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Abstract. Recently, realistic simulation of nitrous acid
(HONO) based on the HONO / NOx ratio of 0.02 was
found to have a significant impact on the global budgets
of HOx (OH+ HO2) and gas phase oxidation products in
polluted regions, especially in winter when other photolytic
sources are of minor importance. It has been reported that
chemistry-transport models underestimate sulphate concen-
trations, mostly during winter. Here we show that simulat-
ing realistic HONO levels can significantly enhance aerosol
sulphate (S(VI)) due to the increased formation of H2SO4.
Even though in-cloud aqueous phase oxidation of dissolved
SO2 (S(IV)) is the main source of S(VI), it appears that
HONO related enhancement of H2O2 does not significantly
affect sulphate because of the predominantly S(IV) limited
conditions, except over eastern Asia. Nitrate is also increased
via enhanced gaseous HNO3 formation and N2O5 hydroly-
sis on aerosol particles. Ammonium nitrate is enhanced in
ammonia-rich regions but not under ammonia-limited condi-
tions. Furthermore, particle number concentrations are also
higher, accompanied by the transfer from hydrophobic to hy-
drophilic aerosol modes. This implies a significant impact
on the particle lifetime and cloud nucleating properties. The
HONO induced enhancements of all species studied are rel-
atively strong in winter though negligible in summer. Simu-
lating realistic HONO levels is found to improve the model-
measurement agreement of sulphate aerosols, most appar-
ent over the US. Our results underscore the importance of
HONO for the atmospheric oxidizing capacity and corrobo-
rate the central role of cloud chemical processing in S(IV)
formation.

1 Introduction

Despite improvements in the control strategies of air quality
in urban areas during the last decades, reducing air pollution
is still a major challenge due to the very complex chemical
mechanisms and the large number of species emitted into the
atmosphere. Fine aerosol particles have direct and indirect
impacts on climate (e.g., Charlson et al., 1991, 1992; Hay-
wood and Boucher, 2000; IPCC, 2007) and human health
(e.g., WHO, 2002; Lelieveld et al., 2013). The aerosol radia-
tive forcing is highly uncertain and depends on the aerosol
burden and distribution (IPCC, 2007). Knowledge of aerosol
chemical composition and the controlling processes are thus
of paramount importance. The inorganic compounds SO2−

4 ,
NO−

3 and NH+

4 are among the major constituents of the fine
particles in polluted air, e.g., in megacities such as Beijing
(Sun et al., 2013). Sulphate aerosols are primarily produced
by the condensation of H2SO4 and the aqueous phase oxi-
dation of dissolved gas phase SO2, S(IV), by O3 and H2O2
(e.g., Lelieveld et al., 1997; Seinfeld and Pandis, 2006). Re-
cently, the transition-metal-ion catalysed oxidation of S(IV)
by O2 has also been highlighted as an important source es-
pecially in rural areas (Harris et al., 2013, and references
therein). Cloud processing has long been known as the most
important source of aerosol sulphate on regional (e.g., Seidl
and Dlugi, 1991; McHenry and Dennis, 1994; Lelieveld et
al., 1997; Venkataraman et al., 2001; Menegoz et al., 2009)
and global scale (e.g., Hegg, 1985; Feichter et al., 1996;
Liao et al., 2003), accounting for up to two thirds of am-
bient sulphate concentrations, with H2O2 being the most ef-
fective oxidant followed by O3 (e.g., Feichter et al., 1996).
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The aqueous phase oxidation of S(IV) can be either oxidant
(i.e., O3 or H2O2) or SO2 limited and occurs primarily in
clouds because of their relatively high liquid water content,
LWC, compared to aerosol (e.g., Schwartz et al., 1987; Van
den Berg et al., 2000; Seinfeld and Pandis, 2006). Under ox-
idant limited conditions, enhancement of the oxidant con-
centrations may significantly accelerate sulphate formation,
in contrast to S(IV) limited conditions (e.g., Seinfeld and
Pandis, 2006). Secondary aerosol formation by gas/liquid
partitioning is also well recognised as an important source
of aerosols (e.g., Kulmala et al., 2004). Sulphuric acid is
the major contributor to atmospheric nucleation (e.g., Seidl
and Dlugi, 1991; Kulmala et al., 2006; Kirkby et al., 2011;
Neitola et al., 2013). Unlike sulphates, nitrates are nearly ex-
clusively produced by the uptake of nitric acid (HNO3) into
cloud droplets and aerosols and its reaction with available
ammonium and other cations. In ammonia-rich regions, en-
hancement of aerosol sulphate concentrations may also en-
hance nitrate aerosol formation via the heterogeneous N2O5
hydrolysis on sulphate aerosol particles forming HNO3 (e.g.,
Lamsal et al., 2010; L. Zhang et al., 2012). In ammonia-
limited regions, enhancements of sulphate can substitute ni-
trate and chloride ions, driving them out of the condensed
phase (e.g., Seinfeld and Pandis, 2006).

During the last decades, HONO has been shown to play a
major role in HOx (OH+ HO2) and O3 production as well
as in the formation of other secondary oxidation products
(e.g., Perner and Platt, 1979; Harris et al., 1982; Elshorbany
et al., 2009a, b, 2010a, b, 2012a, b). Several previous local-
scale studies have reported an important impact of HONO
photolysis on aerosol chemical composition. Goncalves et
al. (2012) found that simulated PM2.5 is increased up to 14 %
by accounting for HONO sources in Madrid, Spain. Li et
al. (2010) found that HONO sources play an important role
in the formation of secondary aerosols in Mexico City, sub-
stantially enhancing their concentrations by a factor of 2 on
average in the morning. They also found that the simulated
particle-phase nitrate and ammonium are substantially en-
hanced in the morning, though the effect on sulphate aerosol
was much smaller, being in good agreement with the mea-
surements. Further, R. Zhang et al. (2012) found that HONO
can enhance the daily mean PM2.5 in the Pearl River Delta,
China by up to 17 µg m−3 (12 %).

