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Abstract. Models without an explicit time dependence, values can be reliably obtained by fitting to experimental
called singular models, are widely used for fitting the dis- data. These models should make as few assumptions as pos-
tribution of temperatures at which water droplets freeze. Insible, and we should be as clear as possible as to what these
1950 Levine developed the original singular model. His keyassumptions are. An innovative early attempt at developing
assumption was that each droplet contained many nucleatiosuch a model was that of Levine in 199Ge¢ine 1950).
sites, and that freezing occurred due to the nucleation site Levine assumed that water droplets freeze due to highly
with the highest freezing temperature. The fact that freezingvariable impurities in the droplets. He then introduced a sim-
occurs due to the maximum value out of a large number ofple statistical model of these impurities, and hence of the
nucleation temperatures, means that we can apply the resulfeeezing behaviourlevine 1950. Levine's model has no
of what is called extreme-value statistics. This is the statis-direct time dependence. Instead of an explicit rate, nucle-
tics of the extreme, i.e. maximum or minimum, value of a ation is assumed to occur at a particular nucleation site as
large number of random variables. Here we use the resultsoon as it is cooled to a temperature characteristic of that
of extreme-value statistics to show that we can generaliseite. Levine’s work has inspired a literature on what are often
Levine's model to produce the most general singular modekalled Pruppacher and Kletl978 “singular’ models Wa-
possible. We show that when a singular model is a good apson 1971 Vali, 2008 Connolly et al, 2009 Niedermeier
proximation, the distribution of freezing temperatures shouldet al, 201Q 2011, Murray et al, 2011 Broadley et al.2012
always be given by what is called the generalised extremeWelti et al, 2012). By definition singular models are models
value distribution. In addition, we also show that the distri- that lack direct time dependence. As far as | know, Levine’s is
bution of freezing temperatures for droplets of one size, carthe first such singular model. He did not call his model singu-
be used to make predictions for the scaling of the median nutar, that name originates witali and Stansbury{1966. Sin-
cleation temperature with droplet size, and vice versa. gular models can be contrasted with what are called “stochas-
tic’ models where there is an explicit nucleation rate for a
stochastic process of nucleation, and so a direct time depen-
dence Pruppacher and Kleti978.
1 Introduction Levine assumed that each droplet has a large number of
nucleation sitesN. He called these sites “motes”. He as-
The freezing of water droplets in the Earth’s atmosphere issymed that each mote had a different nucleation temperature,
an important and longstanding probleMgson 1971 Prup- 7, " and that the droplet froze at the highest of thaseau-
pacher and Kleft1978 Cantrell and Heymsfield005 De-  cjeation temperatures. This second assumption means that,
Mott et al, 2011 Sear 2012. We want to understand how \yithin his model, the freezing temperature of a droplét,
the water droplets freeze, and be able to predict quantitais 5 random number that is the maximum of a number of
tively the conditions where the droplets do and do not freezeindependent random numbers. Although Levine apparently

To do this we of course need good experimental data, buljig not realise this, this means that what he was doing was
we also need models with few enough parameters that their
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7216 R. P. Sear: General singular model for ice nucleation

