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Abstract. Secondary organic aerosol (SOA) particles,
formed from gas-phase biogenic volatile organic compounds
(BVOCs), contribute large uncertainties to the radiative forc-
ing that is associated with aerosols in the climate system.
Reactive uptake of surface-active organic oxidation products
of BVOCs at the gas–aerosol interface can potentially de-
crease the overall aerosol surface tension and therefore in-
fluence their propensity to act as cloud condensation nu-
clei (CCN). Here, we synthesize and measure some climate-
relevant physical properties of SOA particle constituents con-
sisting of the isoprene oxidation productsα-, δ-, and cis-
and trans-β-IEPOX (isoprene epoxide), as well assyn- and
anti-2-methyltetraol. Following viscosity measurements, we
use octanol–water partition coefficients to quantify the rela-
tive hydrophobicity of the oxidation products while dynamic
surface tension measurements indicate that aqueous solu-
tions of α- and trans-β-IEPOX exhibit significant surface
tension depression. We hypothesize that the surface activ-
ity of these compounds may enhance aerosol CCN activity,
and thattrans-β-IEPOX may be highly relevant for surface
chemistry of aerosol particles relative to other IEPOX iso-
mers.

1 Introduction

Secondary organic aerosol (SOA) particles make up a sub-
stantial fraction of tropospheric aerosol and are known to
lead to negative radiative forcing (Kanakidou et al., 2005;
Carlton et al., 2009; Williams et al., 2011), yet their forma-
tion ranks among the least understood processes in the at-

mosphere (Kanakidou et al., 2005; Goldstein and Galbally,
2007; Galbally et al., 2007; Riipinen et al., 2011; Hallquist
et al., 2009). Many studies (Kroll and Seinfeld, 2008; Lin
et al., 2012; Worton et al., 2013; Kourtchev et al., 2014;
Ehn et al., 2014; Carlton et al., 2009; Claeys et al., 2004b;
Hallquist et al., 2009) support the idea that the gas-phase
oxidation products of biogenic volatile compounds can ei-
ther (a) partition to existing particles due to reduced volatil-
ity compared to the parent compounds or (b) dissolve in
aerosol or cloud water and participate in aqueous phase re-
actions to form low-volatility material. Surface tension is
expected to be of particular importance for SOA formation
and growth as it involves processes occurring at the interface
between the SOA particle phase and the gas phase (Wang
and Wexler, 2013; Djikaev and Tabazadeh, 2003). Moreover,
atmospheric particles, once formed, can contain thousands
of organic compounds or surfactants that can decrease the
surface tension and thereby change aerosol particle proper-
ties such as cloud droplet formation, reactivity, and ice nu-
cleation (Schwier et al., 2013; McNeill et al., 2014; Au-
mann and Tabazadeh, 2008; Tabazadeh, 2005; Taraniuk et
al., 2007, 2008). Specifically, it has been reported that or-
ganic surfactants can influence the propensity of atmospheric
aerosol particles to act as cloud condensation nuclei (CCN)
by depressing the surface tension at the moment of activa-
tion (Facchini et al., 1999, 2000; Kiss et al., 2005; Shulman
et al., 1996; Asa-Awuku et al., 2008; Novakov and Penner,
1993; Sareen et al., 2013; Salma et al., 2006; Hitzenberger et
al., 2002). Lower surface tension values result in decreases
in the water vapor supersaturation required for cloud droplet
activation, depending on ionic content, pH, temperature, and
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meteorological conditions. McNeill and coworkers recently
showed that volatile surfactant species such as methylgly-
oxal and acetaldehyde can suppress surface tension at the
gas–aerosol interface beyond predictions based on bulk sur-
face tension measurements, leading to significantly enhanced
CCN activity (Sareen et al., 2013). Chemical reactions at the
surface and in the bulk of the particle between aerosol com-
ponents may also influence overall surface tension and thus
impact the dependence of CCN activity on the presence of
surfactants. Yet, surface tension effects of many compounds
relevant for SOA particle formation remain largely unchar-
acterized (McNeill et al., 2014; Woo et al., 2013).

