in diameter are conventionally considered to be nucleation
mode particles, and particles in this size range are less likely
to be activated as CCN under the typical range of atmo-
spheric supersaturation (Dall’Osto et al., 2005; Dusek et al.,
2006; Quinn et al., 2008). New particles growing over 50 nm
in diameter have been found to be an important source of
CCN while∼ 80 nm particles can be activated to be CCN at
a moderate supersaturation (e.g.,∼ 0.2 %; Petters and Krei-
denweis, 2007; Pierce and Adams, 2009; Pierce et al., 2012;
Riipinen et al., 2011, 2012). The size of new particles can
be used to roughly evaluate their potential as CCN, although
other factors such as their chemical composition and mixing
state also affect the potential (Dusek et al., 2006; Quinn et al.,
2008; Kerminen et al., 2012). However, it is still quite unclear
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which chemicals contribute to the condensational growth of
new particles to CCN size (Kulmala et al., 2013), particularly
the growth of new particles from∼ 30 nm to CCN size.

Oceans account for approximately 70 % of areas on the
earth. Huge efforts have been taken to improve understand-
ing of the relationship between production of new particles
in marine atmosphere and their impacts on the climate in the
last 3 decades (Charlson et al., 1987; O’Dowd et al., 2007;
Quinn and Bates, 2011). Several earlier studies focused on
new particle formation (NPF) in remote marine atmosphere
and some clear coastal environments such as Mace Head,
where dimethylsulfide (DMS) and iodine have been proposed
to be important precursors for new particles (Cover et al.,
1996; Clarke et al, 1998; O’Dowd et al., 2002; O’Dowd et
al., 2007; Chang et al., 2011). In polluted marine atmosphere,
high concentrations of secondary particulate species gener-
ated from anthropogenic and/or biogenic precursors as well
as a small amount of particulate methanesulfonic acid from
marine biogenic sources were frequently observed, and these
observed species were proposed to have important impacts
on regional climate (Yang et al., 2009; Shi et al., 2010; Feng
et al., 2012; Wang et al., 2014). For indirect climate effects,
the number concentration of atmospheric particles is critical.
However, direct measurements of NPF events are still lim-
ited, and the same can be said for assessing their potential
contribution to CCN (Lin et al., 2007). In addition, the char-
acters of NPF among in polluted, remote marine and clear
coastal environments could be very different. Thus, more ob-
servations for NPF events in polluted marine atmosphere are
essential.

To improve understanding the characters of NPF events in
polluted marine atmosphere in different extents and evalu-
ating their potential climatic impacts, we investigated NPF
and their subsequent growth in the marginal seas of China
including the Yellow Sea and the East China Sea during two
cruise campaigns from 16 October to 5 November 2011 and
from 2 to 11 November 2012. A Fast Mobility Particle Sizer
Spectrometer (FMPS) was used for on-board sampling to
study NPF events, and the US EPA Community Multi-scale
Air Quality Model (CMAQ) was used to simulate chemical
and physical processes of particulate species over the study
marginal seas to facilitate data analysis. On 5 days during
the two campaigns, eight NPF events with or without a sub-
sequent growth of new particles were observed. An in-depth
analysis was conducted to interpret these events with particu-
lar attention to investigate factors determining the growth of
30–40 nm new particles to larger size.

2 Experimental

2.1 Cruise routes, particle sizers and computer method

In the fall of 2011 and 2012, two cruise campaigns were
organized by Ocean University of China (OUC) using a re-

Figure 1. Cruise track during China Sea(a) cruise during 16
October–5 November in 2011 and(b) cruise during 2–11 November
in 2012. Pentacles represent the locations of particle burst events.

search vesselDongfanghong 2(Fig. 1a and b). The two cam-
paigns were to provide services for research projects funded
by National Natural Science Foundation of China, and these
projects covered a variety of basic research from seabed to
lower layer marine atmosphere. The cruise route during the
period 16 October to 5 November 2011 included the south
Yellow Sea and the East China Sea, while the second cam-
paign was limited in the south Yellow Sea during the period
of 2–11 November 2012.