an example of what is called extreme-value statistics. This2 Levine’s model
is the statistics of the extreme (maximum or minimum) of a
large number of random variables. See the books of eithekVe are interested in the problem of what happens when a
Jondeau et a(ZOO?), or Cast|||0(1988, for an introduction set of nominally identical ||CIU|d water dropletS are cooled
to extreme-value statistics. Incidentally, back in the 1950sat some rate, until they freeze. It is observedyine, 195Q
Turnbull realised that Levine was effectively doing extreme- Langham and Masqri958 Mason 1971 Pruppacher and
value statistics{urnbull, 1952. Klett, 1978 Niedermeier et a).201Q 2011, Murray et al,
Here we use results from modern extreme-value statistic201% Vali, 2008 Cantrell and Heymsfie|®005 Welti et al,
to show that the results obtained by Levine can be written in2012 Broadley et al.2012) that the droplets do not all freeze
slightly simpler forms, and that they can be generalised — oné@t the same temperature; they freeze over a broad range of
of his assumptions was not necessary. The expression derivé@mperatures. We want to understand this, and make predic-
by Levine, his Eq. (2), is in fact almost (see Appendix A) tions about this phenomenon, using a simple model.
the probability density function of the Gumbel distribution of ~ To do this, we define the probability (7¢) that a ran-
extreme-value statistics. If nucleation is indeed occurring ondomly selected droplet hawt frozen, at the time when we
the nucleation site with the highest nucleation temperaturehave cooled it down to a temperatufie Note thatP (7r) is a
then the fraction crystallised should have the form of whatcumulative probability, the probability that a sample freezes
is called the generalised extreme value (GEV) distribution.betweer’s and7¢ — d7F, is (dP (7F)/dTr)d7E. In an exper-
This is true for almost all distributions of the site nucleation iment, P (7¢) can be approximated by the fraction of a large
temperatures. The Gumbel distribution is a special case of theumber of identically prepared droplets that are still liquid at
GEV distribution. Levine also derived a logarithmic depen- & temperaturéf.
dence of the mode droplet freezing temperature on droplet Levine’s model Levine 1950 for the freezing of liquid
size. We will show that this scaling is less general than thewater droplets is simple. He made the following assumptions.

Gumbel distribution. 1. Each droplet contains impurities that have a totaNof

1.1 Motivation nucleation sites.

2. Each nucleation site induces nucleation of ice rapidly at

r motivation for this work is that Levine’s k mption .
Our motivation for this work is that Levine’s key assumptions a well defined temperatuts,

are very reasonable. These assumptions are that a droplet
has a large number of nucleation sites, and that nucleation 3. Thjs temperaturdy, varies from one nucleation site to
occurs on the one with the highest nucleation temperature.  gnother. The sites are independent, and the values of

Also, the neglect of time dependence, although an approx- 7, are drawn from a probability distribution function
imation, simplifies the model, meaning that the model has (7).

very few parameters. A model with few parameters is useful,

as typically fitting a model with more than two or three pa- 4. Only one nucleation event is required to induce crys-
rameters to experimental data is difficult to justify. The data tallisation of the droplet, and so the droplet crystallises
may not adequately constrain the values of a larger number  at the highest, of its N nucleation sites. We denote
of parameters. this maximum value of a set & Ty,s, by T.

Thus Levine’s model seems a very attractive simple model

that can be used to fit data directly, and can be built on toAssqmption 4 allows us to use extreme—vglue stat.istics, see
make more sophisticated models. For both these reasons ﬁaSt'”O (198,8; Jondeau et a(.2007) fpr an introduction to_
seems worthwhile to use results in modern extreme—valuéhese ;tatlst!cs. Here we define a singular model as pemg a
statistics to generalise it in order to produce the most gen—mOdel in which assumptions 1 to 4 are made. In particular,

eral singular model possible, and to determine the minima@SSUmption 2 eliminates any time dependence, giving us a
assumptions required for it to apply. model with only a temperature dependence. This definition

In this paper, we will describe Levine's model, and then of a singular model agrees with that®fuppacher and Klett
show how his key results may be derived using modern(1978,' h de a fifth .
extreme-value statistics. We will then generalise Levine’s Levine then made a fifth assumption.

model to produce the most general possible singular model 5 The distribution of nucleation temperatures at the sites,
of the type that Levine introduced. In our final section, we p1, is exponential, i.e.

suggest how this could be used to model experimental data.
pi(Tn) = sexp(—Tn/we) /we . (1)

This distribution has two parametess(dimensionless) and
w, (dimensions of temperature). The parametgrcontrols
how rapidly the probability of finding a site with a givdR,
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decreases with increasiriy. Note that Levine wrote this exponentialp1 is negligible for7,, > 0°C. We assume this to
distribution in a rather different way. See Appendix A for be the case here.
a comparison to his work that uses notation that is closer to If a droplet containgv nucleation sites then the probability
Levine's. that it is in the liquid phaseP (Tk), is simply the probability