Given their importance for global SOA particle formation
(Carlton et al., 2009; Paulot et al., 2009; Claeys et al., 2004a),
we report here surface tension values, measured using pen-
dant drop tensiometry, of suspended drops of deionized wa-
ter and 1.0 M ammonium sulfate solutions containing 0.1
to 30 mM concentrations of synthetically prepared isoprene-
derived SOA particle constituents. Specifically, we studied
the isoprene oxidation productsα-, δ-, andcis- andtrans-β-
isoprene epoxide (IEPOX) (Fig. 1, 1–4), andsyn- andanti-
2-methyltetraol (5, 6). We are motivated by a recent study
by Wennberg and coworkers reporting thatcis-β-IEPOX (2)
and trans-β-IEPOX (1) are produced in much higher yield
thanα-IE0POX (4) during isoprene oxidation by hydroxyl
radicals with a ratio ofα-IEPOX (4) tocis-β-IEPOX (2) to
trans-β-IEPOX (1) of 1: 20.5 : 27.9 (Bates et al., 2014). The
δ-IEPOX (3) isomer was not detected in this study. We report
octanol–water partitioning coefficients (Kow) and viscosities
of the compounds under investigation. These studies reveal
that α-IEPOX (4) significantly decreases surface tension in
water (19 % at 30 mM) and in 1.0 M (NH4)2SO4 (30 % at
30 mM). Thetrans-β-IEPOX (1) isomer also decreases sur-
face tension substantially with an overall decrease of 15 % in
water and in 1.0 M (NH4)2SO4 at a concentration of 30 mM.
Surface tension results indicate that these compounds may
enhance aerosol CCN activity, although further studies will
be necessary to verify this experimentally.

2 Experimental

2.1 Synthesis of isoprene-derived SOA particle
precursors

Synthesis of all compounds studied here are described in
previous work (Ebben et al., 2014). The alkene diol (7)
was prepared in order to examine the impact of the epox-
ide functional group onKow values. Purity of synthesized
compounds was determined based on NMR spectra. Surface
tension measurements performed in this work are most likely
insensitive to impurities below the detection limit of NMR
spectroscopy due to the higher concentrations of IEPOX and
tetraols used in this study (above micromolar amounts).
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Figure 1. Octanol-water partition coefficients and viscosity values for epoxides 1–4 and 346 

tetraols 5 and 6.  347 
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Figure 1. Octanol–water partition coefficients and viscosity values
for epoxides 1–4 and tetraols 5 and 6.

2.2 Partition experiments

The octanol water partition coefficient,Kow, was gas-
chromatographically determined after thorough mixing of
the two phases to reach the equilibrium using the shake flask
method (mass balance approach). For the IEPOX (1–4) and
alkene diol (7) compounds, stock solutions (∼ 45 mM) were
prepared in high purity analytical grade 1-octanol (Sigma
Aldrich), presaturated with water. Equal volumes of stock
solutions and deionized water were mixed in three separate
15 mL propylene conical tubes. Due to the limited solubil-
ity of the 2-methyltetraol compounds in octanol, stock so-
lutions (∼ 45 mM) of the tetraol compounds were prepared
in deionized water. Equal volumes of stock solution and 1-
octanol presaturated with water were mixed in three sepa-
rate 15 mL polypropylene conical tubes. In all cases, phases
of the solvent systems were mutually saturated by shaking
for ∼ 24 h on a mechanical shaker at room temperature. The
three mixtures for each compound were subsequently cen-
trifuged for 5 min at 3000 rpm to ensure complete phase sep-
aration. Three aliquots of the octanol phase were taken to de-
termine the concentration of the IEPOX compounds (1–4),
the tetraols (5, 6), and the alkene diol (7) compound.

The concentration of the compounds from the octanol
phase for the epoxides and tetraols were determined using
an Agilent 5973 gas chromatograph mass spectrometer with
a FFAP column (length 30 m, inner diameter 0.25 mm, film
thickness 0.25 µm) and a quadrupole analyzer and EI ioniza-
tion. The injector and detector temperatures were 260◦C and
250◦C, respectively. For the alkene diol and IEPOX com-
pounds, the oven had an initial temperature of 40◦C and a
final temperature of 200◦C with a ramp rate of 15◦C min−1.
For the tetraol compounds, the oven had an initial tempera-
ture of 150◦C and a final temperature of 220◦C with a ramp
rate of 30◦C min−1. The gas flow rate was 1.0 mL min−1.