Underestimation of sulphate aerosols has been reported
by several studies, especially in polluted regions, which was
attributed to missing oxidation pathways, being largest in
winter and relatively small in summer (e.g., Dennis et al.,
1993; Roelofs et al., 1998, 2001). HONO formation mech-
anisms are still poorly understood and therefore it is diffi-
cult for global models to simulate realistic HONO concen-
trations. Recently, Elshorbany et al. (2012b) have shown that
HONO levels can be realistically parameterized, being about
an order of magnitude higher compared to the reference sim-
ulations that consider the reaction of OH+ NO as the sole
HONO source. They also showed that HONO photolysis sig-

nificantly enhances the gas phase mixing ratios of H2O2,
HNO3, O3 and H2SO4, which play an important role in the
formation of aerosols. Therefore, simulating realistic HONO
levels may possibly improve the agreement between models
and measurements. In this study, we investigate the impact of
HONO on the aerosol physical and chemical properties and
compare the simulation results with measurement data from
monitoring networks.

2 Model description

The applied modelling system based on the ECHAM5 gen-
eral circulation model (Roeckner et al., 2006) and the
Modular Earth Submodel System (MESSy2, Jöckel et al.,
2005, 2010) to simulates the meteorology and atmospheric
chemistry. The ECHAM5/MESSy Atmospheric Chemistry
(EMAC) system is a coupled lower-middle atmospheric
chemistry general circulation model (AC-GCM), which has
been extensively evaluated against observations (e.g., Jöckel
et al., 2006; Lelieveld et al., 2007; Tost et al., 2007; Pozzer et
al., 2007; 2010, 2012; Brühl et al., 2012; de Meij et al., 2012).
The model structure and setup have been described by Jöckel
et al. (2006) and (2010) and only a brief description is given
here, focusing on aerosol related submodels.

The atmospheric aerosol is parameterized in this study
using the submodel GMXe (Pringle et al., 2010; Tost and
Pringle, 2012). Gas/aerosol partitioning is calculated in
GMXe in two stages;kinetically(the same as that in M7 Vi-
gnati et al., 2004, but extended to NH3, HCl and HNO3), in
which the amount of gas phase species is kinetically allowed
to condense (assuming diffusion limited condensation) on
aerosol particles andthermodynamically(using ISORROPIA
II, Fountoukis and Nenes, 2007), in which the condensed
material is redistributed between the gas and aerosol phase.
The size distribution (in radius) is described by four hy-
drophilic (nucleation (ns, < 5 nm), Aitken (ks, 5–50 nm), ac-
cumulation (as, 50–500 nm), coarse (cs, > 500 nm)) and three
hydrophobic (Aitken (ki, 5–50 nm), accumulation (ai, 50–
500 nm), coarse (ci, > 500 nm)) interacting lognormal aerosol
modes, with prognostic aerosol mass and number and a diag-
nosed mean radius. The aerosol compounds treated explic-
itly are H2O, Na+, Cl−, NH+

4 , SO2−

4 , NO−

3 and the bulk
compounds of organic carbon (OC), black carbon (BC), dust
and a bulk sea salt (the fraction that is not described by
NaCl and sea salt sulphate). Dry deposition, sedimentation
and wet deposition of gas and aerosol phase species are cal-
culated using DRYDEP (dry deposition of trace gases and
aerosol particles, Ganzeveld et al., 1998; Kerkweg et al.,
2006), SEDI (sedimentation of aerosol particles, Kerkweg et
al., 2006), and SCAV (scavenging and liquid phase chem-
istry in clouds and precipitation, Tost et al., 2006) submod-
els, respectively. SCAV calculates the uptake of trace gases
and aerosol particles (radius dependent) into cloud and pre-
cipitation droplets. The wet deposition flux out of the lowest
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 Fig. 1. Simulated monthly average HONO mixing ratios (ppbv) from the reference run (base_S1, left) and the sensitivity run (S1, i.e. using

a HONO / NOx ratio of 0.02, right) near the surface in January (upper panels) and July (lower panels).

model layer represents the chemical composition of rain-
water. The gas and aqueous phase chemistry, including the
transfer of gaseous compounds, dissociation of acidic and al-
kaline species in the droplets and aqueous phase redox reac-
tions are calculated by a coupled system of ordinary differ-
ential equations using the kinetic pre-processor (KPP) soft-
ware (Sandu and Sander, 2006). The gas and the liquid phase
chemical processes are fully coupled and do not require pre-
scribed mixing ratios or pH values. Since usually only a small
fraction of a grid box is affected by clouds and precipitation,
only the cloud covered part or the part in which the precipi-
tation occurs contributes to the scavenging, while the rest of
the grid box remains unaffected. A scavenged aerosol par-
ticle can be either removed from the atmosphere by wet de-
position or released through droplet evaporation (aerosols are
then transferred into the largest available mode). Ions that are
converted to molecules via chemical reactions in the aque-
ous phase can be released to the gas phase. At the end of
each time step, it is assumed that the cloud completely evap-
orates and that all volatile species will be released to the gas
phase, while the ions are transferred to the aerosol phase, thus
affecting the aerosol properties: e.g., the SO2 oxidation to
SO2−

4 can significantly increase the aerosol sulphate amount.
Atmospheric gas phase chemical reactions are incorporated
in the model through the module MECCA (Sander et al.,
2005, 2011). To study the effects of changes in the chemistry
while avoiding possible feedbacks of radiatively active gases
and aerosols through the meteorology, the radiation scheme
has been decoupled, and the model is used in the atmospheric
chemistry-transport mode. The radiation code in EMAC uses
an ozone climatology (Fortuin and Kelder, 1998), fixed ver-

tical profiles for CH4, N2O and CFCs and constant mixing
ratios of CO2.