It is worth noting that we are only interested in the high- thatall N nucleation sites have crystallisation temperatures
est value ofT, of a large number of sites, and so only the belowTr. We are assuming that even a single nucleation site
large Ty, tail of the distributionp; is relevant here. The form  will cause freezing. As these nucleation sites are independent
of p1 around averag#, values is irrelevant. The maximum this probability is justPlN, S0,
is never in this region. Thus we need only assume that the N N
large T tail of the distribution is exponential. The distribu- © (TF-N) =P = [1—sexp(=Tr/w.)] )
tion around average values can be anything as these sites do =~ exp[—Nsexp(—Tr/w,)]. (5)
not affect freezing and so have no effect in experiment. Be-Here we used the fact that whahis large, we are interested

cause of this, Eq:l.o is onIy the hlghT tail and so is not in the range when exp(—T/w,) < 1, and so we can use
normalised. The parametecontrols the location of this tail,  the result(1+ x)" ~ exp(nx), which is valid for smalk and

i.e. the bigger is, the larger the number of sites with high |argen.

nucleation temperatures. We can rewriteP as
Also, note that we exped¥ to scale with the total surface

area of the impurities present in a droplet. So if impurities  (7F- N) = exp[—exp(= [Tk — we IN(N)] /we) . ®6)

are deliberately added, as for exampl®adley et al(2012 This is the cumulative distribution function for the Gumbel

andWelti et al.(2012 did, thenN should be proportional to  extreme-value distributiorQastillo, 1988 Nicodemj 2009

the amount added. When the impurities are those naturallyjondeau et 3l2007). The Gumbel distribution is a special

present in the water, then if their concentration is constantcase of the GEV distribution. This Gumbegl is plotted in

their amount and henc€ will be proportional to the droplet  Fig. 1a.

volume. For an exponentiagps, the width of the Gumbel distribu-
As an aside, we note that in the language of the statistication of crystallisation temperatures is the same as the width

physics of quenched disorder, Levine's model has quenched, for a single nucleation site. The median crystallisation

disorder, but no annealed disorder. The quenched disorder iemperatureliep, is obtained by noting that, by the defini-

the variability in the temperatures at which nucleation occurstion of the medianP (Twep) = 1/2. Then we have that the

on the sites. Itigluenchedlisorder as it is assumed not to de- median freezing temperature is

pend on time, but to be fixed for a given droplet. There is no _

annealed disorder as there is no time dependence. AnneaIeT(JY'ED(N) = welns —weInN2) +we IN(N). )

disorder is associated with dynamic fluctuations, which areThe scaling of the average freezing temperature with the
neglected in singular models. number of nucleation sites is logarithmic, as Levine found

in his Eq. (10). The variation ofiyyep with N is shown in
Fig. 2a. Finally, the probability density function for nucle-

3 Modern derivation of Levine's key results ation to occur at a temperatufe, p(Tg), is

If we make all 5 assumptions of Se2f.we can easily derive  p(T¢) = %

the Gumbel distribution for the freezing temperatdie, The d7r

derivation of Levine’s distribution of freezing temperatures = P(Tr) exp[— (Tr — we IN(Ns)) /we] /we . (8)

proceeds as follows. We start by obtaining the cumulativeThis is almost equal to Levine’s Eq. (2) fer(T). It is not
probability distribution function for a nucleation sitg;. P1 quite equal as Levine made a small approximation. We com-
is the probability that the nucleation temperature at a nuclepare our expressions with Levine in detail in Appendix A.
ation site islower than 7. The cumulative probability’; is The Gumbelp is plotted in Fig.1b. Note that the Gumbel
just a definite integral ovepy, So using the exponentigly distribution has a characteristically fatter tail on the high-
of Eg. (1), we have temperature side than on the low-temperature side of its max-
imum. This is often seen in experimental data for the freez-

0 %)
ing of water droplets, for example in Fig. 52lodingham and
Pu(t = 1= [ purydr = 1- [ paryar @ Mason(1959. Ple g =g
Th Tn
~ 1—sexp(—Th/we), €))