A FMPS (TSI Model 3091) downstream of a dryer (TSI,
3091) was used for measuring number concentrations of ma-
rine atmospheric particles in 1-second time resolution, which
was placed on the front board ofDongfanghong 2. To in-
vestigate the potential relationship of NPF events between
inland and marine atmosphere, simultaneous measurements
were conducted on the top floor of a five-story building on
the campus of Ocean University of China (lat: 36.1◦ N, long:
120.5◦ E; distance to the nearest coast line is 7.5 km) using
a NanoScan Scanning Mobility Particle Sizer Spectrometer
(SMPS) nanoparticle sizer (TSI, 3910) in November 2012,
but not in November 2011. The sizer was equipped with a
Radial Differential Mobility Analyzer (RDMA) and an inter-
nal Condensation Particle Counter (CPC) and operated in 1-
minute time resolution. Particle apparent formation rate (J30)

was calculated using the method provided by Dal Maso et
al. (2005):

J30 = dN<30nm/dt + Fgrowth+ Fcoag, (1)

where N<30nm is the number concentrations of the 5.6–
30 nm particles for the FMPS and 10–30 nm for the
NanoScan SMPS during the initial 1–2 h of new particle
burst;Fgrowth (the flux of particles grow out of the size range;
we chose the size range for the nucleated particles to be 5.6–
30 nm) is conventionally assumed to be zero, because parti-
cles rarely grew out of 30 nm in the initial 1–2 h (Dal Maso et
al., 2005); andFcoag is the sum of particle–particle inter- and
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heterocoagulation rate calculated in the same way as Yao et
al. (2005).

Particle size distributions in this study were not unimodal
most of the time, and they were dominated by bimodal dis-
tribution. Therefore, aerosol particle size distributions in this
study are fitted with the multi-lognormal distribution func-
tion (Whitby, 1978), which is expressed mathematically by

f (Dp,Dpg,i,Ci,σg,i) =

n∑
i=1

Ci

(2π)1/2 log(σg,i)
(2)

× exp

[
−

[log(Dp) − log(Dpg,i)]
2

2log2(σg,i)

]
,

whereDp is the diameter of aerosol particle. Three parame-
ters characterize an individual lognormal modei: the mode
number concentrationCi , geometric varianceσ 2

g,i , and geo-
metric mean diameterDpg,i . The number of individual log-
normal modes that characterize the particle number size dis-
tribution is denoted byn (i is in the range of 1− n). In this
study,n is usually equal to 2, andDpg,1 represents the geo-
metric median diameter of new particles followed by parti-
cle growth in the observed events. The growth of preexisting
Aitken mode particles was also observed in this study, and
Dpg,2 represents the geometric median diameter of the pre-
existing particles.

Particle apparent growth rate (GR) in this study was cal-
culated by

GR=
1Dpg,i

1t
, (3)

where1t is the time slot for the growth of particles. Particle
apparent shrinkage rate (SR) was calculated using the same
equation as GR, but the value is negative.

2.2 Model description

The US EPA Community Multi-scale Air Quality Model
(CMAQ v4.7.1; Byun and Ching, 1999) was used for sim-
ulating concentrations of gases and particulate species in
PM2.5 during NPF events. The meteorological data were
provided by the Weather Research and Forecasting (WRF)
model (v3.2) (Skamarock et al., 2008) and processed by the
Meteorological-Chemical Interface Processor (MCIP v3.3)
for CMAQ-ready inputs. Emissions were generated on the
basis of the NASA’s project emission inventory (The In-
tercontinental Chemical Transport Experiment Phase B,
INTEX-B; Q. Zhang et al., 2009; Liu et al., 2010a), which
included major air pollutants such as SO2, NOx, CO, and
30 lumped volatile organic compound species. The vertical
resolution includes 14 logarithmic structure layers from the
surface to the tropopause, with the first model layer height
of 36 m above the ground level, while the horizontal reso-
lution is 36 km× 36 km. Particle in CMAQ is represented
by three lognormal subdistributions, i.e., Aitken, accumu-
lation and coarse mode. Riipinen et al. (2011) and Ehn et

al. (2014) recently reported the important role of extremely
low volatility secondary organic aerosol (SOA) in growing
< 30 nm new particles in continental atmosphere. In CMAQ
version 4.7.1, four types of non-volatile SOA were simulated,
while other SOA species was treated as semi-volatile (Carl-
ton et al., 2010). Validation of CMAQ application in China
has been reported by Liu et al. (2010a, b). The CMAQ model
does not include chemical reactions of amines which have
been proposed as an important species to grow nucleated par-
ticles (Smith and Mueller, 2010; Riipinen et al., 2012; Zhang
et al., 2012; Kulmala et al., 2013). Thus, contributions of
amines to new particle growth will not be discussed in this
study.