For IEPOX and alkene diol compounds, the quantity of
the compound present at equilibrium in the aqueous phase
was calculated from the difference between the quantity of
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the compound originally introduced and the quantity in the
octanol phase determined using the mass balance technique.

2.3 Viscosity studies

All viscosities were measured using solutions of
0.325 g mL−1 of the compound of interest and
0.1625 g mL−1 (NH4)2SO4. Viscosity measurements
are relative to a control solution (0.1625 g mL−1 (NH4)2SO4
in deionized H2O) and were determined using a technique
similar to a Cannon-Fenske viscometer, by measuring the
time taken for the solutions to pass through a 1 mL plastic
syringe as reported by Drozd and McNeill (2014).

2.4 Dynamic surface tension measurements

Pendant drop tensiometry (PDT) was used to measure sur-
face tension over time for all solutions in this study on
a FTA125 goniometer. Solutions were prepared indH2O
or with 1.0 M (NH4)2SO4. The pH of solutions contain-
ing (NH4)2SO4 ranged from approximately 5.0 to 6.0 while
pH ranged from approximately 6.0 to 7.0 indH2O. All
solutions fell within the bounds of atmospherically rele-
vant pH for aerosols in the troposphere (pH 0–8) (Zhang
et al., 2007; Keene, 2004). Solutions containing 100 mM
IEPOX compounds in 1 M (NH4)2SO4 were allowed to stir at
room temperature for one week and monitored by NMR. No
conversion into the organosulfate or tetraols was observed
during this time. All solutions for surface tension experi-
ments were measured within a week of their formation and
were stored in glass vials at∼ 4◦C in between measure-
ments in order to further reduce the probability of conver-
sion of IEPOX compounds into the organosulfate or tetraol
products. Concentrations of compounds in solutions ranged
from 0–30 mM although in some cases higher concentra-
tions (50 mM, 100 mM) were also analyzed. All surface ten-
sion experiments were performed at ambient temperature and
pressure. Relative humidity ranged from 15 to 45 %, and the
laboratory temperature ranged from 20 to 23◦C.

Droplets of sample solutions were formed at the tip of
a flat stainless steel needle 1 mL syringe mounted on the
instrument and inserted∼ 1 cm into a quartz cuvette con-
taining 0.5 mL ofdH2O. All droplets were approximately
7 µL in volume and varied between 2.1 and 2.4 mm in di-
ameter. After formation, the droplet was allowed to stabilize
and images were captured∼ 5 s after droplet formation. Im-
ages were taken every 0.3 s for 10 min, resulting in 1500 im-
ages for each experiment and measurements were repeated
5–7 times for each solution. Recent dynamic surface tension
studies using the extracted total surfactant component of the
PM10 size fraction of aerosol particles collected in an urban
setting reported similar equilibration times (Noziere et al.,
2014). Surface tension for each image was determined by fit-
ting the shape of the drop to the Young–Laplace equation,
which relates interfacial tension to drop shape as described

by Adamson and Gast (1997):

1ρgh = γ

(
1

R1
+

1

R2

)
, (1)

where1ρ is the difference in densities of the drop and the
surrounding media,g is acceleration due to gravity,h is the
height generally measured from the apex of the drop,γ is the
surface tension, andR1 andR2 are the radii of curvature. To
calculate the surface tension of the drop, images were cap-
tured using a RS170 CCD camera equipped with a micro-
scope lens. FTA32 v2.0 software fit each drop profile and de-
termined distances analytically. A regression then obtains the
best overall fit to the Young–Laplace equation with the fitting
parameter being interfacial tension with units of mN m−1.

3 Results and discussion

3.1 Partitioning and viscosity studies

The octanol water partition coefficient,Kow, is defined as the
ratio between the concentrations of a compound of interest
in octanol to the one in water once equilibrium is established
(Leo et al., 1971). Experimental values ofKow serve as a
measure of hydrophobicity while also allowing for the pre-
diction of other physical values relevant to cloud formation
that can be more difficult to experimentally measure (Finizio
et al., 1997; Klopffer et al., 1982; Meylan and Howard,
2005). Since particles can undergo liquid–liquid phase sep-
aration and often contain an aqueous and an organic-rich
phase (Yuan et al., 2012),Kow values indicate the phase
these compounds will preferentially partition to. Our gas-
chromatographically determinedKow values are listed in
Fig. 1.

