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Abstract. Biogenic acids were measured in aerosols at
the SMEAR II (Station for Measuring Forest Ecosystem-
Atmosphere Relations II) station in Finland from June 2010
until October 2011. The analysed organic acids were pinic,
pinonic, caric, limonic and caryophyllinic acids from oxi-
dation ofα-pinene,β-pinene, limonene,13-carene andβ-
caryophyllene, respectively. Due to a lack of authentic stan-
dards, the caric, limonic and caryophyllinic acids were syn-
thesised for this study. The mean, median, maximum and
minimum concentrations (ng m−3) were as follows: limonic
acid (1.26, 0.80, 16.5, below detection limit (< LOD)),
pinic acid (5.53, 3.25, 31.4, 0.15), pinonic acid (9.87, 5.07,
80.1, < LOD), caric acid (5.52, 3.58, 49.8,< LOD), and
caryophyllinic acid (7.87, 6.07, 86.1,< LOD).

The highest terpenoic acid concentrations were measured
during the summer. Of the acids,β-caryophyllinic acid
showed the highest concentrations in summer, but during
other times of the year pinonic acid was the most abundant.
The β-caryophyllinic acid contribution was higher than ex-
pected, based on the emission calculations of the precursor
compounds and yields from oxidation experiments in smog
chambers, implying that theβ-caryophyllene emissions or
β-caryophyllinic acid yields were underestimated. The con-
centration ratios between terpenoic acids and their precur-
sors were clearly lower in summer than in winter, indicat-
ing stronger partitioning to the aerosol phase during the cold
winter season. Theβ-caryophyllinic and caric acids were
weakly correlated with the accumulation-mode particle num-
ber concentrations.

1 Introduction

Large amounts of biogenic volatile organic compounds
(BVOCs) (isoprene, monoterpenes and sesquiterpenes) are
emitted into the atmosphere by vegetation, especially in the
densely forested boreal regions (Hakola et al., 2001, 2006;
Tarvainen et al., 2005, 2007; Hellén et al., 2006; Wiedinmyer
et al., 2004; Steiner and Goldstein, 2007). In the atmosphere,
these compounds are oxidised, resulting in reaction products,
e.g. acids and carbonyl-containing compounds that partici-
pate in the formation and growth of new particles (Kulmala et
al., 2004; Tunved et al., 2006). Current estimates suggest that
global biogenic secondary organic aerosol (SOA) sources are
larger than anthropogenic sources (Hallquist et al., 2009).
Even though organic compounds account for 20–90 % of the
total fine particle mass concentration in a wide variety of at-
mospheric environments (Kanakidou et al., 2005), little in-
formation is available on their detailed composition.

In smog chamber studies, the SOA yields for the various
hydrocarbons and even for the monoterpenes vary consider-
ably (Griffin et al., 1999; Yu et al., 1999; Jaoui et al., 2003;
Lee et al., 2006). The produced compounds have very differ-
ent vapour pressures, and partitioning between the gas and
aerosol phases varies widely. Detailed knowledge of the oc-
currence of individual compounds is therefore essential for
atmospheric studies.

Some studies have focused on the concentrations of the
reaction products ofα- and β-pinene (pinonic and pinic
acids) in real atmospheres (Kavouras and Stephanou, 2002;
Kourtchev et al., 2008, 2009; Zhang et al., 2010; Cheng
et al., 2011; Kristensen and Glasius, 2011), but very little
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information is available on the concentrations of other ter-
penoic acids, mainly due to the lack of authentic standards.
In some studies, the concentrations of other terpenoic acids
were estimated by indirect calibration methods (Gomez-
Gonzalez et al., 2012; Fu et al., 2009; Warnke et al., 2006).
Sesquiterpene products are especially interesting, because
their parent compounds are often too reactive to be measured
in ambient air.β-caryophyllene was the main sesquiterpene
in many emission studies in boreal forests (Hakola et al.,
2006; Tarvainen et al., 2005), but it has never been detected
in the ambient air, due its high reactivity.β-caryophyllene
could be a major source of SOA, due to its reactivity and
high aerosol yields in smog chamber studies (Jaoui et al.,
2003; Lee et al., 2006; Chen et al., 2012).

In this study, specific acid reaction products of BVOCs,
which affect the formation and growth of fine particles, were
analysed from ambient aerosols in boreal forests. Fine par-
ticle filter samples were taken at the SMEAR II (Station for
Measuring Forest Ecosystem-Atmosphere Relations II; Hari
and Kulmala, 2005) station in Finland from June 2010 until
October 2011.