2.3 On-site meteorological data and satellite data

Wind speed, wind direction, relatively humidity, air tem-
perature and solar radiation were measured continuously on
board and synchronously. Daily averaged sea surface chloro-
phyll a concentrations were derived from Standard Mapped
Image products observed by Moderate Resolution Imaging
Spectroradiometer (MODIS)/AQUA SMI products. Horizon-
tal resolution is 4 km× 4 km (Tan et al., 2011).

3 Results

NPF events (> 30 min) were observed on 4 days during the
cruise campaign in 2011. However, there was only 1 day
when NPF events were observed in the cruise campaign in
2012 (Supplement Fig. S1a and b). On the same day, a NPF
event was also observed at the site of OUC. All these NPF
events in the marine atmosphere started to be observed at
the locations, which are 30–120 km away from the nearest
coastline (Fig. 1a and b, Table 1). In these events, the to-
tal number concentration of < 30 nm particles increased from
∼ 0.5× 103 particles cm−3 to ∼ 2.5× 104 particles cm−3

within 0.5–4 h. We will first examine the production and
growth processes of the events in 2012 in Sect. 3.1, while
in Sects. 3.2 and 3.3 events in 2011 will be studied.

3.1 NPF events in the fall cruise campaign of 2012

In November 2012, two particle sizers were used for mea-
surements on board and on the land, respectively. The ob-
servation can allow an investigation of regional character-
istics of NPF events. A heavy rain event occurred at night
on 3 November 2012 with wind speed of 10–14 m s−1. The
rainfall and the strong wind substantially removed preexist-
ing atmospheric particles, and NPF events were observed
both in the marine and coastal atmosphere in the daytime
of 4 November (Day 1, Fig. 2). On Day 1,Dongfanghong
2 was anchored at approximately 80 km distance southeast
of OUC, and the location was about 60 km away from the
nearest coastline (Fig. 1b).
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Table 1.Major characteristics of NPF events over marginal seas of China in the fall of 2011 and 2012.

Day No. Period J30 GR Location
(particles cm−3 s−1) (nm h−1)

Day 1
7:50–8:43 1.4 –

4 November 2012
2

9:24–18:35 3.1
5.0 (first stage, 6–39 nm) ∼ 60 km from the land
10.0 (second stage, 34–47 nm)

Day 2
10:00–10:30 15.2 –

H01-W01,
17 October 2011

2 10:30 (17 October)–
4.1

2.5 (first stage, 6–42 nm)
∼ 30 km from the land

03:50 (18 October) 7.5 (second stage, 42–55 nm)

Day 3
1 10:15–18:20 7.5 3.5 (6–28 nm)

∼ A01,
18 October 2011 80 km from the land

Day 4
2

10:00–11:13 0.3
3.4 (6–22 nm)

A02,
19 October 2011 11:13–18:30 1.1 120 km from the land

Day 5
4.4 (6–21 nm)

A10–A12,
26 October 2011

1 10:30–15:30 1.6 −3.5 (Shrinkage, 21–17 nm)
110 km from the land

16.7 (58–83 nm)∗

Note:∗ is the growth rate of preexisting Aitken mode particles.

