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Abstract. Models without an explicit time dependence,
called singular models, are widely used for fitting the dis-
tribution of temperatures at which water droplets freeze. In
1950 Levine developed the original singular model. His key
assumption was that each droplet contained many nucleation
sites, and that freezing occurred due to the nucleation site
with the highest freezing temperature. The fact that freezing
occurs due to the maximum value out of a large number of
nucleation temperatures, means that we can apply the results
of what is called extreme-value statistics. This is the statis-
tics of the extreme, i.e. maximum or minimum, value of a
large number of random variables. Here we use the results
of extreme-value statistics to show that we can generalise
Levine’s model to produce the most general singular model
possible. We show that when a singular model is a good ap-
proximation, the distribution of freezing temperatures should
always be given by what is called the generalised extreme-
value distribution. In addition, we also show that the distri-
bution of freezing temperatures for droplets of one size, can
be used to make predictions for the scaling of the median nu-
cleation temperature with droplet size, and vice versa.

1 Introduction

The freezing of water droplets in the Earth’s atmosphere is
an important and longstanding problem (Mason, 1971; Prup-
pacher and Klett, 1978; Cantrell and Heymsfield, 2005; De-
Mott et al., 2011; Sear, 2012). We want to understand how
the water droplets freeze, and be able to predict quantita-
tively the conditions where the droplets do and do not freeze.
To do this we of course need good experimental data, but
we also need models with few enough parameters that their

values can be reliably obtained by fitting to experimental
data. These models should make as few assumptions as pos-
sible, and we should be as clear as possible as to what these
assumptions are. An innovative early attempt at developing
such a model was that of Levine in 1950 (Levine, 1950).

Levine assumed that water droplets freeze due to highly
variable impurities in the droplets. He then introduced a sim-
ple statistical model of these impurities, and hence of the
freezing behaviour (Levine, 1950). Levine’s model has no
direct time dependence. Instead of an explicit rate, nucle-
ation is assumed to occur at a particular nucleation site as
soon as it is cooled to a temperature characteristic of that
site. Levine’s work has inspired a literature on what are often
called (Pruppacher and Klett, 1978) “singular” models (Ma-
son, 1971; Vali, 2008; Connolly et al., 2009; Niedermeier
et al., 2010, 2011; Murray et al., 2011; Broadley et al., 2012;
Welti et al., 2012). By definition singular models are models
that lack direct time dependence. As far as I know, Levine’s is
the first such singular model. He did not call his model singu-
lar, that name originates withVali and Stansbury(1966). Sin-
gular models can be contrasted with what are called “stochas-
tic” models where there is an explicit nucleation rate for a
stochastic process of nucleation, and so a direct time depen-
dence (Pruppacher and Klett, 1978).

Levine assumed that each droplet has a large number of
nucleation sites,N . He called these sites “motes”. He as-
sumed that each mote had a different nucleation temperature,
Tn, and that the droplet froze at the highest of theseN nu-
cleation temperatures. This second assumption means that,
within his model, the freezing temperature of a droplet,TF,
is a random number that is the maximum of a number of
independent random numbers. Although Levine apparently
did not realise this, this means that what he was doing was
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7216 R. P. Sear: General singular model for ice nucleation

an example of what is called extreme-value statistics. This
is the statistics of the extreme (maximum or minimum) of a
large number of random variables. See the books of either
Jondeau et al.(2007), or Castillo(1988), for an introduction
to extreme-value statistics. Incidentally, back in the 1950s,
Turnbull realised that Levine was effectively doing extreme-
value statistics (Turnbull, 1952).

Here we use results from modern extreme-value statistics
to show that the results obtained by Levine can be written in
slightly simpler forms, and that they can be generalised – one
of his assumptions was not necessary. The expression derived
by Levine, his Eq. (2), is in fact almost (see Appendix A)
the probability density function of the Gumbel distribution of
extreme-value statistics. If nucleation is indeed occurring on
the nucleation site with the highest nucleation temperature,
then the fraction crystallised should have the form of what
is called the generalised extreme value (GEV) distribution.
This is true for almost all distributions of the site nucleation
temperatures. The Gumbel distribution is a special case of the
GEV distribution. Levine also derived a logarithmic depen-
dence of the mode droplet freezing temperature on droplet
size. We will show that this scaling is less general than the
Gumbel distribution.