2 Experiments

2.1 Sampling

The measurements were conducted at the SMEAR II sta-
tion (61◦51′ N, 24◦18′ E, 181 m above sea level, a.s.l.) at
Hyytiälä, southern Finland (Hari and Kulmala, 2005). The
largest nearby city is Tampere, with 200 000 inhabitants. It is
located 60 km to the southwest of the site. The most common
vegetation at the sampling site is a homogeneous Scots pine
(Pinus sylvestrisL.) forest, with some birches (Betula) and
Norway spruces (Picea abies) growing nearby.

The aerosol samples were collected, using pumped sam-
pling from June 2010 until October 2011, from the particu-
late matter PM2.5 fractions in air onto quartz filters (Pallflex
Tissuquartz 2500QAT-UP, internal diameter i.d. 47 mm; Pall
Corp., Port Washington, NY, USA). A total of 86 samples
was collected. Before sampling, the filters were heated to
600◦C for over 8 h. Occasionally, we used an additional
backup filter, but no breakthrough was observed. Airflow
through the filters was 16 l min−1. The collection times were
1–7 days per filter. The sampling dates are shown in Table 3.
Longer, 7-day samples were collected during winter, due to
expected low concentrations. Shorter, 1–3-day samples were
collected during summer for better time resolution. Three-
day samples were collected during the weekends. When cal-
culating the monthly mean values, the samples were consid-
ered to belong to the month where most of the sampling took
place. The gases were removed from the airflow before the
filters, using a parallel-plate carbon denuder (Sunset Labora-
tory Inc., Portland, OR, USA). The efficiency of the denuder
was checked by taking samples of VOCs (aromatic hydrocar-

bons and monoterpenes) more volatile than those measured
in this study, using pumped adsorbent tube sampling and
thermal desorpter–gas chromatography–mass spectrometry
(TD–GC–MS) analysis. Aromatic hydrocarbons (benzene,
toluene, ethylbenzene and xylene), as well as monoterpene
traces, were negligible after the denuder. The PM1 concen-
trations were measured using Dekati model PM10 impactors
(Dekati, Tampere, Finland) at the same site and time period
as the terpenoic acids.

2.2 Sample preparation and analysis

The samples were extracted into 50 ml of methanol
(J.T.Baker 8402; Mallinkrodt Baker, now Avantor Perfor-
mance Materials Inc., Center Valley, PA, USA), using an ul-
trasonic bath for 90 min and then evaporated into 1 ml of vol-
ume using a Büchi Syncore evaporator (Büchi Labortechnik
AG, Flawil, Switzerland), and further evaporated into 100 µl
under nitrogen flow. The samples were analysed using high-
performance liquid chromatography with electrospray ioni-
sation and an ion trap mass spectrometer (HPLC-ESI-ITMS)
(Agilent 1100 Series LC/MSD Trap; Agilent Technologies,
Santa Clara, CA, USA) in negative-ion mode. The column
used was a Waters XTerra ®MS C18 (3.5 µm, 2.1× 150 mm)
(Waters Corp., Milford, MA, USA). The main components
of the mobile phase were MilliQ water (Millipore Corp., Bil-
lerica, MA, USA) and acetonitrile (ACN) (VWR HiPerSolv
Chromanorm; VWR International, Radnor, PA, USA). The
pH of the mobile phase was adjusted to∼ 3 with acetic acid
(Fluka, 99.5 %). The 80 min-long gradient programme was
initiated with 95 % water and 5 % ACN, and after 5 min the
ACN was gradually increased to 8 % at 10 min. After 10 min,
the ACN concentration was held at 8 % until 40 min, and
thereafter quickly increased to 90 % at 45 min and to 95 %
at 50 min. The concentration was then held constant until
70 min and later decreased to 5 % at 71 min and held at 5 %
until the end of the run. The column was held at a constant
temperature of 65◦C. The samples were analysed using ex-
ternal standards on a four-point calibration curve represent-
ing the entire measurement area. The uncertainty of the anal-
ysis based on duplicate analysis was less than 50 %, close
to the detection limits and less than 20 % for higher concen-
trations. Camphoric acid was used as an internal standard to
correct for losses in sample preparation, matrix effects and
changes in the sensitivity of the instrument. The concentra-
tions of the analytes in the samples varied between below the
detection limit and 145 ng m−3. The limit of detection was
calculated using the standard deviation of the blank samples,
and was typically from 0.1 to 0.8 ng m−3, being lowest for
the limonic acid. The variation was lower within compounds
than between compounds. Each of the compounds was mea-
sured individually, using the mass spectrometer’s scan mode
to determine the retention times and representative ions for
each compound from the standard solution. In the analysis
runs, the detector was used in multiple reaction monitoring
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Figure 1. Structures of a) commercially available and b)  synthesized terpenoic acids.  
The numbers refer to the C atoms in the NMR spectra.  
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Figure 1. Structures of(a) commercially available and(b) synthe-
sised terpenoic acids. The numbers refer to the C atoms in the NMR
spectra.

