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Abstract. The land surface plays a crucial role in regulat-
ing water and energy fluxes at the land–atmosphere (L–A)
interface and controls many processes and feedbacks in the
climate system. Land cover and vegetation type remains one
key determinant of soil moisture content that impacts air
temperature, planetary boundary layer (PBL) evolution, and
precipitation through soil-moisture–evapotranspiration cou-
pling. In turn, it will affect atmospheric chemistry and air
quality. This paper presents the results of a modeling study
of the effect of land cover on some key L–A processes with
a focus on air quality. The newly developed NASA Unified
Weather Research and Forecast (NU-WRF) modeling system
couples NASA’s Land Information System (LIS) with the
community WRF model and allows users to explore the L–
A processes and feedbacks. Three commonly used satellite-
derived land cover datasets – i.e., from the US Geological
Survey (USGS) and University of Maryland (UMD), which
are based on the Advanced Very High Resolution Radiome-
ter (AVHRR), and from the Moderate Resolution Imaging
Spectroradiometer (MODIS) – bear large differences in agri-
culture, forest, grassland, and urban spatial distributions in
the continental United States, and thus provide an excellent
case to investigate how land cover change would impact at-
mospheric processes and air quality. The weeklong simu-
lations demonstrate the noticeable differences in soil mois-
ture/temperature, latent/sensible heat flux, PBL height, wind,
NO2/ozone, and PM2.5 air quality. These discrepancies can
be traced to associate with the land cover properties, e.g.,

stomatal resistance, albedo and emissivity, and roughness
characteristics. It also implies that the rapid urban growth
may have complex air quality implications with reductions
in peak ozone but more frequent high ozone events.

1 Introduction

Land surface processes exert a profound impact on the over-
laying atmosphere through a series of “chain processes”,
which links soil moisture (SM) to plant evapotranspiration
(ET) to planetary boundary layer (PBL) evolution and wa-
ter/energy flux entrainment, as well as to cloud/precipitation
development (e.g., Sun and Bosilovich, 1996; Seneviratne et
al., 2010), whereby the physical characteristics of land use
and land cover (LULC) regulate moisture and energy ex-
changes between the land and the atmosphere (L–A). For
example, land surface emissivity, which is the ratio of en-
ergy emitted from land to that from an ideal blackbody at
the same temperature, is used to calculate the upward long-
wave radiation from the land surface following the Stefan–
Boltzmann law (e.g., Jin and Liang, 2006). The closer to
a value of 1 the emissivity, the better the land as an emit-
ter. Terrestrial albedo, or reflection coefficient, denotes for
the ability of land surface to reflect the incoming short-wave
solar radiation into the atmosphere, which is also important
to modeling the land surface energy balance. The larger the
albedo, the less energy the land surface absorbs. Leaf area
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index (LAI) impacts the partition of surface heat fluxes and
regulates light extinction within the canopy that directly af-
fects the leaf stomatal conductance. LAI and stomatal resis-
tance (RS) parameters are required to estimate the canopy
resistance, which, together with the green vegetation frac-
tion (SHDFAC), is subsequently used to calculate plant ET
(Seneviratne et al., 2010; Kumar et al., 2011) that determines
the water cycle in the land–biosphere–atmosphere system.
Generally, the canopy resistance is positively proportional to
RS but negatively to LAI. Large canopy resistance leads to
small ET (Kumar et al., 2011) and slows dry deposition of
an atmospheric species (Charusombat et al., 2010). Surface
roughness length (Z0) parameterizes the roughness charac-
teristics of the terrain and affects the intensity of mechanical
turbulence and fluxes of various quantities above the surface.
Urban and forest LULCs bear highZ0 values that tend to
reduce the near-surface wind speed.

Since the pioneering work by Deardorff (1978), who de-
veloped the first detailed parameterization of the land surface
that was efficient enough to be applied in the atmospheric
numerical simulation, many studies have been carried out to
investigate the land surface effect on boundary layer meteo-
rology and, more recently, on air quality. For example, Sun
and Bosilovich (1996) examined the sensitivity of boundary
layer meteorology to the selection of land surface parame-
ters – e.g., vegetation cover, minimum RS,Z0, and initial
SM – and found out that the SM gave the largest impact on
the PBL height (PBLH) and surface heat budget. Kohler et
al. (2010) studied the impact of SM on boundary layer char-
acteristics – e.g., temperature and PBLH – using the observa-
tions from the African Monsoon Multidisciplinary Analysis
(AMMA) campaign. Santanello et al. (2011) used a “process
chain” to describe how SM affected the precipitation. Cheng
et al. (2008) demonstrated that the accurate representation of
land surface properties was crucial to modeling the realis-
tic meteorology and air quality with a model study focused
on the Houston-Galveston metropolitan areas. Ganzeveld et
al. (2010) investigated the impacts of LULC changes on at-
mospheric chemistry at a global scale and found that the
overall influence on reactive trace-gas exchanges was not
very large due to the compensation effects; for example, the
reduction in soil NO emissions from tropical forest clearing
was made up for by a decrease in NO2 foliage uptake.