1.1 Motivation

Our motivation for this work is that Levine’s key assumptions
are very reasonable. These assumptions are that a droplet
has a large number of nucleation sites, and that nucleation
occurs on the one with the highest nucleation temperature.
Also, the neglect of time dependence, although an approx-
imation, simplifies the model, meaning that the model has
very few parameters. A model with few parameters is useful,
as typically fitting a model with more than two or three pa-
rameters to experimental data is difficult to justify. The data
may not adequately constrain the values of a larger number
of parameters.

Thus Levine’s model seems a very attractive simple model
that can be used to fit data directly, and can be built on to
make more sophisticated models. For both these reasons it
seems worthwhile to use results in modern extreme-value
statistics to generalise it in order to produce the most gen-
eral singular model possible, and to determine the minimal
assumptions required for it to apply.

In this paper, we will describe Levine’s model, and then
show how his key results may be derived using modern
extreme-value statistics. We will then generalise Levine’s
model to produce the most general possible singular model
of the type that Levine introduced. In our final section, we
suggest how this could be used to model experimental data.

2 Levine’s model

We are interested in the problem of what happens when a
set of nominally identical liquid water droplets are cooled
at some rate, until they freeze. It is observed (Levine, 1950;
Langham and Mason, 1958; Mason, 1971; Pruppacher and
Klett, 1978; Niedermeier et al., 2010, 2011; Murray et al.,
2011; Vali, 2008; Cantrell and Heymsfield, 2005; Welti et al.,
2012; Broadley et al., 2012) that the droplets do not all freeze
at the same temperature; they freeze over a broad range of
temperatures. We want to understand this, and make predic-
tions about this phenomenon, using a simple model.

To do this, we define the probabilityP(TF) that a ran-
domly selected droplet hasnot frozen, at the time when we
have cooled it down to a temperatureTF. Note thatP(TF) is a
cumulative probability, the probability that a sample freezes
betweenTF andTF − dTF, is (dP(TF)/dTF)dTF. In an exper-
iment,P(TF) can be approximated by the fraction of a large
number of identically prepared droplets that are still liquid at
a temperatureTF.

Levine’s model (Levine, 1950) for the freezing of liquid
water droplets is simple. He made the following assumptions.

1. Each droplet contains impurities that have a total ofN

nucleation sites.

2. Each nucleation site induces nucleation of ice rapidly at
a well defined temperatureTn.

3. This temperatureTn varies from one nucleation site to
another. The sites are independent, and the values of
Tn are drawn from a probability distribution function
p1(Tn).

4. Only one nucleation event is required to induce crys-
tallisation of the droplet, and so the droplet crystallises
at the highestTn of its N nucleation sites. We denote
this maximum value of a set ofN Tns, byTF.

Assumption 4 allows us to use extreme-value statistics, see
Castillo (1988); Jondeau et al.(2007) for an introduction to
these statistics. Here we define a singular model as being a
model in which assumptions 1 to 4 are made. In particular,
assumption 2 eliminates any time dependence, giving us a
model with only a temperature dependence. This definition
of a singular model agrees with that ofPruppacher and Klett
(1978).

Levine then made a fifth assumption.

5. The distribution of nucleation temperatures at the sites,
p1, is exponential, i.e.

p1(Tn) = s exp(−Tn/we)/we . (1)

This distribution has two parameters:s (dimensionless) and
we (dimensions of temperature). The parameterwe controls
how rapidly the probability of finding a site with a givenTn,
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decreases with increasingTn. Note that Levine wrote this
distribution in a rather different way. See Appendix A for
a comparison to his work that uses notation that is closer to
Levine’s.

It is worth noting that we are only interested in the high-
est value ofTn of a large number of sites, and so only the
largeTn tail of the distributionp1 is relevant here. The form
of p1 around averageTn values is irrelevant. The maximum
is never in this region. Thus we need only assume that the
largeTn tail of the distribution is exponential. The distribu-
tion around average values can be anything as these sites do
not affect freezing and so have no effect in experiment. Be-
cause of this, Eq. (1) is only the high-T tail and so is not
normalised. The parameters controls the location of this tail,
i.e. the biggers is, the larger the number of sites with high
nucleation temperatures.

Also, note that we expectN to scale with the total surface
area of the impurities present in a droplet. So if impurities
are deliberately added, as for exampleBroadley et al.(2012)
andWelti et al.(2012) did, thenN should be proportional to
the amount added. When the impurities are those naturally
present in the water, then if their concentration is constant,
their amount and henceN will be proportional to the droplet
volume.