(MRM) mode, in which each compound was monitored in
its own retention time window, using its representative ion.

2.3 Synthesis ofcis-3-caric, limonic and
β-caryophyllinic acids

We selected the main acid products (e.g. Yu et al., 1999;
Jaoui et al., 2006) of the most common monoterpenes (α-
pinene,β-pinene, 3-carene, limonene) and the most common
sesquiterpene, i.e.β-caryophyllene, emitted in boreal forests
(Tarvainen et al., 2007), as the target compounds of the study.
The pinic and pinonic acids were commercially available, but
the β-caryophyllinic acid,cis-3-caric acid and limonic acid
(Fig. 1) were synthesised at the Laboratory of Organic Chem-
istry, University of Helsinki.

The nuclear magnetic resonance (NMR) spectra were
recorded on a Varian Unity Inova 500 spectrometer (Var-
ian Medical Systems, Palo Alto, CA, USA). The mass
spectra were obtained with a Bruker microTOF (ESI-time-
of-flight, ESI-TOF) (Bruker Corp., Billerica, MA, USA)
or JEOL JMS-700 (electron ionisation-MS, EI-MS) (JEOL
Ltd., Tokyo, Japan) instruments. The infrared (IR) spectra
were recorded on a Bruker Alpha-P Fourier transform IR
(FT-IR) instrument. The melting points (Mp) were deter-
mined in open capillary tubes with a Büchi B-545 apparatus.

Cis-3-caric acid was prepared fromdelta-3-carene
(Aldrich, 95 % purity; Sigma-Aldrich, St. Louis, MO, USA)
by RuCl3-catalysed oxidation with NaIO4 (Aldrich) to cis-
3-caronic acid (Nair et al., 2010) and subsequent haloform
reaction with NaOBr in aqueous NaOH (Semmler and von
Schiller, 1927) to the final product. The product was purified
by recrystallisation from cyclohexane–toluene–isopropanol
to give a white powder with a 10 % overall yield and 95 %
purity (estimated by NMR); Mp. (Melting point) 109–112◦C
(in literature 112–113◦C; Semmler and von Schiller, 1927).
1H NMR (CDCl3, 500 MHz) δ: 12.22 (br, 2H, 1 and 6

COOH), 2.62 (dd, J= 17 Hz, 3.5 Hz, 2H, 2 and 5), 2.03 (m,
2H, 2 and 5), 1.04 (s, 3H, 8), 1.01 (m, 2H, 3 and 4), 0.92
(s, 3H, 9);13C NMR (CDCl3, 126 MHz)δ: 180.9 (1 and 6),
30.2 (2 and 5), 28.5 (8), 22.0 (3 and 4), 17.3 (7), 15.4 (9).
The high-resolution MS (HRMS) (ESI-TOF) mass-to-charge
ratio (m/z), calculated for C9H14NaO4 (M+Na) 209.0784,
found 209.0788. IR attenuated total reflection (ATR)ν:
3013 cm−1, 2992 cm−1, 2919 cm−1, 2868 cm−1, 2849 cm−1,
2655 cm−1, 2620 cm−1, 2591 cm−1, 2551 cm−1, 1694 cm−1,
941 cm−1, 923 cm−1, 905 cm−1.

Limonic acid was prepared, starting from (R)-limonene
(Aldrich, 97 % purity), which was epoxidised withmeta-
chloroperbenzoic acid (Aldrich, 85 %) and NaHCO3 in
dichloromethane (DCM) to limonene epoxide (Naves and
Grampoloff, 1961). Oxidative ring opening of the epox-
ide with NaIO4 (Aldrich, 99.8 %) in water–tetrahydrofuran
(THF) (Cane et al., 1992) resulted in limonon alde-
hyde, which was oxidised with NaClO2 (Aldrich, 80 %)
in dimethyl sulphoxide (DMSO) (Binder et al., 2008) to
limononic acid. The ketoacid was esterified with ethyl bro-
mide and NaHCO3 in DMSO (Bocchi et al., 1979), and pu-
rified by flash chromatography (solvent gradient from pen-
tane to 1: 1 Et2O-pentane) to give ethyl limononate as a
colourless oil. Thin-layer chromatography (TLC) rF : 0.37
(EtOAc:hexane 1: 2, vanillin staining).1H NMR (CDCl3,
500 MHz)δ: 4.77 (d, J= 28 Hz, 2H, 10), 4.10 (q, J= 7.2 Hz,
2H, 11), 2.55 (m, 1H, 5), 2.40–2.31 (m, 4H, 3 and 6), 2.12
(s, 3H, 1), 1.74–1.67 (m, 1H, 4), 1.64 (s, 3H, 8), 1.64–
1.58 (m, 1H, 4), 1.23 (t, J= 7.2 Hz, 3H, 12);13C NMR
(CDCl3, 126 MHz)δ: 208.5 (s, 2), 172.4 (7), 145.5 (9), 113.0
(10), 60.4 (11), 43.3 (5), 41.3 (3), 39.3 (6), 30.1 (1), 26.4
(4), 18.5 (8), 14.3 (12). HRMS (ESI-TOF)m/z, calculated
for C12H20NaO3 (M+Na) 235.1305, found 235.1313. IR
(ATR) ν: 3075 cm−1, 2982 cm−1, 2937 cm−1, 1731 cm−1,
1715 cm−1, 1646 cm−1, 894 cm−1.