4 Predictions of modern extreme value statistics
where we used Eqlj for p;, and we extended the upper

limit on integration from OC to infinity. Of coursep; must ~ The Gumbel distribution that Levine derived is
be zero for temperatures abov&) and so the approximate just one of the three types or classes of extreme-
p1 of EQ. (1) is only valid for values of andw, such thatthe value distributions, that together make up the GEV
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Fég'tﬁ' PlOISbOE.(lA) t(:ne cgtm;JIatl\t/_e d'S;”buTt'o_n ftl;ncttloR(T,:),tand t Fig. 2. (A) Plot of the scaling of the median freezing temperature,
(B) the probability density functiop (7). T is the temperature & TymeD, With the number of nucleation sited,. The black curve is

which a droplet freezes. In bOth. plots_the_ bla_ck, red Qnd blue CUVeShe InV scaling that is consistent with the Gumbel distribution. It
are the Gumbel, EBchet and Weibull distribution functions, respec- is a plot of theTyep of Eq. (7), with parameters = 10-8 and

tively. For the Féchet distributiong = 0.75, while for the Weibull we = 3°C. The red curve is thay3/4 scaling that is consistent with

distributionsé = —0.75. For all curves, the location = —20°C, , N . .
. b the Féchet distribution withé = 0.75. It is a plot of theT\ygp of
and the widthw = 3°C. For thePs we use Eq.9). Note that for Eq. (L6), with parameters = 2 x 10-5 and7; = —25°C. The blue

the Gumbel distributiony. andw are related ta, N andwe, by oy is they —3/4 scaling that is consistent with the Weibull dis-

# = weIn(sN) andw = we. ribution with € = —0.75. It is a plot of theTiyep of Eq. (L7), with
parameters = 10~° and7y, = —15°C. (B) Plot of cumulative dis-
tribution functions for the nucleation temperaturgs,at the nucle-

. . . ation sites. We plot + P1(Tp), i.e. the probability that a nucleation
(Nicodemj 2009 Jondeau et 312007 Castillg 1988. The site has a nucleation temperatatgoveTy. This tends to 0 not 1 at

other two are the Weibull and &chet distributions. In brief, high 7. The black, red and blue curves are Pys that yield Gum-
modern extreme value theory allows us to show that for anyhe| Fichet, and Weibull distributions, respectively. Values of the
singular model,P(7¢) should be given by the GEV. The parameters are the same a¢4.
requirements that must be satisfied are only that assumptions
1 to 4 must hold, and that; should be a simple continuous
function of T in the temperature range of interest.

In this section we use modern extreme-value statistics tal.1 The generalised extreme value distribution
generalise Levine’s findings, in order to obtain the more gen-
eral GEV form of P(T¢). We also derive the scaling of the Once assumptions 1 to 4 are made, the freezing temperature
average freezing temperatuf@sep, with N for the Weibull Tr is the maximum of a large number of independent iden-
and Féchet distributions, and compare the results with ex-tically distributed random variables. Then it can be shown
perimental data. We will briefly consider how good is our that the cumulative distribution function fat(7¢) is given
assumption than is the same in droplets of the same vol- by the GEV. This is true only under weak conditions on
ume. Also, as our model is in the singular limit, we outline a (Nicodemj 2009 Castillo, 1988 Jondeau et 312007). The
criterion for the singular limit to be a good approximation. GEV is conventionally written agJastillo, 1988 Nicodemj

2009 Jondeau et 12007

0

exp[—exp(— (Tr — ) /w)] =
#0.

exp[— (L+& (Te— ) /)~ ¢ ®)

_ 3
P(Tp) = { ;
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This is a three-parameter cumulative probability distribu- just change the slope and intercept of the plot). Bewleau
tion function. Assumption 5 is not required to derive it. The et al.(2007 for details. They also consider the application of

parameters are a width parametegra location parameter, maximum likelihood methods to obtaining the most reliable
and an exponergt. The value of the parametércontrols the  estimates of, u andw.
class of the GEV. Witt§ = 0, the GEV is the Gumbel distri- In the next section, we outline how both theEnet and

bution, while foré > 0, the GEV is the Fechet distribution,  Weibull distributions can be derived from their respective
and foré < 0, it is the Weibull distribution. Examples of all P;s. This also allows us to also determine how the median
three distributions are plotted in Figy. freezing temperaturdep, scales withv.