In general,Kow values followed the expected trends in
hydrophobicity for each of the compounds. Thetrans- and
cis-β-IEPOX compounds 1 and 2 were found to have the
most negativeKow values, which is consistent with the pres-
ence of two primary hydroxyl groups. These compounds also
displayed the longest GC retention times (∼ 16.5 min) with
nearly identical fragmentation patterns (Fig. S1 in the Sup-
plement).δ-IEPOX (3), with its secondary and primary hy-
droxyl groups, had a slightly higher partition coefficient.α-
IEPOX (4) proved to be the most hydrophobic epoxide with
the least negativeKow value of all the epoxides. These re-
sults are consistent withα-IEPOX (4) having the least acces-
sible hydroxyl groups of the epoxides due to the placement
of the methyl group and possibly indicate thatα-IEPOX (4)
would be the isomer most likely to partition into the organic-
rich phase of particles. Replacement of the epoxide group in
α-IEPOX (4) with a simple alkene (7) shifted the log(Kow)

upward by about 0.4 units. This demonstrates that removal
of the polar epoxide group significantly increases hydropho-
bicity.
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Figure 2. Dynamic surface tension measurements for IEPOX compounds in dH2O. A) 350 
trans-β-IEPOX (1) B) cis-β-IEPOX (2) C) δ-IEPOX (3) D) α-IEPOX (4).  351 
 352 Figure 2. Dynamic surface tension measurements for IEPOX com-

pounds indH2O. (a) trans-β-IEPOX (1) (b) cis-β-IEPOX (2) (c)
δ-IEPOX (3) and(d) α-IEPOX (4).

The exactKow values of the two tetraol diastereomers (5
and 6) could not be determined, possibly due to their very
limited solubility in octanol. GC traces of the octanol frac-
tion in tetraol partitioning experiments showed that concen-
trations of the tetraols in the octanol fractions were below
the detection limit. This indicates that the log(Kow) values
for tetraol compounds 5 and 6 would be much more negative
than the values found for the IEPOX compounds.

Relative viscosities are listed in Fig. 1. The substances
tested are all viscous liquids from room temperature down
to −40◦C. The epoxides (1–3) have a viscosity similar to
glycerol (1.98± 0.03), whereas the 2-methyltetraols (5, 6)
are slightly more viscous and almost gelatinous.

3.2 Dynamic surface tension measurements

Based on the relevance of surface tension measurements in
the prediction of new particle formation and aerosol CCN
properties, the effect of concentration on surface tension over
time was measured for the four epoxide isomers (1–4) and
the two tetraol diastereomers (5, 6) indH2O and in 1.0 M
(NH4)2SO4. As shown in Fig. 2, results indH2O showed
that theα-IEPOX (4) is by far the most surface active of
the epoxide compounds. At the highest concentration mea-
sured (30 mM), interfacial tension forα-IEPOX (4) was low-
ered by 5 % att = 0 s and decreased an additional 14 % over
the course of 10 min relative todH2O. While some of this
decrease may be due to evaporation, the majority of the ef-
fect is most likely due to the migration ofα-IEPOX (4) to
the surface of the droplet. Based on partitioning coefficients,
α-IEPOX (4) is the most hydrophobic of the epoxides and
therefore would be more likely to partition from the bulk of
the aqueous droplet to the surface.
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Figure 3. Dynamic surface tension measurements for IEPOX compounds in 1 M 354 
(NH4)2SO4. A) trans-β-IEPOX (1) B) cis-β-IEPOX (2) C) δ-IEPOX (3) D) α-IEPOX (4). 355 
 356 Figure 3. Dynamic surface tension measurements for IEPOX com-

pounds in 1 M (NH4)2SO4. (a) trans-β-IEPOX (1)(b) cis-β-IEPOX
(2) (c) δ-IEPOX (3) and(d) α-IEPOX (4).