As an aside, we note that in the language of the statistical
physics of quenched disorder, Levine’s model has quenched
disorder, but no annealed disorder. The quenched disorder is
the variability in the temperatures at which nucleation occurs
on the sites. It isquencheddisorder as it is assumed not to de-
pend on time, but to be fixed for a given droplet. There is no
annealed disorder as there is no time dependence. Annealed
disorder is associated with dynamic fluctuations, which are
neglected in singular models.

3 Modern derivation of Levine’s key results

If we make all 5 assumptions of Sect.2, we can easily derive
the Gumbel distribution for the freezing temperature,TF. The
derivation of Levine’s distribution of freezing temperatures
proceeds as follows. We start by obtaining the cumulative
probability distribution function for a nucleation site,P1. P1
is the probability that the nucleation temperature at a nucle-
ation site islower thanTn. The cumulative probabilityP1 is
just a definite integral overp1, so using the exponentialp1
of Eq. (1), we have

P1(Tn) = 1−

0∫
Tn

p1(T )dT ' 1−

∞∫
Tn

p1(T )dT (2)

' 1− s exp(−Tn/we) , (3)

where we used Eq. (1) for p1, and we extended the upper
limit on integration from 0◦C to infinity. Of course,p1 must
be zero for temperatures above 0◦C, and so the approximate
p1 of Eq. (1) is only valid for values ofs andwe such that the

exponentialp1 is negligible forTn ≥ 0◦C. We assume this to
be the case here.

If a droplet containsN nucleation sites then the probability
that it is in the liquid phase,P(TF), is simply the probability
that all N nucleation sites have crystallisation temperatures
belowTF. We are assuming that even a single nucleation site
will cause freezing. As these nucleation sites are independent
this probability is justP N

1 , so,

P(TF,N) = P N
1 =

[
1− s exp(−TF/we)

]N (4)

' exp
[
−Ns exp(−TF/we)

]
. (5)

Here we used the fact that whenN is large, we are interested
in the range whens exp(−T/we) � 1, and so we can use
the result(1+ x)n ' exp(nx), which is valid for smallx and
largen.

We can rewriteP as

P(TF,N) = exp
[
−exp(− [TF − we ln(Ns)] /we)

]
. (6)

This is the cumulative distribution function for the Gumbel
extreme-value distribution (Castillo, 1988; Nicodemi, 2009;
Jondeau et al., 2007). The Gumbel distribution is a special
case of the GEV distribution. This GumbelP is plotted in
Fig. 1a.

For an exponentialp1, the width of the Gumbel distribu-
tion of crystallisation temperatures is the same as the width
we for a single nucleation site. The median crystallisation
temperature,TMED, is obtained by noting that, by the defini-
tion of the median,P(TMED) = 1/2. Then we have that the
median freezing temperature is

TMED(N) = we lns − we ln(ln2) + we ln(N). (7)

The scaling of the average freezing temperature with the
number of nucleation sites is logarithmic, as Levine found
in his Eq. (10). The variation ofTMED with N is shown in
Fig. 2a. Finally, the probability density function for nucle-
ation to occur at a temperatureTF, p(TF), is

p(TF) =
dP(TF)

dTF

= P(TF)exp[−(TF − we ln(Ns))/we] /we . (8)

This is almost equal to Levine’s Eq. (2) forp(T ). It is not
quite equal as Levine made a small approximation. We com-
pare our expressions with Levine in detail in Appendix A.
The Gumbelp is plotted in Fig.1b. Note that the Gumbel
distribution has a characteristically fatter tail on the high-
temperature side than on the low-temperature side of its max-
imum. This is often seen in experimental data for the freez-
ing of water droplets, for example in Fig. 52 ofLangham and
Mason(1958).

4 Predictions of modern extreme value statistics

The Gumbel distribution that Levine derived is
just one of the three types or classes of extreme-
value distributions, that together make up the GEV

www.atmos-chem-phys.net/13/7215/2013/ Atmos. Chem. Phys., 13, 7215–7223, 2013
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Fig. 1.Plots of:(A) the cumulative distribution functionP(TF), and
(B) the probability density functionp(TF). TF is the temperature at
which a droplet freezes. In both plots the black, red and blue curves
are the Gumbel, Fréchet and Weibull distribution functions, respec-
tively. For the Fŕechet distributionsξ = 0.75, while for the Weibull
distributionsξ = −0.75. For all curves, the locationµ = −20◦C,
and the widthw = 3◦C. For theP s we use Eq. (9). Note that for
the Gumbel distribution,µ andw are related tos, N andwe, by
µ = we ln(sN) andw = we.