Equation @) generalises the Gumbel distribution, E), (
that Levine derived. Whereas the Gumbel distribution is pro-4.2 Brief derivation of the Fréchet and Weibull
duced by exponentially decaying (in the sense of decaying distributions
faster than any power law);s, almost any continuous sim-
ple p1 will lead to the GEV. This includegps that decay as
power laws. Power law;s lead to the Fachet limit of the
GEV, andpss with upper limits lead to the Weibull distribu-
tion.

The form of the distribution of nucleation temperatures,
p1, also determines the scaling of the median freezing tem
perature WIthN. 'We.have already seen that for an exponen- p ) — PlN(Tn) (10)
tial pj, this scaling is IV, Eq. (7). This p1 also leads to a
GumbelP (TF), but otherp;s lead to the same Gumbel form which as we are in & > 1, and 1- P; <« 1 limit, can be
for P but have different scaling dfyep with N. For example  written as
a Gaussiamp leads to &In N)¥/2 scaling Castillo, 1989. N

What this means is that if, for example, data is well fit by a PTp =[1-[1 = AT (T
GumbelP, i.e.£ ~ 0, then we cannot argue thBjep scales ~ exp[—N[1- Py(TP]]. (11)
as InV — although it should be noted thatthand(INN)*?  Armed with this relation, we start with the &het distribu-

scaling are relatively similar so if itis @ Gumbel then we do tjon, The Fechet distribution results from a power-law cu-

have a rough idea of the scalingBjiep. However, if datais  mylative distribution Py, for nucleation temperaturé,
clearly best fit by a IV scaling ofT\yep, then this is good

In this section we briefly show how theé&ahet and Weibull
distributions can be derived from ths of the nucleation
sites, where as befo® (Ty) is the probability that the nucle-
ation temperature at a site is bel@y. As the N nucleation
sites are independent, we always have that the probability
that a droplet has not frozen at a temperafirés

evidence thap1 is indeed an exponential function @, in Pu(Ty) =1— b £>0. (12)
the temperature range of interest. It is stronger evidence for (Tn— TV
an exponentiapy, than the Gumbel distribution providing a Ngte that this is a power-law decay with a lower cutdf,

goog .ﬁt toP. i The parameteb (like s) controls the size of the tail. This
Fitting the GEV could be done following the same meth- o, e ssion holds for the lardg tail, whereP; is close to 1.
ods used to fit the GEV to data in other fields. The book of \j5te that here we have the restriction that 0, so this is a
Castillo (1988 on extreme value statistics discusses ge”erabower-law decay o1 with 7. In Fig. 2b, we have plotted
fitting approaches. It is Wor_th noting that he doe_s_not rec-gn exampleP;. We plot 1— Py not P itself, as 1- P; decays
ommend the s_tandard unwglghted Ieast-_squares_ﬂttmg ProC&s 0, and this is a little clearer to see than a decay to 1. The
dure as that gives a low weight to errors in the talFdifF). o mylative probability 1- P(7y) is the probability that a
SeeCastillo (1988 for suggested weighting functions to be |, |jeation site has a nucleation temperature aliavélow,

minimised in fitting.Castillo (1988 also discusses the fact using thePy of Eq. (L2) in Eq. (11), we have the Rchet
that plots of Ihin(1/P(TF))] as a function ofTg, show a distribution: '

characteristic curvature that dependstofThis can be used

to differentiate between Gumbel, &ahet and Weibull dis-  p (7 ~ exp[— Nb } (13)

tributions. Such a plot should be a straight line if the data (Tr — TL)Y5

follows the Gumbel distribution, while it will curve down for

Weibull-distributed data_, and up for&thet-dlstrlbuteq data. fore, the freezing behaviour does not dependvoandb sep-
Jondeau et a{2007) discuss a related method, which uses arately, only on their product

what are called quantile-quantile or Q-Q plots. Here the tem- v " o, " consider the Weibull distribution. The Weibull

peratute at which the GE.V function fap is a par.t|cular distribution results from a cumulative distributiof;, with
value, is plotted as a function of the temperature in the dataan upper cut-off:

which gives the same value f&. When this is done, then if
the data is indeed well approximated by the GEV, and the
correct value oft is chosen, then the Q-Q plot will be a
straight line (arbitrary values @f andw can be used as they