As shown in Fig. 3, the surface tension lowering effect
of α-IEPOX (4) was greatly enhanced by the presence of
1.0 M (NH4)2SO4. The presence of 1.0 M (NH4)2SO4 in
water raises the surface tension of the droplets by approxi-
mately 3 %. Addition of 30 mMα-IEPOX (4) to the 1.0 M
(NH4)2SO4 solution prompted a 20 % drop in surface ten-
sion at t = 0 s and decreased an additional 10 % over the
course of 10 min (resulting in an overall 30 % decrease com-
pared to interfacial tension ofdH2O). The presence of inor-
ganic salt most likely decreased the solubility ofα-IEPOX
(4) in water, increasing the concentration ofα-IEPOX (4) at
the surface of the droplet due to “salting out”. These types
of nonreactive salt–organic interactions may have a signif-
icant influence of surface tension of atmospheric aerosols
(Li et al., 1998; Matijevic and Pethica, 1958; Schwier et al.,
2012; Sareen et al., 2010; Li et al., 2011).Trans-β-IEPOX
(1) also demonstrated significant surface activity. However,
addition of 1.0 M (NH4)2SO4 did not appear to greatly en-
hance these surface tension lowering effects. Both with and
without inorganic salt, a solution of 30 mMtrans-β-IEPOX
(1) resulted in an overall decrease of 15 % in surface tension
relative todH2O after 10 min.δ-IEPOX (3) andcis-β-IEPOX
(2) both showed minimal surface tension-lowering effects. A
more concentrated solution of 100 mMδ-IEPOX (3) was re-
quired in order to achieve the 15 % surface tension depres-
sion seen for the 30 mMtrans-β-IEPOX (1) solution. Addi-
tion of 1.0 M (NH4)2SO4 also did not appear to greatly en-
hance the surface tension lowering effects of eitherδ-IEPOX
(3) orcis-β-IEPOX (2).

Regarding the tetraols, Fig. 4 shows a sharp drop in surface
activity between 20 mM and 10 mManti-2-methyltetraol
(6) solutions indH2O. Specifically,anti-2-methyltetraol (6)
showed surface activity comparable totrans-β-IEPOX (1) at
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Figure 4. Dynamic surface tension measurements for 2-
methyltetraol compounds indH2O (a, b) and 1 M (NH4)2SO4 (c,
d). (a, c)syn-2-methyltetraol (5) and(b, d) anti-2-methyltetraol (6).

30 mM in dH2O. The syn-2-methyltetraol (5) showed less
surface activity compared to theanti-2-methyltetraol (6) but
did exhibit a similar increase in surface activity between the
20 mM and 10 mM solutions indH2O. This phenomenon
was also observed for theanti-2-methyltetraol (6) in 1.0 M
(NH4)2SO4 solutions but was less pronounced for thesyn-
2-methyltetraol (5) under the same conditions. This result
could be an indication of the increased solubility of the 2-
methyltetraol diastereomers in water and therefore a smaller
concentration of the 2-methyltetraols at the surface of the
droplet. We conclude that the 2-methyltetraol diastereomers
may be completely soluble with little effect on droplet sur-
face tension until a critical concentration above 10 mM is
reached.

Droplets of pure water and 1.0 M (NH4)2SO4 were also
exposed to the vapor pressure over neat IEPOX compounds,
however, no change in the surface tension of the droplets
was observed on a timescale of 20 min. We caution here that
the partial pressure of IEPOX used in these experiments was
much higher than its typical pressure in the atmosphere, and
that gas and particle phase diffusion limitations for this ex-
periment would also differ for submicron-sized aerosol parti-
cles: a recent chamber study of methylglyoxal demonstrated
enhanced CCN activity for ammonium sulfate aerosols ex-
posed to methylglyoxal and/or acetaldehyde over 3–5 h, but
not when exposure occurred in an aerosol flow tube on a
timescale of seconds or minutes (Sareen et al., 2013).