(Nicodemi, 2009; Jondeau et al., 2007; Castillo, 1988). The
other two are the Weibull and Fréchet distributions. In brief,
modern extreme value theory allows us to show that for any
singular model,P(TF) should be given by the GEV. The
requirements that must be satisfied are only that assumptions
1 to 4 must hold, and thatp1 should be a simple continuous
function ofT in the temperature range of interest.

In this section we use modern extreme-value statistics to
generalise Levine’s findings, in order to obtain the more gen-
eral GEV form ofP(TF). We also derive the scaling of the
average freezing temperature,TMED, with N for the Weibull
and Fŕechet distributions, and compare the results with ex-
perimental data. We will briefly consider how good is our
assumption thatN is the same in droplets of the same vol-
ume. Also, as our model is in the singular limit, we outline a
criterion for the singular limit to be a good approximation.
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Fig. 2. (A) Plot of the scaling of the median freezing temperature,
TMED, with the number of nucleation sites,N . The black curve is
the lnN scaling that is consistent with the Gumbel distribution. It
is a plot of theTMED of Eq. (7), with parameterss = 10−8 and
we = 3◦C. The red curve is theN3/4 scaling that is consistent with
the Fŕechet distribution withξ = 0.75. It is a plot of theTMED of
Eq. (16), with parametersb = 2×10−5 andTL = −25◦C. The blue
curve is theN−3/4 scaling that is consistent with the Weibull dis-
tribution with ξ = −0.75. It is a plot of theTMED of Eq. (17), with
parametersc = 10−5 andTU = −15◦C. (B) Plot of cumulative dis-
tribution functions for the nucleation temperatures,Tn, at the nucle-
ation sites. We plot 1−P1(Tn), i.e. the probability that a nucleation
site has a nucleation temperatureaboveTn. This tends to 0 not 1 at
highT . The black, red and blue curves are 1−P1s that yield Gum-
bel, Fŕechet, and Weibull distributions, respectively. Values of the
parameters are the same as in(A).

4.1 The generalised extreme value distribution

Once assumptions 1 to 4 are made, the freezing temperature
TF is the maximum of a large number of independent iden-
tically distributed random variables. Then it can be shown
that the cumulative distribution function forP(TF) is given
by the GEV. This is true only under weak conditions onp1
(Nicodemi, 2009; Castillo, 1988; Jondeau et al., 2007). The
GEV is conventionally written as (Castillo, 1988; Nicodemi,
2009; Jondeau et al., 2007)

P(TF) =

{
exp

[
−exp(−(TF − µ)/w)

]
ξ = 0

exp
[
−(1+ ξ (TF − µ)/w)−1/ξ

]
ξ 6= 0.

(9)

Atmos. Chem. Phys., 13, 7215–7223, 2013 www.atmos-chem-phys.net/13/7215/2013/
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This is a three-parameter cumulative probability distribu-
tion function. Assumption 5 is not required to derive it. The
parameters are a width parameterw, a location parameterµ,
and an exponentξ . The value of the parameterξ controls the
class of the GEV. Withξ = 0, the GEV is the Gumbel distri-
bution, while forξ > 0, the GEV is the Fŕechet distribution,
and forξ < 0, it is the Weibull distribution. Examples of all
three distributions are plotted in Fig.1.

Equation (9) generalises the Gumbel distribution, Eq. (6),
that Levine derived. Whereas the Gumbel distribution is pro-
duced by exponentially decaying (in the sense of decaying
faster than any power law)p1s, almost any continuous sim-
ple p1 will lead to the GEV. This includesp1s that decay as
power laws. Power lawp1s lead to the Fŕechet limit of the
GEV, andp1s with upper limits lead to the Weibull distribu-
tion.

The form of the distribution of nucleation temperatures,
p1, also determines the scaling of the median freezing tem-
perature withN . We have already seen that for an exponen-
tial p1, this scaling is lnN , Eq. (7). This p1 also leads to a
GumbelP(TF), but otherp1s lead to the same Gumbel form
for P but have different scaling ofTMED with N . For example
a Gaussianp1 leads to a(lnN)1/2 scaling (Castillo, 1988).

What this means is that if, for example, data is well fit by a
GumbelP , i.e.ξ ' 0, then we cannot argue thatTMED scales
as lnN – although it should be noted that lnN and(lnN)1/2

scaling are relatively similar so if it is a Gumbel then we do
have a rough idea of the scaling ofTMED. However, if data is
clearly best fit by a lnN scaling ofTMED, then this is good
evidence thatp1 is indeed an exponential function ofTn, in
the temperature range of interest. It is stronger evidence for
an exponentialp1, than the Gumbel distribution providing a
good fit toP .