3.1.1 Formation rates of new particles

Two NPF events were observed on Day 1 in the marine at-
mosphere. The first one had been observed since 07:50 LT
and reached the maximum at 08:43 LT (Fig. 2a and b). The
initial size of new particles was∼ 6 nm, which is the detec-
tion limit of FMPS. The nucleation mode particles (< 30 nm)
increased from < 1.0× 103 particles cm−3 before 07:50 to
1.0× 104 particles cm−3 at 08:43 LT, and the apparent for-
mation rate of new particles was calculated to be 1.4 particles
cm−3 s−1. No particle growth was observed before 08:43 LT.
The second NPF event was observed after 09:24 LT. Nucle-
ation mode particles increased from 0.4× 104 to 2.5× 104

particles cm−3 with the apparent formation rate of 3.1 parti-
cles cm−3 s−1 during the period of 09:24–10:32 LT. The for-
mation rates of two events are all within the range of typical
new particle formation rates in the atmosphere (0.01–10 par-
ticles cm−3 s−1; Kulmala and Kerminen, 2008).

On Day 1, a NPF event was also observed at OUC
where the measurement was made during the period 09:30
to 15:13 LT (Fig. 2d and e, we stopped the sampling af-
ter 15:13 LT because of high relative humidity). The new
particle growth curves show that the curve in the Yellow
Sea after 09:30 LT almost parallels that at OUC (Supple-
ment Fig. S2a), and the event observed at OUC advanced
1–1.5 h relative to the event observed in the Yellow Sea.
Also, N<30nm values at the higher concentration zones –
e.g., 1.6 ± 0.3× 104 particles cm−3 during 10:50 to 12:30 LT
in the Yellow Sea and 1.6± 0.1× 104 particles cm−3 during
10:50 to 13:00 LT at OUC (upplement Fig. S2b) – were com-
parable. These suggested that NPF events occurred region-

ally on Day 1, but the start times were location-dependent.
These higherN<30nm values at OUC varied in a narrow
range, suggesting spatial homogeneity of nucleation in the
rural area. However, these values in the Yellow Sea varied a
lot. This could be due to a spatial heterogeneity of nucleation
in the marine atmosphere or other unknown factors.

3.1.2 Growth rates of new particles

A two-phase new particle growth was observed in the Yel-
low Sea on Day 1 (Fig. 2b); 09:24–15:45 LT was the first-
phase growth period while the second-phase growth occurred
during 17:25–18:35 LT. During the first-phase growth period,
the calculatedDpg,1 of new particles increased up to 39 nm
with the growth rate of 5.0 nm h−1 (Fig. 2b, Table 1), which
is close to the growth rate of 5.5 nm h−1 at OUC. It is in-
teresting that no growth was observed between 15:45 and
17:25 LT in the Yellow Sea, but a slight decrease of theDpg,1
was observed from 39 nm at 16:44 to 34 nm at 17:25 LT. The
decrease could be explained by the shrinkage of new parti-
cles (Yao et al., 2010; Young et al., 2013). However, it also
could be due to the change in measured air mass. At OUC,
the Dpg,1 did not increase after 14:20 LT and fluctuated at
35± 1.3 nm between 14:20 and 15:13 LT (Fig. 2e). The ob-
servations suggested that∼ 40 nm was likely a bottleneck for
the growth of new particles in the daytime on Day 1, although
the reasons remain unknown.

TheDpg,1 in the marine atmosphere restarted to increase
from 34 nm at 17:25 to 47 nm at 18:35 LT (after this, sam-
pling was stopped due to high relative humidity), suggesting
that the bottleneck of∼ 40 nm was broken up. The growth
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Figure 2. New particle formation events in marine(a–c)and coastal atmosphere on 4 November 2012(d–e), (a) particle number concen-
trations from FMPS (cm−3), (b, e) variations of median diameter of particle mode (Dpg,1) and number concentrations of nucleation mode

particles (N<30nm) in marine and coastal atmosphere,(c) CMAQ simulation of SO2−

4 , NH+

4 , NO−

3 and SOA in PM2.5 in marine atmosphere,

(d) particle number concentrations from SMPS (cm−3).

was referred to as the second-phase growth. The second-
phase growth rate was calculated to be 10 nm h−1, and the
value was almost twice that of the first-phase growth rate.
At OUC, we did not observe the second-phase growth on
Day 1 because we stopped sampling after 15:13 LT. Ehn et
al. (2010) reported four NPF events over the Irish west coast
with the averaged growth rate of∼ 3 nm h−1. In remote ma-
rine atmosphere, growth rates of nucleated particles were
reported to be in the range of 0.1–1 nm h−1 (Kulmala and
Kerminen, 2008; O’Dowd et al., 2010). The obviously larger
growth rates observed in this event than other studies could
be related to continental outflow of air pollutants, which will
be discussed later.