HONO is parameterized in this study following
Elshorbany et al. (2012b), in which HONO, NOx and
auxiliary atmospheric chemistry parameters have been in-
vestigated using data from 15 field measurement campaigns
around the globe. The high correlation between HONO
and NOx in all data sets revealed a robust and consistent
linear regression slope of 0.02± 0.002. Comparison with
field measurements showed that, given the ambient NOx
mixing ratio, the HONO / NOx ratio is a suitable proxy
predictor for HONO mixing ratios under different atmo-
spheric conditions. Using a global chemistry-climate model
and employing this HONO / NOx ratio, realistic HONO
levels are simulated, being about one order of magnitude
higher than the reference calculations that only consider the
reaction OH+ NO→ HONO. The resulting enhancement
of HONO was found to significantly impact HOx levels
and photo-oxidation products (e.g, O3, PAN), mainly in
polluted regions. Furthermore, the relative enhancements in
OH and secondary products were higher in winter than in
summer, thus enhancing the oxidation capacity in polluted
regions, especially in winter when other photolytic OH
sources are of minor importance. Similar to Elshorbany et
al. (2012b), HONO levels are parameterized in this study
(as mentioned in the sensitivity model runs below) such that
the HONO / NOx ratio is fixed at 0.02, which was achieved
by an iterative correction of HONO and NOx (i.e., without
perturbing the reactive nitrogen budget), which was applied
every minute, thus limiting deviations in the HONO / NOx
ratio to within±0.005.
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 Fig. 2.Average simulated OH (from top to bottom) (106 molecules cm−3), H2O2, HNO3, H2SO4 (ppbv) near the surface from the reference
run (base_S1, left panels) and their relative enhancements (%) due to the implementation of realistic HONO levels in the model (S1, right
panels) in January.

The reference run (base_S1) has been performed for the
years 2000–2001 in T42L31 resolution (i.e., with a trian-
gular truncation at wave number 42 for the spectral core
of ECHAM5, and with 31 levels on a hybrid-pressure grid
in the vertical, reaching up to 10 hPa). The T42 resolution
corresponds to a quadratic Gaussian grid of approximately
2.8◦

× 2.8◦ in latitude and longitude. To simulate realistic
synoptic conditions, we applied a weak “nudging” towards
actual meteorology by the assimilation of analysis data from
the European Centre for Medium-range Weather Forecasting
(ECMWF) through the Newtonian relaxation of four prog-
nostic model variables: temperature, divergence, vorticity

and the logarithm of surface pressure (van Aalst et al., 2004;
Lelieveld et al., 2007). The first 12 months of the simula-
tion are regarded as a spin up period and these results are not
considered in our analysis. In the sensitivity run S1, HONO
levels were parameterized such that the HONO / NOx ratio is
fixed at 0.02, simulating realistic HONO levels (Elshorbany
et al., 2012b). In order to investigate the most important
process affected by the HONO enhancement in the model,
four additional sensitivity runs were performed (see Table 1)
base_S2, S2, base_S3 and S3. In the base_S2 and S2 sensi-
tivity runs, only gas/liquid partitioning based on Henry’ law
coefficients was allowed without aqueous phase chemistry
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Fig. 3. Simulated aerosol sulphate concentrations (µg m−3) near the surface for the mean annual (upper panels), boreal winter (January,
middle panels) and summer (July, lower panels) conditions from the reference run (base_S1) and relative changes (in %, right panels) due to
HONO enhancement in the model.

(similar to the “EASY” sensitivity runs in Tost et al., 2007),
thus determining the impact of aqueous phase chemistry on
aerosol formation in the absence (base_S2) and the presence
(S2) of realistic HONO levels by comparing it to the base_S1
and S1 runs, respectively. In the base_S3 and S3 sensitivity
runs, the gas phase oxidation of SO2 with OH results in a
dummy species (i.e., OH+ SO2 → DUMMY), thus masking
the production of gas phase H2SO4. From these sensitivity
runs, the impact of gas phase H2SO4 on the aerosol forma-
tion in the absence (base_S3) and the presence (S3) of real-
istic HONO levels can be determined by comparing them to
the base_S1 and S1 runs, respectively.

The current study builds on the model-observation results
of Elshorbany et al. (2012b) for the HONO parameterization
and on the aerosol validation results of Pringle et al. (2010),
Tost and Pringle (2012), de Meij et al. (2012) and Pozzer
et al. (2012). Furthermore, modelling results of this study
are also compared to data from monitoring networks (see
Sect. 4.2 and Table 5).

3 Measurement networks

The simulated aerosol concentrations are compared with data
from the Clean Air Status and Trends NETwork (CASTNET;
Edgerton et al., 1990) for North America, the European Mon-
itoring and Evaluation Program (EMEP; Hjellbrekke and
Fjæraa, 2011) for Europe and the Acid Deposition Monitor-
ing Network in East Asia (EANET; Totsuka et al., 2005) for
Asia. The model result – measurements comparisons are per-
formed for the simulated period in 2001, on a monthly mean
basis. Only stations that cover the entire time period within
each network are included, resulting in 54, 81 and 10 stations
for CASTNET, EMEP and EANET, respectively. For com-
parison, the simulated data are sampled at the observation
locations based on the respective geographical coordinates
of the measuring stations.