Fitting the GEV could be done following the same meth-
ods used to fit the GEV to data in other fields. The book of
Castillo (1988) on extreme value statistics discusses general
fitting approaches. It is worth noting that he does not rec-
ommend the standard unweighted least-squares fitting proce-
dure as that gives a low weight to errors in the tail ofP(TF).
SeeCastillo (1988) for suggested weighting functions to be
minimised in fitting.Castillo (1988) also discusses the fact
that plots of ln[ln(1/P (TF))] as a function ofTF, show a
characteristic curvature that depends onξ . This can be used
to differentiate between Gumbel, Fréchet and Weibull dis-
tributions. Such a plot should be a straight line if the data
follows the Gumbel distribution, while it will curve down for
Weibull-distributed data, and up for Fréchet-distributed data.

Jondeau et al.(2007) discuss a related method, which uses
what are called quantile-quantile or Q-Q plots. Here the tem-
perature at which the GEV function forP is a particular
value, is plotted as a function of the temperature in the data
which gives the same value forP . When this is done, then if
the data is indeed well approximated by the GEV, and the
correct value ofξ is chosen, then the Q-Q plot will be a
straight line (arbitrary values ofµ andw can be used as they

just change the slope and intercept of the plot). SeeJondeau
et al.(2007) for details. They also consider the application of
maximum likelihood methods to obtaining the most reliable
estimates ofξ , µ andw.

In the next section, we outline how both the Fréchet and
Weibull distributions can be derived from their respective
P1s. This also allows us to also determine how the median
freezing temperature,TMED, scales withN .

4.2 Brief derivation of the Fréchet and Weibull
distributions

In this section we briefly show how the Fréchet and Weibull
distributions can be derived from theP1s of the nucleation
sites, where as beforeP1(Tn) is the probability that the nucle-
ation temperature at a site is belowTn. As theN nucleation
sites are independent, we always have that the probability
that a droplet has not frozen at a temperatureTF is

P(TF) = P N
1 (Tn) (10)

which as we are in aN � 1, and 1− P1 � 1 limit, can be
written as

P(TF) = [1− [1− P1(TF)]]N (Tn)

' exp[−N [1− P1(TF)]] . (11)

Armed with this relation, we start with the Fréchet distribu-
tion. The Fŕechet distribution results from a power-law cu-
mulative distribution,P1, for nucleation temperaturesTn,

P1(Tn) = 1−
b

(Tn − TL)1/ξ
ξ > 0. (12)

Note that this is a power-law decay with a lower cutoff,TL .
The parameterb (like s) controls the size of the tail. This
expression holds for the largeTn tail, whereP1 is close to 1.
Note that here we have the restriction thatξ > 0, so this is a
power-law decay ofp1 with Tn. In Fig. 2b, we have plotted
an exampleP1. We plot 1−P1 notP1 itself, as 1−P1 decays
to 0, and this is a little clearer to see than a decay to 1. The
cumulative probability 1− P1(Tn) is the probability that a
nucleation site has a nucleation temperature aboveTn. Now,
using theP1 of Eq. (12) in Eq. (11), we have the Fŕechet
distribution:

P(TF) ' exp

[
−

Nb

(TF − TL)1/ξ

]
. (13)

Note thatN andb always appear as their product,Nb. There-
fore, the freezing behaviour does not depend onN andb sep-
arately, only on their product.

We now consider the Weibull distribution. The Weibull
distribution results from a cumulative distribution,P1, with
an upper cut-off:

P1(Tn) =

{
1− c(TU − Tn)

−1/ξ Tn ≤ TU
1 Tn > TU

ξ < 0, (14)

www.atmos-chem-phys.net/13/7215/2013/ Atmos. Chem. Phys., 13, 7215–7223, 2013



7220 R. P. Sear: General singular model for ice nucleation

whereTU is the upper cutoff, andc is a parameter that (like
s andb) controls the size of the tail. This expression holds
for the largeT tail, whereP1 is close to 1. Note that here
we have the restriction thatξ < 0, so 1− P1 is a positive-
exponent power-law function ofTn. An example 1− P1 is
plotted in Fig.2b.

In the singular limit, a hard upper cutoff,TU, to the dis-
tribution of nucleation temperatures, is possible. In exper-
iment, there will presumably be a limit to how well defined
this cutoff temperature can be. In practice, the Weibull model
should be a good model for experimental data when the in-
evitable uncertainty inTU, call it δTU, is much smaller than
the range of temperatures over which nucleation occurs. This
range of temperatures could be measured by the standard
deviation of the observed nucleation temperatures,σF. So
when δTU � σF, and the Weibull model fits the data well,
the Weibull model should be useful.