Haloform reaction of ethyl limononate with NaOBr in
dioxane/water (Staunton and Eisenbraun, 1973) yielded
limonic acid, which was purified by flash chromatogra-
phy on silica (solvent gradient from 50:1 CHCl3–AcOH to
5:45:1 MeOH–CHCl3–AcOH) to give a white solid with
a 24 % yield (based on limonene) and 97 % purity (esti-
mated by NMR). Mp. 115–117◦C (in literature 117–118◦C;
Abe, 1943). [α]22,6

D = +7.416 (c= 0.5, i-PrOH). 1H NMR
(acetone-d6, 500 MHz)δ: 10.48 (br, 2H, 1 and 6 COOH),
4.80 (d, J= 12 Hz, 2H, 9), 2.62 (m, 1H, 4), 2.44–2.36 (m, 2H,
5), 2.31–2.20 (m, 2H, 2), 1.83–1.76 (m, 1H, 3), 1.73–1.65 (m,
1H, 3), 1.70 (s, 3H, 7);13C NMR (acetone-d6, 126 MHz)δ:
174.5 (1), 173.4 (6), 147.0 (8), 112.8 (9), 43.8 (4), 39.2 (5),
32.0 (2), 28.6 (3), 19.0 (7). HRMS (ESI-TOF)m/z, calcu-
lated for C9H14NaO4 (M+Na) 209.0784, found 209.0780.
IR (ATR) ν: 3081 cm−1, 2976 cm−1, 2941 cm−1, 2911 cm−1,
2668 cm−1, 2573 cm−1, 1699 cm−1,1694 cm−1, 1647 cm−1,
896 cm−1.
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Figure 2. Monthly mean terpenoic acid concentrations and their standard deviations together with 
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Figure 2.Monthly mean terpenoic acid concentrations and their standard deviations together with monthly mean monoterpene concentrations
from Hakola et al. (2012).

β-caryophyllinic acid was prepared fromβ-caryophyllene
oxide (Aldrich, 99 % purity) by a method that will be
published separately. It was obtained as a glassy solid
of > 98 % purity after flash chromatography on silica
(solvent gradient from 50:1 CHCl3–AcOH to 5:45:1
MeOH–CHCl3–AcOH); TLC rF 0.62 (10:90:2 MeOH–
DCM–AcOH, Ce–phosphomolybdate staining).1H NMR
(CDCl3, 500 MHz) δ: 10.89 (br, 4 and 5 COOH), 4.76 (s,
1H, 14), 4.72 (s, 1H, 14), 2.50 (t, J= 7.7 Hz, 2H, 6), 2.42
(q, J= 9.3 Hz, 1H, 9), 2.35-2.22 (m, 4H, 3 and 7), 1.94 (dt,
J= 9.2, 7.7 Hz, 1H, 1), 1.81 (dd, J= 8.3 Hz, 10.2 Hz, 1H,
10), 1.71 (q, J= 7.7 Hz, 2H, 2), 1.47 (t, J= 10.2 Hz, 1H,
10), 1.06 (s, 3H, 12), 1.06 (s, 3H, 13);13C NMR (CDCl3,
126 MHz)δ: 180.2 (4), 179.8 (5), 150.5 (8), 107.8 (14), 47.9
(1), 41.8 (9), 39.6 (10), 33.8 (11), 32.6 (6), 32.6 (3), 31.1
(12), 28.9 (7), 25.7 (2), 22.4 (13). HRMS (EI), derivati-
sation with N,O–bis(trimethylsilyl)trifluoroacetamide
(BSTFA) to bis-trimethylsilyl ester, m/z, calculated for
C20H38O4Si2(M+) 398.2327, found 398.2318. EI-MS (70

eV) m/z ( %): 400 (3), 399 (4), 398 (12) [M], 385 (6), 384
(13), 383 (50) [M–CH3], 355 (8) [M–CH3–CO], 328 (7)
[M–C5H10], 313 (26), 309 (100), 299 (37), 279 (19), 200
(81) [M–2(C5H10)], 149 (67) 117 (85).