4 Results and discussion

As shown in Fig. 1, the monthly mean simulated near surface
HONO levels during both summer and winter are about one
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Fig. 4. Simulated monthly average relative changes (%) of aerosol sulphate (upper panels), and the ratio of in-cloud aqueous phase concen-
trations of H2O2/HSO3− (lower panels) in January without the gas phase oxidation of SO2 (base_S3), over the eastern US (left) and China
(right).

order of magnitude higher in the S1 run than in the base_S1
run, which considers the gas phase reaction of NO with OH
as the sole source of HONO, in line with our previous anal-
ysis (Elshorbany et al., 2012b). Elshorbany et al. (2012b)
have shown that simulating realistic HONO levels signifi-
cantly enhances the global concentrations of HOx and oxi-
dation products in high NOx regions, especially during the
winter season when other photolytic sources are of minor
importance. In the next sections, we focus on the HONO
impacts during the boreal winter season, while the summer
and/or annual results are presented in the Supplement. In
Fig. 2, the impact of the enhanced HONO levels on the simu-
lated monthly average OH and the gas phase oxidation prod-
ucts, HNO3 (OH+ NO2), H2SO4 (OH+ SO2) and H2O2
(HO2+ HO2) during winter are shown. The enhancement of
HONO leads to increased oxidation rates by OH leading to
enhancements of O3, N2O5 (not shown) and H2O2 and also
HNO3 and H2SO4 levels, especially during winter (Fig. 2)
while in summer much smaller changes are simulated. The
enhancements of HNO3 and H2SO4 may increase nitrate
and sulphate aerosols, respectively. In addition, the enhance-
ment of aerosol sulphate also contributes to the formation of
nitrates via the heterogeneous hydrolysis of N2O5 forming
HNO3. The uptake of O3 and H2O2 in clouds may enhance
the aqueous oxidation of dissolved SO2 in clouds, thus in-
creasing the oxidation rates of HSO−

3 and SO2−

3 (S(IV)) to
S(VI), which can be transferred to the aerosol phase upon
the evaporation of the cloud droplets. However, the impact
of HONO on the aqueous phase production of S(VI) depends

on the relative abundance of S(IV) and the oxidants and does
not affect sulphate concentrations under S(IV) limited condi-
tions. In the following sections, we investigate the impact of
these enhanced gas phase species on the chemical composi-
tion of aerosols.

4.1 Impacts on aerosol chemical composition

The major constituents of fine aerosol particles are typically
organic compounds (lumped as OC), water soluble ions, e.g.,
SO2−

4 , NO−

3 , and NH+

4 , and mineral dust (Jimenez et al.,
2009; Sun et al., 2013, and references therein). As mentioned
above, daytime HONO photolysis accelerates oxidation pro-
cesses, especially under high NOx conditions, which leads to
increased concentrations of aerosol precursors, e.g, HNO3,
N2O5, H2SO4 and other inorganic (e.g., O3, H2O2) and or-
ganic (OVOC, PAN) oxidation products, which can affect the
cloud and aerosol composition.

4.1.1 Sulphates

As shown in Fig. 3, sulphate concentrations are higher in
summer than in winter, related to the faster photochemi-
cal oxidation during summer. On the other hand, the im-
pact of HONO is strongest during winter related to the rel-
atively minor importance of other photolytic OH sources
and the higher NO levels (i.e., conditions under which OH
recycling is most efficient, see Sect. 4, Elshorbany et al.,
2010b, 2012b). Aerosol sulphates are enhanced only in re-
gions that are rich in both NOx and ammonia; i.e., though
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 Fig. 5. Simulated monthly average relative changes (%) in the aerosol (accumulation soluble mode, as) sulphates (upper panels), nitrates
(middle panels) and ammonium (lower panels) in the reference run (base_S1) near the surface in January over the eastern US (left) and
China (right) due to HONO enhancement in the model (S1).

India is an ammonia-rich region, sulphates are not signif-
icantly enhanced due to the relatively low-NOx conditions
in this region (see Fig. 3). Considering the growing NOx
sources in southern Asia this may change in future. The mean
annual aerosol concentrations of sulphates (S(VI)) are signif-
icantly enhanced as a result of the more realistic HONO lev-
els, reaching a mean annual relative enhancement of about
20 % over the highly polluted NOx-rich regions, especially
over the eastern US and China. Furthermore, S(VI) is signifi-
cantly enhanced during winter, reaching up to+50 % during
January (Fig. 3).

As shown in Table 2, gas phase H2SO4 accounts for about
17–18 % of the simulated total sulphate aerosol concentra-
tion while aqueous phase chemistry accounts for about 25
and 54 % in January over the eastern US and China, respec-
tively, in the base_S1 run. The remainder of the sulphate
concentration is due to emissions (i.e., direct anthropogenic
emissions and sea salt sulphate, see Pringle et al., 2010; Tost
and Pringle, 2012). As a result of simulating realistic HONO

levels (in the S1 run), the contribution of gas phase H2SO4
increases to about 30 and 26 % while that of the aqueous
chemistry decreases to 14 and 45 % over the eastern US and
China, respectively. If only chemically formed sulphates are
considered, gas phase H2SO4 would account for about 41
and 25 % of the simulated sulphate aerosol concentrations,
which increases to about 68 and 37 % in January over the
eastern US and China, respectively, as a result of simulating
realistic HONO levels (see Table 2). Thus, the relative con-
tribution of gas phase H2SO4 increases by about 69 and 50 %
while that of the aqueous phase chemistry decreases by about
47 and 16 % over the eastern US and China, respectively. A
striking result is that gas phase H2SO4 becomes more im-
portant than aqueous phase chemistry in sulphate production
over the eastern US (see Table 2).

In the absence of aqueous phase chemistry (Tables 2,
S2), the enhancement of gas phase H2SO4 leads to about
31 and 34 % enhancement over the eastern US and China,
respectively. In the absence of gas phase H2SO4 (Table 2,

www.atmos-chem-phys.net/14/1167/2014/ Atmos. Chem. Phys., 14, 1167–1184, 2014
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 Fig. 6. Simulated monthly average relative changes (%) in the aerosol (coarse soluble mode, cs) sulphates (upper panels), nitrates (middle
panels) and ammonium (lower panels) in the reference run (base_S1) near the surface in January over the eastern US (left) and China (right)
due to HONO enhancement in the model (S1).