When the volume concentration of particles is considered,
the amount of chemical species required for the new parti-
cle growth during the second-phase growth period (17:25–
18:35 LT) was almost the same as that during the entire first-
phase growth period (09:24–15:45 LT). This indicated that
much stronger gas-particle condensation processes occurred
after 17:25 LT (second-phase growth), when the solar radi-
ation substantially decreased down to a low value. Photo-

chemical reactions were expected to be very weak at that pe-
riod and cannot explain the sudden and strong condensation
during the second-phase growth. Alternatively, it was more
likely associated with processes by thermodynamic equilib-
riums. For example, when the product of nitric acid (HNO3)

and ammonia (NH3) gaseous concentrations were higher
than the thermodynamic equilibrium constant of NH4NO3,
formation of NH4NO3 can suddenly take place. Formation
of NH4NO3 often occurs in the evening or night because of
decreasing ambient temperature and increasing relative hu-
midity.

3.2 Strong NPF events in the fall cruise campaign of
2011

Two NPF events were also observed on 17 October 2011
(Day 2) in the marine atmosphere. A strong short-term NPF
event was observed between 10:00 and 10:30 LT, and the es-
timated formation rate was 15.2 particles cm−3 s−1 (Fig. 3a
and b). No subsequent growth of new particles was ob-
served during the short-term event. A longer NPF event was
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Figure 3. New particle formation on 17 October 2011 (a particle
number concentrations from FMPS (cm−3), b variations of median
diameter of particle mode (Dpg,1) and number concentrations of nu-

cleation mode particles (N<30nm), (c) CMAQ simulation of SO2−

4 ,

NH+

4 , NO−

3 and SOA in PM2.5).

observed from 10:30 on Day 2 to 03:50 LT on 18 October
2011 (Day 3) when the ship sailed from H01 towards W01
(Fig. 1a). The ship was∼ 30 km from the coastline of Shan-
dong Peninsula in China when the longer event started to be
observed. The estimated formation rate in this longer NPF
event was 4.1 particles cm−3 s−1 during the period 10:30 to
11:35 LT. The new particle growth rate was 2.5 nm h−1 dur-
ing the period 10:30 to 21:40 LT on Day 2 (the first-phase
growth). From 21:40 on Day 2 to 02:00 LT on Day 3, no
particle growth was observed, and theDpg,1 fluctuated at
42± 2 nm, which was similar to the particle growth bottle-
neck on Day 1. The second-phase particle growth occurred
during the period 02:00 to 03:50 LT on Day 3 when the
Dpg,1 increased from 42 nm to 55 nm with the growth rate
of 7.5 nm h−1. Again, strong gas-particle condensation pro-

Figure 4. New particle formation on 18 October 2011,a particle
number concentrations from FMPS (cm−3), (b) variations of me-
dian diameter of particle mode (Dpg,1) and number concentrations
of nucleation mode particles (N<30nm), (c) CMAQ simulation of
SO2−

4 , NH+

4 , NO−

3 and SOA in PM2.5.

cesses likely occurred after 02:00 LT on Day 3 and broke up
the bottleneck of∼ 40 nm.

Only one NPF event was observed during the period
10:15–18:20 LT on Day 3 when the ship was situated
∼ 80 km away from the nearest coastline of Shandong Penin-
sula and sailed westbound towards A01 station in the Yellow
Sea (Figs. 1a, 4a and b). However, hundreds of spikes asso-
ciated with ship emissions occurred in the initial 1 h of the
NPF event. When the signal of ship plumes was deducted
(Supplement Fig. S3a and b, see supporting information for
the approach), the estimated formation rate of new particles
was 7.5 particles cm−3 s−1. The growth rate was estimated
to be 3.5 nm h−1 during the period 10:20 to 13:30 LT and
decreased down to 1.2 nm h−1 between 13:30 and 18:20 LT.
However, the maximumDpg,1 was less than 30 nm before the
signal of new particles disappeared (Table 1). The maximum
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value was substantially lower than the size required to acti-
vate as CCN (Dusek et al., 2006; Petters and Kreidenweis,
2007; Quinn et al., 2008; Pierce and Adams, 2009).