Though impacts of the land surface on PBL and chemistry
processes have been demonstrated in these studies, the prac-
tical issue of how to best represent these processes in coupled
models remains unresolved. In particular, the vast arrays of
land surface schemes often use different land cover datasets
that are applied at different spatial resolutions. This makes
intercomparison across different models or even within mod-
els of different versions and datasets untenable. This issue
will only grow in importance as the number of satellite-
derived datasets continues to increase along with the model
complexity. To this end, this study addresses the LULC im-
pacts on atmospheric processes and air quality from a differ-

ent perspective. Instead of arbitrarily adjusting land surface
parameters or relying on models to project LULC changes,
this study employs three widely used and observation-driven
LULC datasets within one modeling system. These three
datasets are from the US Geological Survey (USGS, Love-
land et al., 2000) and University of Maryland (UMD, Hansen
et al., 2000), which are based on the Advanced Very High
Resolution Radiometer (AVHRR), and from the Moderate
Resolution Imaging Spectroradiometer (MODIS, Friedl et
al., 2002). They display a large discrepancy in LULC clas-
sification and distribution, and provide an excellent proxy
case to investigate how LULC and its change would affect
the atmospheric chemistry. The newly developed NASA Uni-
fied Weather Research and Forecasting (NU-WRF) model-
ing system is used to explore this, utilizing the flexible land
surface model (LSM) interface of NASA’s Land Information
System (LIS, Kumar et al., 2006; Peters-Lidard et al., 2007).

The paper presents the model, LULC data, and experimen-
tal design details in Sect. 2. Section 3 then follows with re-
sults of the most relevant parameters (e.g., SM, surface tem-
perature, wind, and PBLH), followed by the analysis of the
land surface emissions, dry deposition, and air quality focus-
ing on ozone chemistry. Lastly, the implication of urbaniza-
tion to air quality is briefly discussed, followed by the sum-
mary and conclusions.

2 NU-WRF modeling system and evaluation

2.1 Model description

NU-WRF was developed from the advanced research version
of WRF (Michalakes et al., 2001) and WRF-Chem (Grell et
al., 2005). Inheriting all the WRF features – e.g., Eulerian
mass dynamic core, and 2-way nesting and physics – NU-
WRF incorporates NASA’s unique experience and capabili-
ties by fully integrating the LIS, the Goddard radiation (Chou
and Suares, 1999) and microphysics (Shi et al., 2010; Tao et
al., 2011) schemes, and the Goddard Chemistry Aerosol Ra-
diation and Transport (GOCART) model (Chin et al., 2002)
into a single modeling framework. In addition, it links to the
Goddard Satellite Data Simulator Unit (G-SDSU, Matsui et
al., 2009), allowing the conversion of modeled parameters
to radiance and backscattering that can directly be compared
with the satellite level-1 measurements at a relevant spatial
and temporal scale. Overall, NU-WRF provides the model-
ing community with an observation-driven integrated system
that represents aerosol/chemistry, cloud, precipitation, and
land processes at satellite-resolved scales (roughly 1–25 km).

LIS is a software framework that drives a suite of land
surface models (LSMs) with satellite/ground-based observa-
tions and model reanalysis data. It provides a flexible and
satellite-based high-resolution representation of land surface
physics and states (e.g., soil and vegetation), which are di-
rectly coupled to the atmosphere. It can spin-up land surface
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conditions on a common grid to initialize NU-WRF, and al-
low various plug-ins such as land data assimilation, param-
eter estimation, and uncertainty analysis (Santanello et al.,
2011, 2013). LIS can be run both in offline and coupled
mode for NU-WRF. The major advantages of this model-
ing arrangement are multifold (Kumar et al., 2008). First,
LIS is capable of conducting a long-term offline “spin-up”
to allow the land surface and soil profiles to reach thermody-
namic equilibrium, which otherwise is impossible in WRF.
The initial soil conditions rendered by this long-term offline
LIS spin-up resulted in an improved simulation of timing and
evolution of a sea-breeze circulation over portions of north-
western Florida (Case et al., 2008). Case et al. (2011) also
investigated the impact of a LIS spin-up on summertime pre-
cipitation over the southeastern US. They found that the near-
surface SM was improved in the spin-up, and that there was
measurable impact of the spin-up on the coupled near-surface
and PBL conditions relative to that using the default land ini-
tialization via WRF. Second, the offline LIS can be run us-
ing the same LSM and at the same resolution as the online
version, thus making the data internally consistent and elim-
inating the need for horizontal spatial interpolation. Last but
not the least, the LIS framework allows users to introduce
new ancillary datasets (e.g., land cover, soil type, vegetation
condition) into NU-WRF, which makes this study possible.