3 Results and discussion

3.1 Annual variability of terpenoic acids

The highest terpenoic acid concentrations were measured
during summer (Fig. 2), but high concentrations, especially
of pinonic acid, were also measured occasionally during win-
ter. Hakola et al. (2012) measured BVOC concentrations
at the same site and found occasionally very high BVOC
concentrations originating from the nearby sawmills. These
emissions cause high concentrations of aerosol particles
(Liao et al., 2011), and may cause high acid concentrations as
well. Reactions with nitrate radicals at least are fast enough
to produce acids in less than half an hour (Hakola et al.,
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Table 1.Seasonal mean concentrations (standard deviations) of terpenoic acids from this study and precursor monoterpenes from Hakola et
al. (2012) in Hyytiälä (June 2010–October 2011). Also included are the ratios between acids and precursors ( %) and mean PM1 concentra-
tions.

Winter Spring Summer Autumn

Terpenoic acids (ng m−3)

Limonic acid 0.6 (0.5) 1.7 (0.9) 1.4 (2.4) 1.1 (0.9)
Pinic acid 1.7 (1.4) 2.6 (3.2) 7.2 (7.3) 3.6 (4.8)
Pinonic acid 10.2 (18) 6.5 (3.3) 10.7 (13.6) 8.3 (9.6)
Caric acid 2.6 (1.4) 3.6 (0.9) 7.2 (8.6) 2.9 (2.6)
Caryophyllinic acid 1.2 (0.8) 4.5 (4.2) 10.9 (12.1) 3.8 (5.0)

Monoterpenes (ng m−3)

α-pinene 40 (230) 180 (530) 1070 (1030) 220 (220)
β-pinene 4 (30) 20 (30) 300 (310) 40 (40)
α-pinene+β-pinene 40 200 1370 260
13-carene 20 (100) 60 (230) 480 (520) 110 (110)
Limonene 10 (40) 10 (40) 130 (150) 20 (20)

Ratios (%)

Pinic acid/ (α-pinene+β-pinene) 4.3 1.3 0.5 1.4
Pinonic acid/ ( α-pinene+β-pinene) 11 3.3 0.8 3.2
Limonic acid/ limonene 5.5 17 1.1 4.9
Caric acid/ 13-carene 12 5.7 1.5 2.6
PM1 (µg m−3) 4.8 3.1 5.3 2.9

2003). The results are tabulated in Table 3, which also shows
the length of each measurement. Table 1 shows the seasonal
average concentrations. Those values below the detection
limit were taken as half of the detection limits in the cal-
culation of averages.β-caryophyllinic acid showed the high-
est concentrations in summer, but during other times of the
year pinonic acid was the most abundant.β-caryophyllene is
emitted mainly in July (Hakola et al., 2006), so the product
concentrations are expected to peak at that time too. Limonic
acid emissions are distributed more evenly throughout the
year, with a maximum already in spring. Scots pine emits
only small amounts of limonene, but Norway spruce emits
limonene mainly in May (Hakola et al., 2003). There are also
a few birches growing in the area, and birches emit limonene
in early summer (Hakola et al., 2001). The concentrations
were also studied in relation to meteorological parameters,
such as temperature, wind speed, relative humidity and the
amount of rain at the sampling time, but no clear correlations
were found. Averaging over the whole day or several days
complicates this inspection.

The acid concentrations were higher in 2011 than in 2010.
The temperatures at the time of the measurements were sev-
eral degrees lower in 2011 than in 2010 (the difference was
2.7◦C in July and 4.3◦C in August), and colder temperatures
could have caused higher concentrations in the aerosol phase,
although the emissions were probably higher at warmer tem-
peratures. Kamens and Jaoui (2001) showed in their simu-
lations and smog chamber experiments withα-pinene that

decreasing the temperature by 10◦C increased aerosol yields
by a factor of∼ 2.

The concentrations of pinonic and pinic acids had
relatively good correlation during the summer months
(r2

= 0.42). This was expected, since they have the same
precursors, i.e. they are both reaction products ofα- and
β-pinene. The average concentrations for pinonic acid were
40 % higher than for pinic acid. Caric acid and caryophyllinic
acid were also somewhat correlated (r2

= 0.47) in summer.
The pinic and pinonic acids were also measured previously

at the SMEAR II station in short 1- or 2-month campaigns in
spring and summer. The results from these previous studies
are listed in Table 2. Kourtchev et al. (2008) measured pinic
acid in July–August 2005 in the PM1 fraction and found a
median value of 7.7 ng m−3, which is similar to the sum-
mer median in our measurements (6.7 ng m−3). Other results
(Warnke et al., 2006; Kourtchev et al., 2008; Parshintsev et
al., 2010) also showed values similar to ours.