Table 1.List of the simulation setups of the different model scenarios.

scenario base_S S

1 default setup; [HONO]pss as base_S1 except HONO:
(see Sect. 2) Iterative correction of HONO / NOx ratio= 0.02

2 as base_S1 except SCAV= EASY: no aqueous phase chemistry, as S1 except SCAV= EASY
i.e., only uptake of gas phase species using effective Henry’s law constant

3 as base_S1 except SO2+OH= DUMMY, as S1 except SO2+OH= DUMMY
i.e., no gas phase H2SO4 from the oxidation of SO2 with OH.

scenario S3), no significant sulphate enhancement is calcu-
lated. Thus, though both gas phase H2O2 and O3 are also
enhanced as a result of simulating realistic HONO levels
(Fig. 2), which subsequently increase their levels in the aque-
ous phase (see Supplement), they do not seem to significantly
affect sulphate concentrations over the eastern US and China
(see Table 2, scenario S3). This is related to the prevailing
S(IV) limited conditions in most of these regions, thus any

increase in the H2O2 concentration does not affect sulphate
aerosol concentration (sf. Seinfeld and Pandis, 2006; Shen,
2011). For instance, over eastern China, in the absence of
H2SO4 from the gas phase oxidation of SO2, enhancement
in the sulphate aerosol concentration (up to+50 %) seems
to occur only when the ratio of H2O2 / HSO−

3 in the aqueous
phase is below 0.1, while for ratios in excess of 1 (also over
eastern US), no enhancements are calculated (Fig. 4).

Atmos. Chem. Phys., 14, 1167–1184, 2014 www.atmos-chem-phys.net/14/1167/2014/
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Table 2.Contributions of the different chemical processes to the simulated aerosol sulphate, nitrate and ammonium concentrations and their
relative enhancement as a result of simulating realistic HONO levels during January in the eastern US and China.

species conditions
eastern US, 95–65◦ W, 30–50◦ N eastern China, 100–130◦ E, 25–55◦ N

base_S [µg m−3] S [µg m−3] %a base_S [µg m−3] S [µg m−3] %a

total sulphate

S1 2.97 3.39 14 5.18 5.72 11
S2 2.23 2.92 31 2.36 3.17 34
S3 2.47 2.38 −3.7 4.26 4.23 −0.61
H2SO4 %b 17 30 18 26
Aqueous %c 25 14 54 45

chemically formed H2SO4 % 41 68 25 37
sulphate Aqueous % 59 32 75 63

nitrate
S1 2.05 2.23 8.9 2.51 2.64 4.9
S2 2.41 2.61 8.4 3.20 3.25 1.6
S3 1.79 1.89 5.9 2.40 2.45 2.4

ammonium
S1 1.08 1.25 16 2.97 3.18 7.1
S2 0.77 1.05 37 1.56 1.87 20
S3 0.88 0.86 −1.8 2.60 2.53 −2.8

number concentration base_S [cm−3] S [cm−3] %a base_S [cm−3] S [cm−3] %a

S1 2032 2242 10 5520 6129 11
S2 2129 2675 26 5830 9857 69
S3 1956 1951 −0.26 5438 5430 −0.15

S1: basic setup, all aerosol formation processes are included, S2: no aqueous phase chemistry, i.e., only uptake of gaseous species based on Henry’s law constant, S3: no
gas phase production of H2SO4 from the oxidation of SO2 with OH.
a Relative enhancement as a result of simulating realistic HONO levels.
b Relative contribution of the gas phase H2SO4, calculated from the difference between S1 and S3.
c Relative contribution of the aqueous phase chemistry, calculated from the difference between S1 and S2.

In Table 3, the mean simulated concentrations of sulphate,
nitrate and ammonium as well as their relative enhancements
due to HONO are shown for the different soluble aerosol
modes during summer and winter over the eastern US and
China. The corresponding figures for the accumulation and
coarse modes during winter are shown in Figs. 5 and 6, re-
spectively. The relative enhancements in the aerosol mass
concentrations are dominated by the nucleation and Aitken
modes while the absolute enhancements are dominated by
the accumulation mode and to a lesser extent the coarse
mode. Since almost no enhancement in aerosol sulphate is
calculated in the absence of the gas phase oxidation of SO2
(Table 2, scenario S3), the enhancement in the larger modes
is mainly related to the condensation of the enhanced gas
phase H2SO4 as well as the coagulation of smaller parti-
cles in the nucleation and Aitken modes. Sulphate aerosol
concentrations have been reported to be underestimated by
models, especially during winter with much better correla-
tion between measured and simulated sulphates during sum-
mer (Jeuken, 2000; Pringle et al., 2010; Pozzer et a., 2012; de
Meij et al., 2012). This underestimation has been related to a
possible lack of photochemical oxidation pathways of SO2,
which, based on our results, could be due to the underesti-
mated OH during winter owing to the lack of HONO in their
simulations (see Sect. 4.2).