Returning to theP1 of Eq. (14). If we put this in Eq. (11)
we have the Weibull distribution:

P(TF) ' exp
[
−Nc(TU − TF)−1/ξ

]
. (15)

Having derived the Gumbel, Fréchet, and Weibull distri-
butions, we can compare them. Example plots are shown
in Fig. 1. The differences between the three distributions is
particularly clear in the plots of their probability densities
in Fig. 1b. The Fŕechet distribution has a much fatter high-
temperature tail than the Gumbel, and a low-temperature cut-
off. So, if the GEV is fit to data with such a sharp lower-
temperature cutoff and/or fat tail, the best fit may be with a
ξ > 0, implying that a Fŕechet distribution is a better model
than a Gumbel. The fatter tail of the Fréchet comes from a
power-law tail inp1, i.e. from a fatter tail in the distribution
in the nucleation temperatures at the individual sites. By con-
trast, the Weibull distribution has a high-temperature cutoff,
which implies a high-temperature cutoff inp1. For data with
a sharp upper cutoff to nucleation, the Weibull model may be
best.

4.3 Scaling ofTMED with droplet volume and surface
area of added impurity

An exponentialP1 led to a Gumbel distribution, and lnN
scaling of the median freezing temperature withN . Here
we derive the corresponding scalings with system size for
power-lawP1s, andP1s with upper limits.

Power-lawP1s lead to the FŕechetP(TF) of Eq. (13). The
median freezing temperature,TMED, is the temperature at
whichP = 1/2, and so here we have

TMED = TL +

(
b

ln2

)ξ

N ξ . (16)

The median freezing temperature is a power-law function
of the number of nucleation sites,N . This is illustrated in
Fig. 2a.

P1s with an upper cutoff lead to the WeibullP(TF) of
Eq. (15). The median freezing temperature,TMED, is again
the temperature at whichP = 1/2, and so here we have that

TMED = TU −

( c

ln2

)ξ

N ξ . (17)

The median freezing temperature approaches the upper limit,
TU, of the nucleation temperatures, asN → ∞. This is
shown in Fig.2a. This hard cutoff to the nucleation tempera-
tures will presumably be only an approximation to the truth.
However, Eq. (17) should be a good approximation when the
inevitable uncertainty inTU is small in comparison with the
change inTMED with N .

Having determined the scaling ofTMED with N for all
three classes of the GEV, we can compare these predictions
with experimental findings. There have been a number of
studies of the average freezing temperature of droplets. Both
the droplet volume, and the surface area of added impurity
have been varied. A plot of the average nucleation temper-
atures obtained in early work is shown in Mason’s book
(Mason, 1971), in Fig. 4.2. On the log-linear scale, some
data is linear, which is consistent with an exponential-tailed
p1, whereas other data sets appear to be plateauing at large
droplets, suggesting an upper cutoff top1.

In more recent work, bothBroadley et al.(2012), andWelti
et al.(2012) have studied average nucleation temperatures as
a function of the surface area of added clay particles. The
clay is illite for Broadley et al.(2012), and kaolinite forWelti
et al. (2012). We expect the number of nucleation sites,N ,
to scale with the surface area of added clay. The data of
Broadley et al.(2012) seem to be plateauing at large amounts
of added illite clay. This is in their Fig. 4.Welti et al.(2012)
observe a logarithmic scaling of the median nucleation tem-
perature with clay surface area. Thus, the data on the scaling
of the freezing temperature with system size, suggests that
ice nucleation is occurring on sites with either an exponen-
tially decayingp1, or ap1 with an upper cutoff.

4.4 Validity of the assumption thatN is the same for
all droplets

If in experiment, the variable is the amount of an impurity
that is added, then it seems a safe assumption thatN ∝ sur-
face area of added impurity, and that two droplets with the
same amount of added impurity have the same number of
nucleation sites,N . This just relies on there being a density
of nucleation sites on the surface that is approximately con-
stant.

However, if the variable is droplet volumeV , then we are
relying onN ∝ V and each droplet having the same number
of nucleation sites,N . If the nucleation sites are distributed
over a large number,n, of impurity particles then the cen-
tral limit theorem of statistics tells us that the variation inN

from one droplet to another will be of orderN/n1/2. Thus
for n � 1 this will be small and our assumption of constant
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N will be only a small approximation. However, ifn is small,
i.e. each droplet has only a few impurity particles, then even
though each may have many nucleation sites, there will be
large fluctuations inN from one droplet to another of the
same volume. These fluctuations could potentially cause de-
viations from the (GEV) distribution, due to some droplets
having many more nucleation sites than others.