3.2 Comparison of terpenoic acids with corresponding
monoterpenes

Ambient monoterpene concentrations were measured at the
same site from October 2010 until November 2011 near the
filter-sampling site by in situ TD–GC–MS. A detailed de-
scription of the monoterpene measurements can be found in
Hakola et al. (2012). In Fig. 2, we compared the BVOC mix-
ing ratios with the corresponding acid concentrations and
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Table 2.Concentrations of pinic and pinonic acids in comparison to previous studies at the SMEAR II station in Hyytiälä.

ng m−3 Pinic acid Pinonic acid PM size cutoff Reference

Spring

Mar/Apr 03 1.1–21 0.99–74 PM2.5 Warnke et al. (2006)
Mar/Apr 11 0.66–7.3 0.5–11 PM2.5 This study

Summer

Jul/Aug 01 0.38–4.7 0.91–8.2 PM2.5 Warnke et al. (2006)
Jul/Aug 05 2–29.6 PM1 Kourtchev et al. (2008)
Aug 07 1–7 11–28 PM2.5 Parshintsev et al. (2010)
Jul/Aug 10/11 0.64–31 0.1–80 PM2.5 This study

found that the overall seasonal patterns were similar, al-
though not all the acid peaks were seen in the parent monoter-
pene data. This was expected, since the measurement times
of the VOCs and corresponding acids did not cover whole
months and did not always match. In the online VOC mea-
surements, there were several breaks due to malfunction of
the instrument, and because the sampling times of the acids
were sometimes several days, the overlapping of VOC and
acid data is not complete. Comparisons of these seasonal
means thus represent approximations only. However, since
the daily variation in VOC mixing ratios is quite modest com-
pared with the seasonal variability, comparing VOC and acid
concentrations is justified. The seasonal means of the acid
and monoterpene concentrations and the ratios between the
acids and precursor monoterpenes are tabulated in Table 1.

We calculated the seasonal acid/ monoterpene ratios, and
they were lower in summer than in winter (Table 1). This
could indicate that during cold seasons the acids are parti-
tioned more to the particle phase than to the gas phase, and
vice versa during warm seasons. Temperature, together with
carbon and oxygen numbers, are known to be controlling fac-
tors in phase partitioning of organic acids (Finlayson-Pitts
and Pitts, 2000).

Tarvainen et al. (2007) calculated the BVOC emissions
in the middle boreal zone in Finland, utilising satellite
land-cover information, meteorological data and published
emission factors in a Biogenic Emissions Inventory System
(BEIS)-type canopy emission model. They did not calcu-
late the emissions forβ-caryophyllene, but rather for to-
tal sesquiterpenes. However, in the published sesquiterpene
emission rates (Hakola et al., 2006; Tarvainen et al., 2005),
β-caryophyllene was clearly the predominant sesquiterpene
species emitted in boreal forests. We compared these emis-
sions with the corresponding acid concentrations (Fig. 3) and
found that they were in relatively good agreement. The pinic
and pinonic acids and theα- and β-pinenes are added to-
gether, since both of these monoterpenes produce both acids.
The caric and limonic acids showed lower contributions than
their precursors in the emission calculations. This was ex-
pected, since their yields in the smog chamber experiments

were lower than the yields of the other acids (Yu et al.,
1999; Jaoui et al., 2006, 2003). However, the yield ofβ-
caryophyllinic acid (Jaoui et al., 2003) was also lower than
the pinic and pinonic acid yields, but its contribution was
higher than expected, based on the emission calculations, es-
pecially since the calculations also included other sesquiter-
penes. This could imply that theβ-caryophyllene emissions
or β-caryophyllinic acid yields were underestimated.

3.3 Comparison with particulate data

The highest seasonal means for PM1 were observed in sum-
mer, together with the highest terpenoic acid concentrations
(Table 1), but the measured terpenoic acids explained only
a small fraction of the total PM1 mass: 0.2 % in winter and
0.7 % in summer.

The average submicrometre organic carbon (OC) con-
centration in Hyytiälä in 2007/2008 was 1100 ng m−3:
1200 ng m−3 in summer and 1300 ng m−3 in winter (Aurela
et al., 2011). The sum of the terpenoic acids measured in
this study comprised only 0.9–3.4 % of this OC, showing
the highest fraction in summer and the lowest in winter. Al-
though the measurements were conducted in different years,
we expected that these five terpenoic acids would have only
a small impact on the total OC concentrations, especially in
winter. However, this fraction was clearly higher than the
0.6 % value for the 12 terpenoic acids found by Gomez-
Gonzalez et al. (2012) in summer at a forest site in Belgium.