4.1.2 Nitrates

In coastal regions nitrate aerosols are predominantly found
as sodium nitrate and more inland (continental) as ammo-
nium nitrate (if there is an excess of ammonia). Nitrates
are generally overestimated by models compared to reported
measurements, partly owing to experimental artefacts related
to nitrate sampling on quartz filters, especially in spring
and summer. Nevertheless, better correlations with measure-
ments were observed in summer compared to winter, which
were partly explained by the absence of oxidation pathways
(de Meij et al., 2012; Pozzer et al., 2012). In contrast to
sulphates, which are produced mainly by the oxidation of
S(IV) with H2O2 and O3 in clouds, nitrates are produced
mainly from the transfer of gas phase nitric acid and N2O5
to the clouds/particles. The impact of enhanced gas phase
HNO3 levels on aerosol nitrate depends on the availability
of ammonia/ammonium, which is preferentially bound by
H2SO4/sulphate (e.g., Seinfeld and Panids, 2006). In the ab-
sence of gas phase H2SO4, nitrate concentrations are reduced
by about 13 and 5 % over eastern US and China, respectively,
in the base run, which is related to the reduced surface area of
sulphate aerosols allowing less condensation and hydrolysis
(Table 2, S3 compared to S1).
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 Fig. 7.Simulated aerosol nitrate concentration (µg m−3) near the surface for the mean annual (upper panels), boreal winter (January, middle
panels) and summer (July, lower panels) conditions and relative changes (in %, right panels) due to HONO enhancement in the model.

Table 3.Contributions of the different aerosol modes to the simulated aerosol mean sulphate, nitrate and ammonium concentrations and their
relative enhancement as a result of simulating realistic HONO levels.

aerosol mode date
sulphate nitrate ammonium

eastern US1 eastern China2 eastern US1 eastern China2 eastern US1 eastern China2

µg m−3 %* µg m−3 %* µg m−3 %* µg m−3 %* µg m−3 %* µg m−3 %*

total January 2.97 14 5.18 11 2.05 9 2.51 5 1.07 16 2.97 7
aerosol July 3.07 2 3.70 1 0.49 −7 0.45 −8 0.89 3 1.18 1

ns
January 6.13× 10−7 1021 4.74× 10−7 9090 8.79× 10−13 4564 1.56× 10−11 528353 1.90× 10−07 1098 1.59× 10−07 10303
July 7.04× 10−9

−20 4.31× 10−8 7 2.85× 10−18
−85 3.88× 10−15

−100 1.67× 10−09
−24 1.51× 10−08 6

ks
January 1.07× 10−2 65 1.47× 10−2 29 3.94× 10−06 134 1.76× 10−05 36 3.59× 10−03 75 4.79× 10−03 35
July 1.24× 10−2 1 2.03× 10−2 4 2.46× 10−12

−29 3.43× 10−11 18 4.42× 10−03 3 6.41× 10−03 4

as
January 1.17 31 3.27 18 1.08 23 1.58 13 0.75 25 2.13 14
July 2.22 2 2.61 0.9 0.26 −5 0.26 −10 0.79 3 0.99 1

cs
January 1.79 2 1.89 −3 0.97 −7 0.93 −8 0.32 −6 0.84 −10
July 0.83 1 1.07 2 0.23 −9 0.19 −5 0.09 3 0.18 1

* Relative enhancement as a result of simulating realistic HONO levels. Abbreviations “ns, ks, as and cs” refer to nucleation, Aitken, accumulation and coarse soluble aerosol modes, respectively. Data averaged over the eastern (1) US
(95–65◦ W, 30–50◦ N) and (2) China (100–130◦ E, 25–55◦ N).

As shown in Figs. 5–7, nitrate aerosols are enhanced
only in polluted continental regions (ammonia-rich regions),
while only marginally affected or even decreased in all other
areas (ammonia-limited environments). Similar to aerosol
sulphate, the enhancement in nitrate aerosol mass is dom-

inated by the soluble accumulation and coarse modes (Ta-
ble 3). Since most of the aerosol nitrate in the coastal
and marine regions (ammonia-limited) is in the coarse
mode, nitrate concentrations in this mode are suppressed
owing to the enhancement in the sulphate concentrations
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 Fig. 8. Simulated aerosol ammonium concentration (µg m−3) near the surface for the mean annual (upper panels), boreal winter (January,
middle panels) and summer (July, lower panels) conditions and relative changes (in %, right panels) due to HONO enhancement in the model.

while in the accumulation mode (mostly in continental pol-
luted ammonia-rich environments) they are enhanced. Since
HNO3 is most strongly enhanced during winter, nitrate is also
mostly enhanced in this season while during summer only
relatively small effects are simulated.

4.1.3 Ammonium

Ammonium aerosols are largely restricted to the conti-
nental regions, with the highest concentrations in the US,
Europe, China and India (Fig. 8), mostly due to ammo-
nia (NH3) emissions from agriculture. Ammonium aerosols
form preferably as ammonium sulphate but also as ammo-
nium nitrate if there is an excess of cations (Pringle et al.,
2010). Ammonium aerosol can be enhanced as a result of
additional sulphate and nitrate (in high NOx regions) only in
ammonia-rich regions while in ammonia-limited regions no
significant effects are expected. As shown in Fig. 8, the total
load of ammonium aerosols is enhanced only in high NOx,
ammonia-rich environments, i.e., mainly in the US, western
Europe and eastern Asia. Though ammonia reaches its global
maximum levels in India, only small relative ammonium en-

hancement occurs in response to HONO induced oxidation
due to the relatively low NO levels in this region (see Sect. 4
and e.g., Ojha et al., 2012). The enhancement in ammonium
reaches 20 % annually and up to 50 % in winter while in sum-
mer the effects are negligible.