Taken together, our surface tension and partitioning stud-
ies reveal thatα-IEPOX (4) is both the most hydrophobic
and most surface active of all the compounds studied. How-
ever, there does not appear to be a consistent correlation be-
tween hydrophobicity/viscosity and surface activity of the
compounds studied here. For example,cis-β-IEPOX (2) and

trans-β-IEPOX (1) were found to possess nearly identical
Kow values and therefore similar levels of hydrophobicity
but trans-β-IEPOX (1) demonstrated greater surface activ-
ity relative tocis-β-IEPOX (2). The difference in surface ac-
tivity of trans-β-IEPOX (1) andcis-β-IEPOX (2) may be
a reflection of the different relative orientations of the two
hydroxyl and the single epoxide groups incis- andtrans-β-
IEPOX (1, 2) as well as the difference in their propensity to
form hydrogen bonds with water molecules inside the water
droplet. The greater surface tension depression oftrans-β-
IEPOX (1) may indicate that this compound forms fewer hy-
drogen bonds thancis-β-IEPOX (2), which could be verified
through computational chemistry, such as molecular dynam-
ics simulations.

4 Implications for atmospheric chemistry

Experimental and field studies have shown that surface ten-
sion depression by organic compounds is a critical compo-
nent of predicting aerosol particle behavior (Cruz and Pan-
dis, 1997, 1998; Ekstrom et al., 2009; Corrigan and No-
vakov, 1999; Henning et al., 2005; Prenni et al., 2001; Ray-
mond, 2003, 2002; Liu et al., 1996; Facchini et al., 2000;
Broekhuizen et al., 2004; Kumar et al., 2003; Djikaev and
Tabazadeh, 2003; Tabazadeh, 2005; Taraniuk et al., 2007,
2008). These studies have demonstrated that the amount of
solute present in an aerosol particle (known as the dry diam-
eter) as well as the surface tension of the droplet can alter
its propensity to act as a cloud condensation nucleus. Köhler
theory describes cloud droplet activation and growth from
soluble particles (Kohler, 1936; Seinfeld and Pandis, 1998).
The Köhler curve is given by

s =
A

Dp
−

B

D3
p

(2)

with

A =
4Mwσ

RTρw
andB =

6nsMw

πρw
, (3)

wheres is the supersaturation,Dp is the diameter of the aque-
ous droplet,Mw is the molecular weight of water andρw its
density,R is the gas constant,T is temperature,σ is sur-
face tension, andns is the number of moles of solute. A de-
crease in surface tension due to the presence of surfactants
would therefore decrease parameterA and result in increased
CCN activation. If the bulk solute content of the particle re-
mains constant, the effect of organic surfactants on equilib-
rium CCN activity can be assumed to be purely surface ten-
sion based. This assumption is valid based on the fact that
gas-phase isoprene oxidation products will be continuously
taken up at the gas–aerosol interface as they are consumed
in heterogeneous reactions within the bulk and at the surface
of the aerosol (Sareen et al., 2010). Using this assumption,
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Table 1.Equilibrium surface tension (att = ∞) for IEPOX (1–4) and 2-methyltetraols (5, 6).

Concentration (mM)

0 71.8 (73.87) 72.73 (74.38) 72.84 (74.85) 72.4 (74.59) 72.48 (75.01) 72.47 (74.67)
0.1 71.4 (74.63) 72.59 (74.28) 72.3 (74.63) 71.96 (74.0) 72.06 (74.54) 72.36 (74.69)
1 71.68 (73.81) 72.31 (74.25) 72.46 (74.4) 70.7 (73.01) 71.8 (74.2) 71.30 (74.72)
5 71.20 (73.56) 72.32 (74.17) 71.96 (74.80) 70.69 (66.09) 71.68 (73.47) 71.70 (74.27)
7.5 68.72 (73.49) 71.67 (74.14) 71.85 (74.32) 67.64 (62.70) 71.48 (73.18) 71.27 (74.37)
10 67.87 (71.11) 71.7 (74.00) 71.09 (74.39) 65.95 (61.45) 71.1 (73.09) 71.34 (73.74)
20 64.57 (71.39) 69.01 (72.93) 69.31 (73.46) 62.99 (55.14) 67.78 (71.72) 61.45 (70.36)
30 61.62 (65.89) 65.5 (69.21) 67.4 (72.09) 59.46 (51.89) 65.35 (70.64) 60.96 (69.97)

Surface tension values att = ∞ for solutions of IEPOX (1–4) and 2-methyltetraols (5, 6) indH2O based on exponential fits. All values have units of mN m−1.
Values in parentheses denote surface tension values in 1 M (NH4)2SO4.
Error in exponential fit varied from 0.01 to 0.2 for IEPOX 1–3 andsyn-2-methyltetraol 5, from 0.01 to 0.1 for IEPOX 4, and from 0.01 to 0.06 foranti-2-methyltetraol 6.