Note thatV andb always appear as their produdth. There-

1-—c(Tu—To) Y Th< Ty

o e L
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whereTy is the upper cutoff, and is a parameter that (like P1s with an upper cutoff lead to the Weibult(Tg) of

s andb) controls the size of the tail. This expression holds Eq. (15). The median freezing temperatuf®ep, is again
for the largeT tail, where Py is close to 1. Note that here the temperature at which = 1/2, and so here we have that
we have the restriction thd&t < 0, so 1— P; is a positive-

exponent power-law function df,. An example - P1is .0 =T, — (i)E NE (17)
plotted in Fig.2b. In2

In the singular limit, a hard upper cutoffy, to the dis-  The median freezing temperature approaches the upper limit,
tribution of nucleation temperatures, is possible. In eXPer-7, of the nucleation temperatures, &— oco. This is

iment, there will presumably be a limit to how well defined ghown in Fig2a. This hard cutoff to the nucleation tempera-
this cutoff temperature can be. In practice, the Weibull mOd_eItures will presumably be only an approximation to the truth.
should be a good model for experimental data when the INHowever, Eq. 17) should be a good approximation when the

evitable uncertainty iy, call it 7y, is much smaller than  jnevitable uncertainty iy is small in comparison with the
the range of temperatures over which nucleation occurs. Th'%hange ifTyep with .

range of temperatures could be measured by the standard Having determined the scaling diyep with N for all
deviation of the observed nucleation temperatuves, S0 hree classes of the GEV, we can compare these predictions
whenéTy < or, and the Weibull model fits the data well, it experimental findings. There have been a number of
the Welbgll model should be useful. L studies of the average freezing temperature of droplets. Both
Returning to thePy of Eq. (14). If we put this in Eq. L1)  he groplet volume, and the surface area of added impurity
we have the Weibull distribution: have been varied. A plot of the average nucleation temper-
~ —1/¢ atures obtained in early work is shown in Mason’s book
P(Te) = eXp[_NC(TU —ToY ] (15) (Mason 1971, in Fig. 4.2. On the log-linear scale, some
Having derived the Gumbel, &chet, and Weibull distri- data is linear, which is consistent with an exponen_tial-tailed
butions, we can compare them. Example plots are showr1: whereas othe_r data sets appear to be plateauing at large
in Fig. 1. The differences between the three distributions isAroPIEts, suggesting an upper cutoffiig .
particularly clear in the plots of their probability densities " more recentwork, botBroadley et al(2012), andWelti
in Fig. 1b. The Féchet distribution has a much fatter high- €t al-(2019 have studied average nucleation temperatures as
temperature tail than the Gumbel, and a low-temperature cut@ function of the surface area of added clay particles. The
off. So, if the GEV is fit to data with such a sharp lower- clay is illite for Broadley et al(2012), and kaolinite foMVelti
temperature cutoff and/or fat tail, the best fit may be with a®t &l-(2012. We expect the number of nucleation sitas,
£ > 0, implying that a Fechet distribution is a better model to scale with the surface area of addgd clay. The data of
than a Gumbel. The fatter tail of the@ahet comes from a  Broadley etal(2012 seem to be plateauing at large amounts

power-law tail inps, i.e. from a fatter tail in the distribution  ©f @dded illite clay. This is in their Fig. AVelti et al. (2019

in the nucleation temperatures at the individual sites. By con-0PServe a logarithmic scaling of the median nucleation tem-

trast, the Weibull distribution has a high-temperature cutoff, Perature with clay surface area. Thus, the data on the scaling
which implies a high-temperature cutoff jn. For data with of the freezing temperature with system size, suggests that

a sharp upper cutoff to nucleation, the Weibull model may pelCe nucleation is occurring on sites with either an exponen-

best. tially decayingp1, or a p1 with an upper cutoff.
4.3 Scaling ofTiyep with droplet volume and surface 4.4 Validity of the assumption that ;V is the same for
area of added impurity all droplets

An exponentialP; led to a Gumbel distribution, and M If in _experiment, thg variable is the amount_of an impurity
scaling of the median freezing temperature with Here  thatis added, then it seems a safe assumptionhatsur-

we derive the corresponding scalings with system size fof@ce area of added impurity, and that two droplets with the
power-lawPys, andPys with upper limits. same amount of added impurity have the same number of