3.3 Weak NPF events in the fall cruise campaign of 2011

Two weak NPF events were observed on 19 October 2011
(Day 4, Fig. 5a and b). A short-term NPF event started from
10:00 to 11:13 LT with the formation rate of 0.3 particles
cm−3 s−1 (Table 1). No obvious growth of new particles was
observed. Similarly to Day 1 and Day 2, a longer NPF event
was observed during 11:13–18:30 LT when the ship was an-
chored at A02 station (Fig. 1a). The station was∼ 120 km
away from the nearest coastline. The estimated formation
rate was 1.1 particles cm−3 s−1. The rate was lower than the
rates observed on Day 1–3. After 11:13 LT, the growth rate
of new particles was estimated to be 3.4 nm h−1. Again, the
maximumDpg,1 was less than 30 nm (Table 1). Note that a
few periodic spikes of < 10 nm particles constantly occurred
every 1 h and 40 min on that day, which were due to the sam-
pling artifact. Based on 2-week side-by-side comparison be-
tween two identical FMPS in our previous studies (unpub-
lished), we found that the sampling artifact was associated
with high relative humidity, but it had negligible influence
on the measurement of > 10 nm particles.

Only one NPF event was observed during the period 10:30
to 15:30 LT on 26 October 2011 (Day 5, Fig. 6a and b)
when the ship sailed from A10 towards A12. The location
was ∼ 110 km away from Cheju Island of the South Ko-
rea (Fig. 1a). The estimated formation rate was 1.6 particles
cm−3 s−1, and the growth rate was 4.4 nm h−1 in the ini-
tial 3 h. TheDpg,1 arrived at the maximum value of 21 nm
at 13:30 LT and then apparently shrank down to 17 nm with
a shrinkage rate of 3.5 nm h−1. The shrinkage of new par-
ticles has been reported in coastal environments in daytime
when photochemical reactions started to weaken (Yao et al.,
2010; Young et al., 2013). This phenomenon could also be
related to slight changes of measured air mass, but the influ-
ence should be minor. Since the time resolution of FMPS
was as high as 1 s, rapid responses ofDpg,1 and N<30nm
corresponding to slight changes of air mass can be detected.
For example,Dpg,1 andN<30nmfluctuated dramatically dur-
ing 14:00–17:00 LT on 18 October 2011 (Fig. 4). However,
the Dpg,1 and N<30nm after 13:30 LT on Day 5 decreased
smoothly for one and half hours. It is interesting that preex-
isting particles started to grow after 12:50 LT, with theDpg,2
increased from 58 nm at 12:50 to 83 nm at 14:20 LT, and then
fluctuated at 80± 2 nm (Supplement Fig. S4). The on-site
recorded relative humidity varied from 62 % at 11:40 to 65 %
at 14:40 LT and hygroscopic growth of particles cannot ex-
plain the growth factor of 1.3.

4 Discussion

4.1 Cause analysis of new particle formation

On Day 1, the apparent formation rate of new particles is
1.4 particles cm−3 s−1 of the first short event, while the rate
increased up to 3.1 particles cm−3 s−1 in the second event.
The ship was anchored at∼ 60 km distance from the coast-
line. Under the strong westerly wind (10–14 m s−1), it took
approximately 1–2 h for air pollutants to be transported from
the continent to the sea zone. Moreover, the growth curve of
new particles in the Yellow Sea after 09:30 LT almost paral-
lelled the growth curve at OUC, except for the 1–1.5 h de-
lay (Supplement Fig. S2a). Thus, we postulated that the NPF
event observed in the Yellow Sea after 09:24 LT was proba-
bly associated with air pollutants being transported from the
continent. The modeling results in the sea zone, where the
NPF event was observed, also showed that the continental
outflow of air pollutants led to a slight increase of NH+

4 and
NO−

3 in concentrations after 08:00 LT (Fig. 2c and Supple-
ment Fig. S5a). The modeling results apparently supported
our postulation. However, we cannot exclude other possibili-
ties because we have no measurement for those gaseous pre-
cursors of new particles.

