Atmos. Chem. Phys., 13, 6553–6554, 2013 www.atmos-chem-phys.net/13/6553/2013/ doi:10.5194/acp-13-6553-2013 © Author(s) 2013. CC Attribution 3.0 License.

Corrigendum to

"Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)" published in Atmos. Chem. Phys., 13, 2607–2634, 2013

Y. H. Lee¹, J.-F. Lamarque², M. G. Flanner³, C. Jiao³, D. T. Shindell¹, T. Berntsen⁴, M. M. Bisiaux⁵, J. Cao⁶, W. J. Collins^{7,*}, M. Curran⁸, R. Edwards⁹, G. Faluvegi¹, S. Ghan¹⁰, L. W. Horowitz¹¹, J. R. McConnell⁵, J. Ming¹², G. Myhre¹³, T. Nagashima¹⁴, V. Naik¹⁵, S. T. Rumbold⁷, R. B. Skeie¹⁴, K. Sudo¹⁶, T. Takemura¹⁷, F. Thevenon¹⁸, **B.** Xu¹⁹, and J.-H. Yoon¹⁰ ¹NASA Goddard Institute for Space Studies and Columbia Earth Institute, New York, NY, USA ²National Center for Atmospheric Research (NCAR), Boulder, CO, USA ³Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI, USA ⁴Center for International Climate and Environmental Research Oslo (CICERO) and Department of Geosciences, University of Oslo. Oslo. Norway ⁵Desert Research Institute, Nevada System of Higher Education, Reno, NV, USA ⁶State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China ⁷Met Office, Hadley Centre, Exeter, UK ⁸Department of the Environment and Heritage, Australian Antarctic Division, Antarctic Climate and Ecosystem Cooperative Research Centre, Tasmania, Australia ⁹Department of Imaging and Applied Physics, Curtin University, Bentley, WA, Australia ¹⁰Pacific Northwest National Laboratory, Richland, WA, USA ¹¹NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA ¹²National Climate Center, China Meteorological Administration, Haidian, Beijing, China ¹³Center for International Climate and Environmental Research Oslo (CICERO), Oslo, Norway ¹⁴National Institute for Environmental Studies, Tsukuba-shi, Ibaraki, Japan ¹⁵UCAR/NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA ¹⁶Dept. of Earth and Environmental Science, Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan ¹⁷Research Institute for Applied Mechanics, Kyushu University, Fukuoka, Japan ¹⁸F.A. Forel Institute, University of Geneva, Versoix, Switzerland ¹⁹Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China ^{*} now at: Department of Meteorology, University of Reading, Reading, UK Correspondence to: Y. H. Lee (yunha.lee@nasa.gov)

The number shown below the colorbar used in Fig. 16 was incorrect. Figure 16 with the corrected colorbar is presented below. For example, the yellow color was used to show 0.2 to 0.5 W m^{-2} (as shown in the figure below), but it was mistakenly displayed as 0.1 to 0.2 W m^{-2} . This does not affect any conclusions. It affects only the forcing number we used to describe the spatial distributions (see below; corrections are in bold).

Fig. 16. Global distributions of the offline BC albedo forcing in (a) 2000 relative to 1850 and (b) 1980 relative to 1850.

In Abstract – "The spatial distributions of the offline BC albedo forcing in 2000 show especially high BC forcing (i.e., over 0.2 W m^{-2}) over Manchuria, Karakoram, and most of the former USSR."

In Sect. 5 – "In 2000, BC albedo forcing is positive everywhere with the highest BC forcing (i.e., over 0.5 W m^{-2}) over the Manchuria and Karakoram areas and relatively high forcing (i.e., over 0.2 W m^{-2}) over most of the former USSR."

In Conclusions – "For spatially distributed BC albedo forcing in 2000, we estimate strong positive everywhere with high forcing (i.e., over $0.2 \,\mathrm{W \,m^{-2}}$) over Manchuria, Karakoram, and most of the former USSR."