4.5 Validity of the singular limit

The assumption that nucleation occurs at a site at a precisely
determined temperature,Tn, is presumably only an approx-
imation to the truth. If ice nucleation in a droplet occurs at
a temperature-dependent stochastic rate,R(T ), then nucle-
ation will occur over a temperature range of some width1TS .
This width is expected to scale as

1TS =

(
1

R

∂R

∂T

)−1

R=RCOOL

. (18)

The expression in brackets is the ratio of the temperature
derivative of the rate, to the rate itself. One over this ratio
is an approximation to the change in temperature needed to
double the nucleation rate. This ratio is evaluated at a tem-
perature such that the nucleation rate,R, equals the cooling
rate,RCOOL, in experiment. Note that it is non-negligible as-
sumption that a well-defined nucleation rate exists in these
systems (Sear, 2013).

In words, the expected spread in nucleation temperatures,
1TS due to a temperature-dependent nucleation rate, is ap-
proximately equal to the temperature change needed to dou-
ble the nucleation rate. This temperature change is evaluated
when the nucleation rate equals the cooling rate.

The singular limit is then the limitw � 1TS . When the
width in the spread of freezing temperatures due to the spread
in characteristic nucleation temperatures,Tn, is much larger
than the spread due to the stochastic nucleation rate, then sin-
gular models can be a good approximation to experimental
data. But when the spread due to the stochastic nature of the
nucleation,1TS is comparable to that due to the variability
in nucleation temperatures, then singular models will be poor
approximations.

5 Conclusions

Singular models have been and are being used to fit experi-
mental data (Mason, 1971; Pruppacher and Klett, 1978; Vali,
2008; Niedermeier et al., 2010; Broadley et al., 2012). The
fact that they work so well suggests that in many situations
an explicit time dependence does not need to be considered.
Here we have shown within a general singular model that the
distribution of freezing temperatures should be given by the
GEV. This follows if, asPruppacher and Klett(1978) do, a
singular model is defined as being assumptions 1–4, andp1
is a simple function of temperature.

There is a caveat to this statement. This is that forP(TF) to
be given by the GEV, it is necessary that over the temperature
range of interest,P1(Tn) should be given by a single contin-
uous function, such as a power law or exponential. This may
not be the case if there is more than one type of nucleation
site (perhaps due to multiple particle species) which all make
significant contributions toP1 but have different dependen-
cies on temperature. Thus it may be that even in the singular
limit, P(TF) deviates from the GEV in the presence of nu-
cleation on a complex mixture of impurities. Then there is
no general theory. Here calculatingP(TF) can only be done
if the distribution of nucleation temperatures at the sites is
knownp1. This will presumably be difficult even for simple
impurities. However, if we have experimental data forP(TF),
then Eq. (11) tells us that if we plot lnP(TF) as a function of
TF, then we should be plotting−N(1− P1). Then what we
are plotting is directly proportional to the cumulative proba-
bility of finding a nucleation site with a nucleation tempera-
ture aboveTF. This may aid in interpreting data forP(TF).

Microscopic models of nucleation, for example those
based on classical nucleation theory, are also used to fit and
understand experimental results (Cantrell and Heymsfield,
2005; Niedermeier et al., 2011). They can provide insight
into droplet freezing data that a purely statistical model such
as an extreme-value-statistics model cannot provide. How-
ever, in the singular limit (1TS � w) almost any micro-
scopic model will give the GEV. Thus in this limit any two
microscopic models with similarP1 will be essentially equiv-
alent.

Finally, in practice if data deviates from the GEV, it may
be difficult to assess why, as there could be several reasons
for the deviations. These include (1) effects of a stochas-
tic temperature-dependent rate, of the type that classical nu-
cleation theory predicts; (2) a complexp1 due to a mix-
ture of surfaces, all making significant contributions to nu-
cleation; (3) non-classical-nucleation-theory time-dependent
processes, for example, irreversible chemical processes at
surfaces that change the ability of a surface to promote ice
nucleation; and (4) each droplet contains only a handful of
impurity particles with the nucleation sites, and so some
droplets have many more nucleation sites (N ) than others.
Distinguishing between the four may be difficult, although
varying the cooling rate may be one way to eliminate at least
some of them.