The acid concentrations were also studied in rela-
tion to the particle concentrations in different size frac-
tions. The particle number concentrations were measured
in the size range 3–1000 nm with a differential mobility
particle sizer (DMPS), and the PM1 mass concentration
was calculated from it (Aalto et al., 2001). No correla-
tion was found between the acid concentrations and the
nucleation-mode particles (3–25 nm) or the Aitken-mode
particles (25–100 nm). In the accumulation-mode particles
(100–1000 nm), the caric (r2

= 0.28) and caryophyllinic
(r2

= 0.13) acids were somewhat correlated with the parti-
cle number concentration, as shown in Fig. 4. The PM1 mass
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Table 3.Sampling dates and acid concentrations of all samples.

Start End Limonic acid Pinic acid Pinonic acid Caric acid Caryophyllinic acid
ng m−3 ng m−3 ng m−3 ng m−3 ng m−3

100 604 100 607 0.71 4.86 8.10 2.27 10.25
100 607 100 609 1.10 < LOD 7.18 5.96 6.40
100 609 100 611 1.62 0.52 11.35 14.87 12.44
100 611 100 614 0.35 2.64 13.68 1.07 13.79
100 614 100 616 2.45 7.28 6.77 9.10 13.50
100 616 100 618 1.98 < LOD 3.12 4.42 < LOD
100 621 100 623 0.33 7.29 8.91 1.36 5.47
100 628 100 630 1.41 4.94 4.01 5.25 5.45
100 630 100 702 3.24 7.28 8.02 9.72 8.10
100 705 100 707 < LOD < LOD < LOD 21.13 18.77
100 707 100 709 < LOD < LOD < LOD 23.69 14.09
100 709 100 712 < LOD < LOD < LOD < LOD < LOD
100 716 100 719 < LOD < LOD < LOD 4.37 5.41
100 719 100 721 < LOD < LOD < LOD 2.43 < LOD
100 723 100 726 2.08 5.77 2.46 9.30 8.89
100 726 100 728 1.29 2.34 8.50 6.27 10.36
100 729 100 730 1.46 8.53 23.21 6.73 16.05
100 730 100 802 0.72 1.78 2.22 2.22 3.67
100 802 100 804 1.97 7.28 7.35 9.39 6.13
100 804 100 806 0.88 3.49 5.74 7.59 8.82
100 806 100 809 0.74 4.86 2.07 2.25 4.14
100 811 100 813 < LOD < LOD 6.72 10.80 2.96
100 813 100 816 < LOD < LOD < LOD 6.59 4.27
100 915 100 922 2.39 < LOD < LOD 3.13 < LOD
100 922 100 930 < LOD < LOD < LOD 1.38 < LOD
101 004 101 011 < LOD < LOD < LOD < LOD < LOD
101 025 101 101 < LOD < LOD 6.68 5.03 < LOD
101 108 101 119 1.98 < LOD 32.99 5.16 < LOD
101 119 101 122 < LOD < LOD 8.27 4.43 < LOD
101 122 101 129 0.15 0.15 5.50 0.74 1.30
101 129 101 207 < LOD < LOD 2.55 3.74 0.68
101 213 101 220 < LOD < LOD < LOD 1.68 < LOD
101 227 110 103 < LOD < LOD < LOD < LOD < LOD
110 103 110 110 1.47 2.12 8.65 4.05 1.15
110 110 110 117 < LOD < LOD 4.33 2.86 < LOD
110 118 110 125 < LOD < LOD 2.78 3.77 < LOD
110 125 110 201 0.50 < LOD 5.20 1.60 < LOD
110 201 110 207 0.53 0.17 4.24 5.01 1.34
110 214 110 221 < LOD < LOD 57.87 1.17 < LOD
110 228 110 307 < LOD < LOD 4.40 2.50 < LOD
110 328 110 404 1.04 7.28 11.39 4.53 6.47
110 426 110 502 0.78 < LOD 5.09 3.41 0.79
110 502 110 509 2.42 < LOD 4.45 2.44 1.36
110 516 110 524 2.48 1.70 5.06 4.16 9.56
110 630 110 701 3.71 29.37 35.21 18.10 30.84
110 701 110 704 16.46 16.06 80.14 49.78 86.09
110 704 110 705 0.55 21.85 23.03 0.98 7.83
110 705 110 706 1.83 < LOD 23.02 4.47 7.25
110 706 110 706 < LOD 0.00 < LOD 14.99 < LOD
110 711 110 712 5.75 9.17 9.94 28.66 32.68
110 712 110 713 < LOD 10.98 < LOD 0.91 < LOD
110 713 110 714 < LOD 14.48 < LOD < LOD < LOD
110 714 110 715 < LOD < LOD < LOD 1.55 < LOD
110 715 110 718 1.21 < LOD < LOD 4.74 7.33
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Table 3.Continued.