The weaker NPF event between 07:50 and 08:43 LT might
be associated with air pollutants being transported from the
continent. However, it could also be related to ocean-derived
biogenic precursors. The short duration suggested that it oc-
curred only in the marine atmosphere. Moreover, the high
wind speed would enhance air–sea exchange of gases and
might increase ocean-derived biogenic precursors of new
particles in concentrations, theoretically.

On Day 5, the NPF event occurred∼ 110 km away from
the coastline of South Korea. Considering that the location
of this event is far away from the polluted atmosphere, it
can be speculated that it might be associated with ocean-
derived gases. However, the satellite data showed that the
concentration of chlorophylla was less than 0.2 mg m−3 in
the sea zone (Supplement Fig. S6), which was much lower
than the chlorophylla concentration (2–3 mg m−3; Tan et al.,
2011) in the presence of biogenic bloom in the East China
Sea. Under that very low chlorophylla condition on Day
5, ocean-derived biogenic precursors were unlikely impor-
tant to this NPF event and other precursors were probably
more important. The modeling results in the corresponding
sea zone showed a slight increase of SO2−

4 and NH+

4 in con-
centrations after 10:00 LT (Fig. 6 and Supplement Fig. S5e).
The CMAQ indeed includes sea salt emissions, but there is
no marine-derived gaseous sulfur, nitrogen, and carbon con-
taining compounds. Thus, the NPF event was also possi-
bly associated with the photochemical reactions of air pollu-
tants being transported from the continent. Unlike on Day 5,
NPF events on Day 2 were observed in the coastal sea (with
∼ 30 km from the coastline). It is well known that chloro-
phyll a data suffer from a large interference of suspended
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Figure 5. New particle formation on 19 October 2011a particle
number concentrations from FMPS (cm−3), (b) variations of me-
dian diameter of particle mode (Dpg,1) and number concentrations
of nucleation mode particles (N<30nm), (c) CMAQ simulation of
SO2−

4 , NH+

4 , NO−

3 and SOA in PM2.5.

matters in coastal seawater which could not allow correctly
justifying the potential influence of ocean biogenic precur-
sors on this event (Chen et al., 2013). However, higher for-
mation rates of new particles (e.g., 15.2 particles cm−3 s−1

between 10:00 and 10:30 LT and 4.1 particles cm−3 s−1 after
10:30) were observed on Day 2. The modeling results in the
sea zone, where the NPF event was observed, showed that
the continental outflow of air pollutants led to a simultane-
ous increase of SOA, NH+4 and NO−

3 in concentration after
10:00 LT (Fig. 3c and Supplement Figs. S5b and S7b). Thus,
photochemical reactions of air pollutants from the continent
possibly caused the NPF event on Day 2 after 10:00 LT.

We combined all observational data and modeling results
to interpret NPF events on Day 3 and Day 4. The combin-
ing results still cannot allow identifying whether air pollu-
tants transported from the continent or ocean-derived bio-
genic precursors caused those NPF events.

Figure 6. New particle formation on 26 October 2011a particle
number concentrations from FMPS (cm−3), (b) variations of me-
dian diameter of particle mode (Dpg,1) and number concentrations
of nucleation mode particles (N<30nm), (c) CMAQ simulation of
SO2−

4 , NH+

4 , NO−

3 and SOA in PM2.5.

4.2 Cause analysis of new particle growth

Organics, ammonium sulfate and ammonium nitrate con-
sisted of major parts of atmospheric particles in submicron
size (O’Dowd and Leeuw, 2007; Smith et al., 2008; R. Zhang
et al., 2009; Paasonen et al., 2010; Yao and Zhang, 2011;
Ahlm et al., 2012). Ambient sulfuric acid gas (H2SO4) has
been reported to yield a negligible contribution to condensa-
tional growth of > 10 nm new particles (e.g., 2 % of the GR of
7–20 nm particles; Riipinen et al., 2011; Ahlm et al., 2012;
Pierce et al., 2012). This could be also true in the marine
atmosphere of the marginal seas of China where the model-
ing mixing ratios of H2SO4 were less than 2 ppt during all
NPF events (figures not shown). Organics were proposed to
be important contributors to grow new particles to CCN (Ri-
ipinen et al., 2011; Pierce et al., 2012). On Day 3, 4 and 5, the
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modeling results showed that SOA (see supporting informa-
tion for detailed information of SOA modeling) was formed
during the NPF events, suggesting that SOA could be an im-
portant contributor to grow new particles. The modeling re-
sults also showed that no NH4NO3 was formed during the
entire new particle growth period on the 3 days in the marine
atmosphere.