2.2 Experimental design and model set-up

Three sets of NU-WRF simulations have been carried out
with the identical physics, gas and aerosol chemistry, emis-
sions, and meteorological and chemical lateral boundary
conditions but different LULC representation. The key com-
mon options for NU-WRF modeling are the Goddard micro-
physics and the long/short-wave radiation scheme, LIS as the
land surface component (Kumar et al., 2008), the Monin–
Obukhov surface layer scheme, the Yonsei University plane-
tary boundary layer scheme (YSU, Hong et al., 2006), the
new Grell cumulus scheme – an improved Grell–Devenyi
ensemble cumulus scheme (Grell and Devenyi, 2002) that
allows subsidence spreading for high-resolution simulation
(Lin et al., 2010), the second generation regional acid de-
position model (RADM2, Stockwell et al., 1990; Gross and
Stockwell, 2003) gas-phase chemical mechanism, and the
GOCART aerosol scheme. Over a multiyear spin-up, LIS
generates the physical states of soil moisture and soil tem-
perature that are then fed into NU-WRF as the initial land
surface conditions. The LIS spin-up improves upon common
approaches of employing coarse atmospheric data initializa-
tion of the land surface and of using a “cold-start” initial con-
dition.

To investigate the effect of LULC on atmospheric pro-
cesses and air quality, three commonly used LULC datasets
from USGS, UMD, and MODIS have been applied within the
LIS framework to the Noah LSM (Ek et al., 2003) version 3.2

with the corresponding NU-WRF experiments designated as
E USGS, EUMD, and EMODIS, respectively.

Within the Noah LSM, the State Soil Geographic
(STATSGO, Miller and White, 1998) soil texture database,
along with the three LULC datasets, were applied. The at-
mospheric forcing data for the spin-up period were provided
by the North American Land Data Assimilation System (NL-
DAS, Mitchell et al., 2004). Rodell et al. (2005) examined
the sensitivity (and in turn, requirements) of equilibration to
the length of the spin-up run, which was found to vary with
different climate regimes (e.g., cold and dry regions tended
to take longer to equilibrate than warm and moist locales)
and soil type, but that a 3–4 yr spin-up was sufficient in most
cases. Case et al. (2008), who applied LIS-WRF to weather
forecast, found that a 2 yr offline spin-up was warranted to
ensure convergence to a soil state equilibrium. Following the
findings, the offline LIS was run for 3.5 yr leading to 26 May
2010. The output from the LIS spin-up was then used to ini-
tialize soil temperature and soil moisture in NU-WRF sim-
ulations. In the coupled simulation, the NU-WRF-generated
atmospheric forcing variables drove the Noah LSM within
LIS to produce surface energy and water fluxes that were fed
back into NU-WRF at each time step. In this manner, a con-
sistent LSM configuration was employed in both NU-WRF
and offline LIS.

Anthropogenic emissions in this study were from the 2005
National Emissions Inventory compiled by the US Envi-
ronmental Protection Agency (http://www.epa.gov/ttnchie1/
net/2005inventory.html, USEPA). Fire emissions were from
the Global Fire Data version 3 (GFED3, van der Werf et
al., 2010; Mu et al., 2011). Biogenic emissions were cal-
culated online using the Model of Emissions of Gases and
Aerosols from Nature version 2 (MEGAN2, Guenther et al.,
2006). Dust emissions were estimated online based on the
surface wind speed, soil moisture, and soil erodibility map
that was originally generated for global model GOCART
(Ginoux et al., 2001) and updated with higher spatial reso-
lution (0.25◦ × 0.25◦).