Power-lawP;s lead to the FechetP (Tg) of Eq. (13). The nucleation sitesN. This just relies on there being a density
median freezing temperatur@yep, is the temperature at of nucleation sites on the surface that is approximately con-

which P = 1/2, and so here we have stant. _ _ _
However, if the variable is droplet volunig, then we are

§ £ relying onN « V and each droplet having the same number
Tveo =Ti + (ﬁ) N°. (18)  of nucleation sitesN. If the nucleation sites are distributed
over a large numben, of impurity particles then the cen-
The median freezing temperature is a power-law functiontra| limit theorem of statistics tells us that the variation\in
of the number of nucleation site8]. This is illustrated in from one dr0p|et to another will be of Orde\f/nl/z_ Thus

Fig. 2a. for n > 1 this will be small and our assumption of constant

Atmos. Chem. Phys., 13, 7215223 2013 www.atmos-chem-phys.net/13/7215/2013/
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N will be only a small approximation. However jifis small, There is a caveat to this statement. This is thaf¢Fr) to

i.e. each droplet has only a few impurity particles, then evenbe given by the GEV, it is necessary that over the temperature
though each may have many nucleation sites, there will beange of interestP1(7,) should be given by a single contin-
large fluctuations inV from one droplet to another of the uous function, such as a power law or exponential. This may
same volume. These fluctuations could potentially cause denot be the case if there is more than one type of nucleation
viations from the (GEV) distribution, due to some droplets site (perhaps due to multiple particle species) which all make

having many more nucleation sites than others. significant contributions ta; but have different dependen-
o _ o cies on temperature. Thus it may be that even in the singular
4.5 Validity of the singular limit limit, P(T¢) deviates from the GEV in the presence of nu-

. . . . cleation on a complex mixture of impurities. Then there is
The assumption that nucleation occurs at a site at a premselMo general theory. Here calculatimyT¢) can only be done

determined temperaturé, is presumably only an approx- i yhe distribution of nucleation temperatures at the sites is
imation to the truth. If ice nucleation in a droplet occurs at known p1. This will presumably be difficult even for simple
a temperature-dependent stochastic r&td,), then nucle- o yrities. However, if we have experimental datafafT),
ation will occur over a temperature range of some witlffy. then Eq. L1) tells us that if we plot IrP (T¢) as a function of

This width is expected to scale as Tr, then we should be plotting N(1— P1). Then what we
19R\"L are plotting is directly proportional to the cumulative proba-

ATs = (——) . (18) bility of finding a nucleation site with a nucleation tempera-
ROT J p=rcooL ture abovelr. This may aid in interpreting data fat(Tr).

The expression in brackets is the ratio of the temperature Microscopic models of nucleation, for example those
derivative of the rate, to the rate itself. One over this ratio PaS€d on classical nucleation theory, are also used to fit and

is an approximation to the change in temperature needed tgnderstand experimental resulSaptrell and Heymsfield
double the nucleation rate. This ratio is evaluated at a tem2005 Niedermeier et al.2011). They can provide insight
perature such that the nucleation rake.equals the cooling into droplet freezing data _thgt a purely statistical mpdel such
rate, Rcool, in experiment. Note that it is non-negligible as- as an extreme-value-statistics model cannot provide. How-

sumption that a well-defined nucleation rate exists in thesé€Ver: in the singular limit 475 < w) almost any micro-
systems $ear 2013. scopic model will give the GEV. Thus in this limit any two

In words, the expected spread in nucleation temperatureé‘,“crosc‘)pic models with similalP; will be essentially equiv-
ATs due to a temperature-dependent nucleation rate, is af@'€nt: o _ ,
proximately equal to the temperature change needed to dou- Finally, in practice if data deviates from the GEV, it may

ble the nucleation rate. This temperature change is evaluatep€ difficult to assess why, as there could be several reasons

when the nucleation rate equals the cooling rate. for the deviations. These include (1) effects of a stochas-
The singular limit is then the limito > ATs. When the tic temperature-dependent rate, of the type that classical nu-