In addition, the temporal trend of the modeled SOA on
Day 5 appeared to fit the new particle growth and subsequent
shrinkage curve very well. The shrinkage of new particles oc-
curred with a decrease of SOA in mass concentration (Fig. 6c
and and Supplement Fig. S7e), but the preexisting particles
(> 50 nm) still grew at that period (Supplement Fig. S4). The
coexistence of the shrinkage of new particles and the growth
of particles (> 50 nm) has never been reported in the litera-
ture. Riipinen et al. (2011) and Ehn et al. (2014) recently re-
ported that SOA condensation was a combination of kinetic
condensation and thermodynamically partitioning of vapors
on aerosol surface area. Kinetic condensation cannot explain
the shrinkage from 21 nm to 17 nm. The possible explana-
tion for the coexistence phenomenon was that the shrinkage
of new particles was likely due to the Kelvin effect (Zhang
et al., 2012); while particles (> 50 nm) were less affected by
the Kelvin effect, and they can grow to CCN size by conden-
sation of species with relatively moderate or high volatility.
However, more studies are needed to examine whether the
coexistence phenomenon frequently occurs in polluted ma-
rine atmosphere and what caused it.

Unlike Day 3, 4 and 5, the two-phase growth of new par-
ticles was observed on Day 1 and Day 2. The second-phase
growth occurred after a period of stagnation which was re-
garded as a bottleneck. The modeling results on Day 1 and
Day 2 showed that SOA was newly formed and the temporal
variation pattern of SOA was consistent with that of the two-
phase growth curves of new particles, suggesting the contri-
bution of SOA to the growth of new particles. However, a
significant amount of NH4NO3 was also formed during two
phase growth periods which was different from that on Day
3, 4 and 5. Furthermore, the temporal trend of the modeled
NO−

3 and NH+

4 in mass concentration generally fit the two-
phase growth curve. The formation of NH4NO3 on Day 1 and
Day 2 might be one factor to break up the growth bottleneck,
which led to the second-phase growth. In reverse, no newly
formed NH4NO3 on Day 3, 4 and 5 could be the reason for
new particles being unable to break up the growth limit of
30–40 nm.

The modeling results showed that formation of NH4NO3
indeed occurred in PM0.1 (Supplement Fig. S5a and b) and
PM2.5 (Figs. 2c and 3c) on Day 1 and Day 2. However, we
cannot confirm whether NH4NO3 was formed on 30–40 nm
particles due to the limitation of CMAQ.

5 Conclusions

Eight NPF events were observed on 5 days out of 31 sam-
pling days during two cruise campaigns in the marginal
seas of China. By combining the observational data and the
CMAQ modeling results, we inferred that three events were
probably caused by photochemical reactions of air pollutants
being transported from the continent. However, the causes
for other events remain unknown.

Two types of new particles growth patterns were found in
the five events, i.e., one-phase growth (18, 19, 26 October
2011) and two-phase growth (4 November 2012, 17 October
2011). The maximum diameters of new particles were in the
range of 20–40 nm during the three one-phase growth events
and the first-phase growth period in the two-phase growth
events. In two-phase growth events, new particles grew from
∼ 40 nm to∼ 50 nm in later afternoon or nighttime.

The modeling results suggested that SOA could be an
important contributor to the growth of new particles in the
one-phase growth events, when no NH4NO3 was formed
and H2SO4 had a negligible contribution to the growth of
> 10 nm particles. Formation of NH4NO3 and SOA possibly
contributed to the growth of new particles in the two-phase
growth events. However, the data are still limited and there
are unavoidable uncertainties associated with modeling re-
sults, especially SOA.

The Supplement related to this article is available online
at doi:10.5194/acp-14-7941-2014-supplement.
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