Table 2.Supersaturation ratios for IEPOX (1–4) and 2-methyltetraols (5, 6).

Concentration (mM)

0 1.0 (1.02) 1.00 (1.0) 1.00 (1.04) 1.0 (1.04) 0.99 (1.05) 0.99 (1.04)
0.1 1.0 (1.04) 1.00 (1.03) 1.0 (1.04) 0.98 (1.0) 0.99 (1.0) 0.99 (1.04)
1 0.98 (1.02) 0.99 (1.03) 0.99 (1.0) 0.9 (1.00) 1.0 (1.0) 0.97 (1.04)
5 0.97 (1.02) 0.99 (1.03) 0.98 (1.04) 0.96 (0.86) 0.98 (1.01) 0.98 (1.03)
7.5 0.92 (1.01) 0.98 (1.03) 0.98 (1.03) 0.90 (0.80) 0.97 (1.00) 0.97 (1.03)
10 0.90 (0.96) 1.0 (1.02) 0.96 (1.03) 0.86 (0.78) 1.0 (1.00) 0.97 (1.02)
20 0.84 (0.97) 0.9 (1.00) 0.93 (1.01) 0.80 (0.66) 0.90 (0.98) 0.78 (0.95)
30 0.78 (0.86) 0.9 (0.93) 0.9 (1.0) 0.74 (0.60) 0.85 (0.96) 0.77 (0.94)

Supersaturation ratios (s∗c /sc) for solutions of IEPOX (1–4) and 2-methyltetraols (5, 6) indH2O.
Values in parentheses denote supersaturation ratios (s∗c /sc) in 1 M (NH4)2SO4. Errors in ratios varied from 0.01 to 0.2 for IEPOX 1–3 andsyn-2-methyltetraol 5, from 0.01
to 0.1 for IEPOX 4, and from 0.01 to 0.09 foranti-2-methyltetraol 6.

the critical supersaturation for particles of a given size can
be described as follows:

s∗
c =

(
σ

σw

)3/2

sc. (4)

Here,s∗
c is the critical supersaturation,σw andσ are the sur-

face tension of water and the particle, respectively, andsc is
the critical supersaturation of particle with the surface ten-
sion of water (72.8 mN m−1) (Engelhart et al., 2008). For
all IEPOX and 2-methyltetraol compounds, dynamic surface
tension measurements were fit to exponential curves in order
to determine the equilibrium surface tension att = ∞ (Ta-
ble 1). The equilibrium surface tension was used in Eq. (4) to
calculate the critical supersaturation ratio (s∗

c/sc), which are
listed in Table 2.

While there is some uncertainty regarding the in-particle
concentrations of IEPOX and its reaction products, we can
make reasonable estimates of these values based on field

and modeling studies. Seinfeld and coworkers (Chan et al.,
2010) reported up to 24 ng m−3 of IEPOX in Yorkville, GA,
during the August 2008 Mini-Intensive Gas and Aerosol
Study (AMIGAS). During that period, they also mea-
sured 33.4 mg m−3 of PM2.5. Therefore, the observed
IEPOX loading corresponds to an in-particle concentration
of ∼ 7 mM, assuming 1.2 g cm−3 for the particle density.
The McNeill group’s coupled gas–aqueous aerosol chem-
istry model, Gas Aerosol Model for Mechanism Analysis
(GAMMA) (McNeill et al., 2012), has been updated to in-
clude the latest aqueous phase IEPOX chemistry and physi-
cal parameters (Nguyen et al., 2014), GAMMA 1.4 simula-
tions predict in-particle concentrations of unreacted IEPOX
between 2 and 23 mM in a rural scenario (see Supplement).
Therefore, we take here 7.5 mM as an example of an at-
mospherically relevant IEPOX in-particle concentration and
find thatα-IEPOX (4) exhibited the largest decrease ins∗