Start End Limonic acid Pinic acid Pinonic acid Caric acid Caryophyllinic acid
ng m−3 ng m−3 ng m−3 ng m−3 ng m−3

110 718 110 719 < LOD < LOD < LOD 3.14 < LOD
110 719 110 720 1.05 < LOD 20.64 7.59 12.38
110 720 110 721 1.24 < LOD 7.38 12.49 14.96
110 721 110 722 < LOD < LOD < LOD 8.29 8.17
110 725 110 726 0.87 < LOD 11.08 2.47 6.70
110 726 110 727 < LOD 5.35 < LOD 2.61 < LOD
110 728 110 729 1.02 16.55 12.85 3.16 13.50
110 729 110 801 0.89 < LOD 4.59 3.96 5.61
110 801 110 802 < LOD 20.71 12.70 1.86 10.84
110 802 110 803 1.82 13.81 19.38 0.53 11.06
110 804 110 805 < LOD < LOD 22.65 8.56 11.05
110 805 110 808 0.81 < LOD < LOD 4.59 5.17
110 808 110 809 0.94 15.22 5.88 0.99 9.78
110 809 110 810 1.33 20.56 28.95 1.06 11.65
110 811 110 812 < LOD < LOD < LOD 6.74 9.34
110 815 110 816 3.37 31.40 43.34 3.25 12.15
110 816 110 817 2.27 < LOD 20.11 8.03 6.02
110 818 110 819 < LOD < LOD 10.30 0.88 < LOD
110 826 110 829 0.30 < LOD < LOD 2.25 < LOD
110 901 110 907 2.81 4.03 3.35 5.23 5.78
110 909 110 912 2.11 < LOD 9.65 6.00 4.66
110 916 110 919 < LOD < LOD < LOD 1.92 < LOD
110 919 110 921 < LOD < LOD < LOD 1.18 < LOD
100 922 100 923 < LOD < LOD < LOD < LOD < LOD
110 929 110 930 1.48 5.29 28.75 2.97 14.41
110 930 111 003 2.72 < LOD < LOD 4.70 0.85
111 005 111 006 < LOD 7.82 19.62 < LOD 16.50
111 007 111 010 < LOD < LOD < LOD 1.36 1.46
111 011 111 018 < LOD < LOD < LOD < LOD < LOD
111 026 111 028 < LOD < LOD 24.37 10.53 < LOD

Figure 3. Relative contributions of terpenoic acids in summer (left) and average terpenoid emission fluxes (right) from middle boreal zone
forests in summer from Tarvainen et al. (2007).

concentration correlated weakly with the caric (r2
= 0.28)

and caryophyllinic (r2
= 0.1) acids. The pinic and pinonic

acids did not correlate with any particle-size fractions. Smog
chamber studies showed that pinonic and pinic acids are par-
titioned more to the gas phase than the other studied acids
(Yu et al., 1999).

4 Conclusions

The highest terpenoic acid concentrations were measured
in summer. The results were compared with the parent
monoterpene and sesquiterpene mixing ratios. Pinonic and
β-caryophyllinic acids were the most abundant acids in
summer. Theβ-caryophyllinic acid contribution was higher
than expected, based on the emission calculations and smog
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Figure 4. Correlations between caric acid(a) andβ-caryophyllinic
acid (b) and the accumulation-mode particle number concentra-
tions.

chamber yields, implying that theβ-caryophyllene emis-
sions and/orβ-caryophyllinic acid yields were underesti-
mated. The limonic acid concentration peaked already in
spring, which is in accordance with the measured limonene
emissions from Norway spruce, which also reach their max-
imum in spring. The pinonic and limonic acids also showed
quite high concentrations in winter. These winter concentra-
tions may be of anthropogenic origin. Higher ratios between
the terpenoic acids and their precursors in winter indicated
higher partitioning to the aerosol phase during the colder
winter months.

These five terpenoic acids comprised only a small frac-
tion (∼ 1–3 %) of the total OC in particles measured at
the site, and only 0.2–0.7 % of the PM1 mass. Theβ-
caryophyllinic and caric acids were weakly correlated with
the accumulation-mode particle number concentrations, im-

plying that they participated in the particle growth process,
which is crucial for the formation of cloud condensation nu-
clei.
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