width in the spread of freezing temperatures due to the spreagi€ation theory predicts; (2) a complgx due to a mix-

in characteristic nucleation temperaturég, is much larger ~ ture of surfaces, all making significant contributions to nu-
than the spread due to the stochastic nucleation rate, then siletion; (3) non-classical-nucleation-theory time-dependent
gular models can be a good approximation to experimentaprocesses* for example, irreversible chemical processes at

data. But when the spread due to the stochastic nature of theHrfaces that change the ability of a surface to promote ice
nucleation,ATs is comparable to that due to the variability Nucléation; and (4) each droplet contains only a handful of

in nucleation temperatures, then singular models will be poofMPUrity particles with the nucleation sites, and so some
approximations. droplets have many more nucleation sitd§ than others.

Distinguishing between the four may be difficult, although
varying the cooling rate may be one way to eliminate at least
5 Conclusions some of them.

Singular models have been and are being used to fit expers 1 Suggestions for future work

mental dataNlason 1971, Pruppacher and Klet1 978 Vali,

2008 Niedermeier et al.201Q Broadley et al.2012. The |t may be worthwhile to do what is standard practice in other
fact that they work so well suggests that in many situationsfields where extreme-value statistics are used, and to fit the
an explicit time dependence does not need to be considereEyV distribution to the data. Here the data is the fraction of
Here we have shown within a general singular model that thejroplets that have frozen, as a function of temperature. If the
distribution of freezing temperatures should be given by thefit is good, then the data would be consistent with an extreme-
GEV. This follows if, asPruppacher and Kle{1978 do, a  value model, and if the fittegl is close to zero, it would sug-
singular model is defined as being assumptions 1-4,,/and  gest that the high" tail of the nucleation temperatures of
is a simple function of temperature. individual sites is indeed exponential or similar, i.e. decays
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faster than a power lavNjcodemi 2009. However, a value If we compare this equation with Eg)( we see that they

of & > 0 suggests a power law decay far, whileé <0sug-  are the same if In=1/w,, anda/u = Ns. Also, from this
gests an upper limit beyond whighy = 0. In other words, equation it is easy to show that the median nucleation tem-
the value of gives information on the form gf. perature Iivep, scales as 1/u) ocINAV.

Another point of view, is that assumptions 1-4 (only), lead Levine's Eq. (2) is actually his approximation for the prob-
to the GEV, and so the GEV can be used to decouple assumbility density, p, that nucleation has occurred at a tempera-
tions 1-4, from assumption 5. Assumptions 1-4 are presumture T not the cumulative probability that it has not occurred
ably only approximately true. In particular, assumption 2 thatdown to a temperatur€. This p = dP/dT. The expression
a site induces nucleation at a temperature independent ah Levine’s Eg. 2 is not quite th& derivative of Eq. A2), as
cooling rate is presumably only approximate. To rigorously Levine treats" as a discrete variable when it is a continuous
test for violations of this assumption, which is at the heart of variable. Thus the expression in his Eq. (2) is, for this reason,
singular models, we would like to avoid assumption 5, andapproximate. But this should not obscure the fact that Levine
so should tests for deviations from the GEV, not from the was the first to realise that the extremes of the distribution of
Gumbel distribution. nucleation sites determine the nucleation behaviour, and that

A final point to note is that the higli-tail in p1, notonly  the use of what is essentially extreme-value statistics can be
determinesP(¢), but also determines the scaling of the me- used to model freezing behaviour.
dian nucleation temperature witfi. In general, the fatter the
tail in p1, the faster the median nucleation temperature variesA knowled . | hank Mithen f
with N. This is illustrated in Fig2a. So if a fit to aP (¢) pro- cknowledgementst is a pleasure to thank James Mithen for

bringing Turnbull’s and hence Levine’s work to my attention, and
duces & > 0 then the volume dependence should be faster, gind y

. . . . Ray Shaw for helpful discussions. | acknowledge financial support
than logarithmic, the median freezing temperature shoult,,, psrc (EP/J006106/1).

scale asN¢. A best fit value of¢ <0 suggests a Weibull

distribution, which has an upper cutoff and hence an uppekgdited by: M. Petters

limit to the median nucleation temperature as droplet volume

is increased.
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