4.1.4 Aerosol number concentrations

As shown in Fig. 9, the mean near-surface aerosol number
concentrations are also significantly enhanced; most appar-
ently in high NOx polluted regions with an annual mean rel-
ative enhancement over the eastern US and eastern Asia by
up to about 70 %. Furthermore, the highest relative changes
in aerosol number concentrations are simulated during win-
ter months, reaching about 100 % over eastern Asia while
during summer almost no enhancements are calculated. The
simulated seasonal cycle of aerosol number concentrations in
the base run as well as the relative enhancements from sim-
ulating realistic HONO over the eastern US and China are
shown in Fig. 10, and the absolute differences during sum-
mer and winter are shown in Fig. 11. The maximum relative
enhancements are simulated in both regions during winter
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Fig. 9. Simulated mean aerosol number concentrations (cm−3) near the surface for the mean annual (upper panels), boreal winter (January,
middle panels) and summer (July, lower panels) conditions and the absolute changes (right panels) due to HONO enhancement in the model.
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 Fig. 10. Simulated aerosol number concentrations and the relative
enhancement related to simulating realistic HONO levels near the
surface over the eastern US (95–65◦ W and 30–50◦ N, upper panels)
and China (100–130◦ E and 25–55◦ N, lower panels).

while during summer the enhancements are again negligible.
The increase of aerosol number concentrations over eastern
China reaches about 104 cm−3 during January, about one or-
der of magnitude higher than that over the eastern US while
during summer enhancements in both regions do not exceed
500 cm−3 (Fig. 11).

The mean simulated aerosol number concentration for the
different aerosol modes over the eastern US and China are
shown in Table 4. Aerosol number concentrations are domi-
nated by the Aitken and accumulation modes, reflecting typ-
ical distributions of the near-surface aerosol number concen-
trations (see e.g., Pringle et al., 2010, and references therein).
The mean relative enhancement in the total aerosol num-
ber concentrations over the eastern US and China is about
10–11 % (see Table 4). Another important effect is the trans-
formation from hydrophobic to hydrophilic aerosols related
mainly to the enhanced condensation of the gas phase con-
stituents (e.g., H2SO4, HNO3) as well as the coagulation
of the soluble new aerosol particles with the hydrophobic
aerosol particles followed by transfer into the hydrophilic
mode. For example, over eastern China the particle num-
ber concentration in the hydrophobic Aitken (ki) mode is
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Fig. 11.Simulated monthly mean change in the aerosol number concentrations (cm−3) near the surface over the eastern US (left) and China
(right) during winter (January, upper panels) and summer (July, lower panels) due to HONO enhancement in the model.

reduced by about 6 % (about 245 cm−3) while that of the
hydrophilic ks and as modes are enhanced by 31 and 14 %,
respectively (total about 334 cm−3).

Similarly, over the eastern US the hydrophobic Aitken
mode particle number is reduced by 13 % (about 161 cm−3)

while the hydrophilic ks and as modes are enhanced by 44
and 27 %, respectively (total about 306 cm−3), see Table 4.
In the absence of gas phase H2SO4, almost no enhancements
in the total aerosol number concentrations are calculated as a
result of realistic HONO levels. The total enhancement in the
aerosol number concentrations can thus be attributed to the
strong enhancement in the nucleation mode, especially over
eastern China, related mainly to the enhancement in the gas
phase sulphuric acid concentration (i.e., nucleation of new
particles is calculated in the model as a function of the tem-
perature, relative humidity and the concentration of gas phase
H2SO4, see Pringle et al., 2010).

The enhancement of the aerosol number and solubility im-
plies potential impacts on the cloud nucleation properties and
particle lifetime. The enhancement of fine mode aerosol (nu-
cleation, Aitken and accumulation mode) particles, as a re-
sult of simulating realistic HONO levels, may directly affect
climate by increasing the light scattering and indirectly via
altering cloud properties.

4.2 Comparison with large scale measurements

A summary of the comparisons between the mean simulated
aerosol sulphates, nitrates and ammonium by the base_S1
and S1 model runs and the measurements by CASTNET,
EMEP and EANET networks during winter (January to

Table 4. Contributions of the different aerosol modes to the sim-
ulated mean aerosol number concentrations and their relative en-
hancement as a result of simulating realistic HONO levels during
January.

aerosol number concentration

aerosol mode run eastern US1 eastern China2

cm−3 %* cm−3 %*

total aerosol
S1 2032 10 5520 11
S3 1956 −0.3 5438 −0.1

ns
S1 8.51 681 10.4 5131
S3 7.59× 10−4 48 1.07× 10−3

−37

ks
S1 552 44 825 31
S3 358 2 550 1

as
S1 235 27 567 14
S3 148 1 369 2

cs
S1 1.40 0.6 2.61 −2
S3 1.33 0.2 2.70 −4

ki
S1 1235 −13 4075 −6
S3 1448 −1 4472 −1

ai
S1 5.97× 10−3

−38 33.9 2
S3 1.15× 10−1

−2 39.1 2

ci
S1 1.08× 10−3

−30 2.74 2
S3 5.73× 10−3

−1 3.10 1
* Relative enhancement as a result of simulating realistic HONO levels (S1 run).
Abbreviations “ns, ks, as and cs” refer to nucleation, Aitken, accumulation and coarse
soluble aerosol modes, respectively, while “ki, ai and ci” refer to the corresponding insoluble
modes. Data are averaged over the eastern (1) US (95–65◦ W, 30–50◦ N) and (2) China
(100–130◦ E, 25–55◦ N).
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Table 5. Summary of the comparison of the base_S1 and S1 model simulations to observations of aerosol concentrations during January-
March 2001. OAM and MAM are the arithmetic mean of the observations and of the model, respectively, in µg m−3, while OSTD and
MSTD are the standard deviation of the observations and model, respectively, in µg m−3. MAM, OAM, MSTD and OSTD represent co-
located measurements and model results (i.e., based on the locations of the observations). PF2 is the percentage of modelled point within a
factor of two of the observations. RMS denotes the Root-Mean-Square error.