5.1 Suggestions for future work

It may be worthwhile to do what is standard practice in other
fields where extreme-value statistics are used, and to fit the
GEV distribution to the data. Here the data is the fraction of
droplets that have frozen, as a function of temperature. If the
fit is good, then the data would be consistent with an extreme-
value model, and if the fittedξ is close to zero, it would sug-
gest that the highT tail of the nucleation temperatures of
individual sites is indeed exponential or similar, i.e. decays
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faster than a power law (Nicodemi, 2009). However, a value
of ξ > 0 suggests a power law decay forp1, while ξ < 0 sug-
gests an upper limit beyond whichp1 = 0. In other words,
the value ofξ gives information on the form ofp1.

Another point of view, is that assumptions 1–4 (only), lead
to the GEV, and so the GEV can be used to decouple assump-
tions 1–4, from assumption 5. Assumptions 1–4 are presum-
ably only approximately true. In particular, assumption 2 that
a site induces nucleation at a temperature independent of
cooling rate is presumably only approximate. To rigorously
test for violations of this assumption, which is at the heart of
singular models, we would like to avoid assumption 5, and
so should tests for deviations from the GEV, not from the
Gumbel distribution.

A final point to note is that the high-T tail in p1, not only
determinesP(t), but also determines the scaling of the me-
dian nucleation temperature withN . In general, the fatter the
tail in p1, the faster the median nucleation temperature varies
with N . This is illustrated in Fig.2a. So if a fit to aP(t) pro-
duces aξ > 0 then the volume dependence should be faster
than logarithmic, the median freezing temperature should
scale asN ξ . A best fit value ofξ < 0 suggests a Weibull
distribution, which has an upper cutoff and hence an upper
limit to the median nucleation temperature as droplet volume
is increased.

Appendix A

Comparison with Levine’s expression

Levine’s approximation for the probability that nucleation
has not occurred at a temperatureT is the first factor in his
Eq. (2). We write this as

P(T ) =

(
1−

1

µ

)ar−T

r > 1, (A1)

where we have taken the dominant term in his exponent,
ar−T , and changed what is a+T in Levine’s expression to
a −T . Levine uses the absolute value ofT in Celsius, so his
T is our−T . In this expressionµ = VR/1V , where1V is
the volume of a droplet, andVR is a large reservoir volume,
� 1V . The droplet volume1V is proportional to ourN .
The parametera is is analogous to ours parameter. Ther
parameter controls the width of Levine’s distribution, so it is
analogous to ourwe.

If we note that bothµ and ar−T
� 1, we can rewrite

Eq. (A1) as an exponential:

P(T ,µ) = exp

[
−

ar−T

µ

]
= exp

[
−exp

[
−T lnr + ln

(
a

µ

)]]
. (A2)

If we compare this equation with Eq. (6), we see that they
are the same if lnr = 1/we, anda/µ = Ns. Also, from this
equation it is easy to show that the median nucleation tem-
perature,TMED, scales as ln(1/µ) ∝ ln1V .

Levine’s Eq. (2) is actually his approximation for the prob-
ability density,p, that nucleation has occurred at a tempera-
tureT not the cumulative probability that it has not occurred
down to a temperatureT . Thisp = dP/dT . The expression
in Levine’s Eq. 2 is not quite theT derivative of Eq. (A2), as
Levine treatsT as a discrete variable when it is a continuous
variable. Thus the expression in his Eq. (2) is, for this reason,
approximate. But this should not obscure the fact that Levine
was the first to realise that the extremes of the distribution of
nucleation sites determine the nucleation behaviour, and that
the use of what is essentially extreme-value statistics can be
used to model freezing behaviour.
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Welti, A., Lüönd, F., Kanji, Z. A., Stetzer, O., and Lohmann, U.:
Time dependence of immersion freezing: an experimental study
on size selected kaolinite particles, Atmos. Chem. Phys., 12,
9893–9907, doi:10.5194/acp-12-9893-2012, 2012.

www.atmos-chem-phys.net/13/7215/2013/ Atmos. Chem. Phys., 13, 7215–7223, 2013

http://dx.doi.org/10.5194/acp-11-4191-2011
http://dx.doi.org/10.5194/acp-10-3601-2010
http://dx.doi.org/10.5194/acp-10-3601-2010
http://dx.doi.org/10.5194/acp-11-8767-2011
http://dx.doi.org/10.5194/acp-11-8767-2011
http://dx.doi.org/10.5194/acp-8-5017-2008
http://dx.doi.org/10.5194/acp-12-9893-2012