c/sc
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(9 %), with an even larger decrease observed (23 %) in 1.0 M
(NH4)2SO4. Trans-β-IEPOX (1) was also observed to lower
surface tension and therefore is also expected to lead to de-
creased supersaturation ratios and enhanced CCN activity.
The potential oftrans-β-IEPOX to enhance CCN activity is
particularly significant based on recent studies demonstrating
thattrans-β-IEPOX is the most abundantly produced isomer
relative to other IEPOX isomers during isoprene oxidation
(Bates et al., 2014). At 10 mM,s∗

c/sc for trans-β-IEPOX (1)
is predicted to decrease by 8 % indH2O and in (NH4)2SO4.
Surface tension depression, and therefore the predicted im-
pact on CCN activity, was less significant forcis-β-IEPOX
(2), δ-IEPOX (3) and the 2-methyltetraols (5, 6). On a per-
mole basis, surface tension depression bytrans-β-IEPOX is
similar to that observed for methylglyoxal in bulk solutions
(Sareen et al., 2010). The Henry’s Law constant for IEPOX
is several orders of magnitude higher than that of methyl-
glyoxal (Nguyen et al., 2014), leading to a greater potential
for suppression of aerosol surface tension by these species
via bulk effects. That being said, as demonstrated by Mc-
Neill and coworkers (Sareen et al., 2013), bulk absorption of
surface-active gases is apparently not a requirement for sur-
face tension depression and enhanced CCN activity. In fact,
while reactive uptake may be important in other systems,
and is certainly important for SOA particles, it is not rele-
vant for our aqueous model experiments, as complementary
NMR studies discussed in Sect. 2.4 show no hydrolysis of
the epoxides in ammonium sulfate solution over the course
of one week. Our results thus set the stage for future investi-
gations of the effects oftrans-β-IEPOX on the CCN activity
of aqueous aerosols.

5 Conclusions

In conclusion, we report dynamic surface tension measure-
ments, using pendant drop tensiometry, of synthetically pre-
pared isoprene-derived SOA particle constituents. Specifi-
cally, we studied the isoprene oxidation productsα-, δ- and
cis- and trans-β-isoprene epoxide (IEPOX) (1–4) andsyn-
andanti-2-methyltetraol (5, 6) compounds. In addition, we
experimentally determined octanol–water partitioning coef-
ficients (Kow) and viscosities of these compounds. Results
these experiments revealed thatα-IEPOX (4) is the most
hydrophobic and surface active of the compounds studied
here; however, the hydrophobicity of these compounds did
not coincide with surface activity for all compounds. Calcu-
lation of supersaturation ratios from surface tension values
demonstrated thattrans-β-IEPOX (1) lowers supersaturation
ratios significantly while the largest decrease in supersatu-
ration ratios was calculated forα-IEPOX (4). Other com-
pounds measured,cis-β-IEPOX (2), δ-IEPOX (3), and the
2-methyltetraols (5, 6), demonstrated less significant surface
activity and therefore minimal decreases in supersaturation
ratios at higher concentrations.

The enhanced surface activity oftrans-β-IEPOX (1) and
its potential to significantly decrease supersaturation ratios
is particularly important based on its correlation with re-
cent sum frequency generation (SFG) spectroscopy studies
towards the identification of molecular constituents on the
surfaces of isoprene-derived SOA particles (Ebben et al.,
2014). This surface specific study identifiedtrans-β-IEPOX
(1) as the closest match to the SFG spectra of isoprene-
derived SOA surfaces, which coupled with surface tension
experiments presented here, strongly indicates thattrans-β-
IEPOX (1) may be present in higher concentrations at the
surface of aerosol particles relative to other IEPOX isomers.
This conclusion is also supported by the study by Wennberg
and coworkers wheretrans-β-IEPOX (1) was found to be
produced in higher yields relative to other IEPOX isomers
during isoprene oxidation by hydroxyl radicals (Bates et al.,
2014). Reactive uptake of IEPOX compounds into aerosol
particles by acid-catalyzed epoxide ring opening can also
lead to formation of organosulfate and organonitrate deriva-
tives (Surratt et al., 2007, 2010; Darer et al., 2011) so future
studies will involve synthesizing these derivatives and ana-
lyzing their surface activity and other atmospherically rele-
vant properties.

The Supplement related to this article is available online
at doi:10.5194/acp-14-10731-2014-supplement.
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