species network Nr. of stations OAM OSTD
MAM [µg m−3] MSTD MAM/OAM PF2 [%] RMS

base_S1 S1 base_S1 S1 base_S1 S1 base_S1 S1 base_S1 S1

SO2−

4

CASTNET 53 3.17 2.17 2.57 3.05 0.75 0.93 0.81 0.96 88 85 1.92 1.82
EMEP 80 2.00 1.18 2.95 3.09 1.29 1.41 1.48 1.55 73 71 1.27 1.32
EANET 11 2.82 1.73 2.89 3.13 1.70 1.96 1.03 1.11 80 77 2.12 2.29

NO−

3
CASTNET 53 1.27 1.53 1.81 1.97 1.07 1.26 1.43 1.55 45 45 1.71 1.81
EMEP 27 1.75 2.16 2.24 2.42 1.00 1.19 1.28 1.38 40 39 2.00 1.96
EANET 10 0.81 0.99 1.26 1.14 1.05 0.95 1.55 1.41 63 63 1.68 1.59

NH+

4

CASTNET 53 1.26 0.83 1.23 1.43 0.66 0.76 0.98 1.14 86 80 0.70 0.70
EMEP 21 1.00 0.99 1.43 1.54 0.92 1.01 1.43 1.54 54 51 0.87 0.90
EANET 9 0.96 0.71 0.96 1.02 0.86 0.93 1.01 1.07 66 66 0.89 0.94

March) 2001 are listed in Table 5. As shown in Table 5,
simulating realistic HONO levels (S1 simulations) generally
increases the mean modelled/measured (MAM/OAM) ratio,
most significantly over the US (about 20 %), thus improv-
ing the agreement between modelled and measured sulphate
concentrations in this region (i.e., modelled to observed ra-
tio changes from 0.81 to 0.96). This is due to the enhanced
gas phase oxidation of SO2, being most important over the
eastern US, i.e., compared to eastern China (see Sect. 4.1.1
and Table 2). Simulated nitrate by both the base_S1 and S1
runs are generally overestimated with model/measured ratio
ranges from 1.28 to 1.55. These overestimations of nitrate are
however related to known issues, including measurement bi-
ases, overestimation of sea spray aerosols by GMXe, which
may result in overestimation of aerosol nitrate by the uptake
of HNO3 (Pringle et al., 2010; de Meij et al., 2012). Over
eastern Asia (EANET), the modelled/observed ratio for ni-
trate decreases from 1.55 for the base_S1 to 1.41 for the
S1 run (i.e., as a result of simulating realistic HONO lev-
els). Ammonium aerosols are well simulated by the reference
run over the US and eastern Asia (MAM/OAM are 0.98 and
1.01, respectively) while slightly overestimated over Europe,
in agreement with Pringle et al. (2010). The ratio of simu-
lated / measured ammonium aerosol generally follows that of
sulphate and increases in the S1 run compared to the refer-
ence base_S1, especially over the US. Pozzer et al. (2012) in-
vestigated the EMAC simulation results for the years 2005–
2008 and showed also that the model tends to underestimate
sulphate aerosol compared to CASTNET and also compared
to EMEP and EANET measurements (Pozzer et al., 2012).
Furthermore, Pringle et al. (2010) compared simulated con-
centrations of sulphates, nitrates and ammonium fine mode
aerosol (< 1 µm diameter) concentrations with aerosol mass
spectrometer data and found that the model tends to under-
estimate the three measured species with sulphates being
most poorly captured. Since the HONO enhancements are

most significant for the accumulation mode (see Table 3), it
can be expected that with realistic HONO simulations, these
simulated concentrations are in better agreement with the
mass spectrometer measurements. They showed also that the
EMAC model tends to overestimate nitrate in coastal regions,
which (see Sect. 4.1.2) is more realistically simulated by im-
proving the HONO simulation. Therefore, by accounting for
realistic HONO levels the simulated aerosol concentrations
are improved compared to measurements.

5 Conclusions

In this study the impact of our realistic HONO representa-
tion on the simulated aerosol composition has been investi-
gated. By applying our parameterization, simulated HONO
mixing ratios typically increase by an order of magnitude, in
agreement with our previous study, which showed that this
parameterization leads to much better agreement with mea-
surements compared to the model run that only considers the
reaction of NO+ OH as a source of HONO. Owing to the en-
hanced gas phase HONO photolysis, HOx (OH+ HO2) lev-
els are enhanced, thus promoting the formation of organic
(e.g., PAN, OVOC) and inorganic (H2O2, O3, HNO3 and
H2SO4) oxidation products in polluted regions, especially in
winter when other photolytic HOx sources are of relatively
minor importance.

Simulating realistic HONO levels is found to significantly
enhance the near surface aerosol sulphate concentrations,
mainly due to enhanced gas phase oxidation of SO2 with OH.
Nitrate and ammonium are also significantly enhanced in
ammonia-rich regions, while in ammonia-limited regions the
effect is small. Furthermore, aerosol number concentrations
are also significantly higher, accompanied by transfer from
the hydrophobic to hydrophilic modes, which is mainly re-
lated to the condensation of H2SO4 on the hydrophobic par-
ticles. The enhancement of the aerosol number and solubility
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implies potential impacts on the cloud nucleating properties
and the particle lifetime.

The relative enhancements of all species reach a maxi-
mum during the winter season while generally being neg-
ligible during summer. The simulation results are compared
to data from the monitoring networks CASTNET, EMEP and
EANET. The model results are in reasonable agreement with
measurements and in line with previous evaluations. Simulat-
ing realistic HONO levels was found to enhance the species
SO2−

4 , NO−

3 and NH+

4 , with sulphates being most strongly
enhanced, especially over the US, improving the agreement
with measurements in this region. The results of the study
underscore the importance of HONO for the atmospheric ox-
idizing capacity and the central role of cloud-aerosol interac-
tions in aerosol formation and growth.

Supplementary material related to this article is
available online athttp://www.atmos-chem-phys.net/14/
1167/2014/acp-14-1167-2014-supplement.pdf.
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