The NU-WRF domain centered over the contiguous US
(CONUS) with a horizontal spatial resolution of 20 km. In
all, there were 245× 163 horizontal grid cells, and 40 ver-
tical levels extending from surface to 50 mb. The meteoro-
logical initial and lateral boundary conditions (LBC) were
derived from the 6 h Final (FNL) Operational Global Anal-
ysis data by the National Centers for Environmental Predic-
tion (NCEP). The chemical LBC was based on the 6 h re-
sults from the Model for Ozone And Related chemical Trac-
ers (MOZART, Emmons et al., 2010). The simulation period
was from 26 May to 3 June 2010, and the analysis was based
on the final 5-day simulation (30 May–3 June) allowing 3
days for the model spin-up (26–29 May) following the rec-
ommendation by Berge et al. (2001), who pointed out that
local emissions and meteorology would take control and the
uncertainties in initial conditions would have a minimal im-
pact on air quality simulation after the 3-day spin-up.
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Table 1.Percentage agreements of MODIS/USGS, MODIS/UMD, and USGS/UMD for eight common land classifications.

Land Category MODIS and USGS (%) MODIS and UMD (%) USGS and UMD (%)

Evergreen Needleleaf Forest 76.2 62.3 46.3
Evergreen Broadleaf Forest 0.3 9.6 3.1
Deciduous Broadleaf Forest 67.3 56.9 38.3
Mixed Forests 51.3 37.5 34.5
Barren or Sparsely Vegetated 42.0 63.9 91.3
Grasslands 43.4 47.0 57.0
Urban and Built-up Land 36.7 44.3 96.3
Croplands 64.3 72.1 53.3

Fig. 1.LULC maps from USGS, UMD, and MODIS. 1 (grey) represents barren or sparsely vegetated land; 2, croplands; 3, cropland/natural
land mosaic; 4, grasslands; 5, open shrubland; 6, closed shrubland; 7, woodland; 8, mixed forests; 9, deciduous broadleaf forest; 10, evergreen
needleleaf forest; 11, evergreen broadleaf forest; 12 (red), urban and built-up land.

2.3 LULC data

Three LULC datasets from USGS, UMD, and MODIS have
been applied to the CONUS domain at a 20 km resolution
using a dominant class aggregation approach from the native
1 km resolution data. The USGS and UMD data were both
derived from the AVHRR satellite measurements based on
the maximum monthly normalized difference vegetation in-
dex (NDVI) composites collected from April 1992 through
March 1993 (Hansen and Reed, 2000). While the USGS data
were created using the 12-monthly maximum NDVI values
as the inputs into an unsupervised clustering algorithm, the
UMD data were based on all five AVHRR channels (rang-
ing from 0.58 to 12.5 µm) and the NDVI that were used to
derive the 41 multitemporal metrics with a supervised clas-
sification tree algorithm. The MODIS data were also derived
using a supervised classification method that relied on both
a global site database and the spectral information collected
by MODIS. It was based on the collection four MODIS/Terra
data from the period of 1 January to 31 December 2001 (http:
//duckwater.bu.edu/lc/mod12q1.html). The system for terres-
trial ecosystem parameterization was developed and applied
to create the global site database to serve as the training sites
for MODIS land classification estimate and evaluation. Spec-
tral information from MODIS’s seven land bands and the en-
hanced vegetation index product were used to provide the
amount and fractional cover of live vegetation within each
pixel. It should be noted that this study is not intended to as-

sess the LULC in a particular year but to examine the impact
of different LULC on air quality. Therefore, the data based on
different satellite sensors/methods and different years would
provide the necessary LULC contrast for the purpose.

Table 1 shows the percentage of areas in agreement for the
eight land categories that are commonly labeled for all three
datasets. It can be seen that in the areas designated as ever-
green needleleaf forest in MODIS, only 76.2 % bear the same
category in USGS and 62.3 % in UMD. The discrepancies
for the evergreen broadleaf forest are especially large, prob-
ably because the overall area of this category is small and
the algorithms employed in three datasets are insensitive to
distinguishing it in the CONUS domain. The agreement be-
tween USGS and UMD for urban and built-up land is more
than 95 % largely because both UMD and USGS datasets
adopt this land type from the populated places’ data layer
in the Digital Chart of the World (Danko, 1992). Combin-
ing these eight land categories together, the overall agree-
ments of MODIS/USGS and MODIS/UMD are 55.8 % and
53.7 %, respectively. The overall agreement between USGS
and UMD stands at 47.8 %.

Following the method by Hansen and Reed (2000), the
land cover categories (non-water) in each of three LULC
datasets were aggregated and compared with each other
for the CONUS domain. In addition to the eight common
LULCs listed in Table 1, four more LULCs were added. They
were (1) cropland/natural land mosaic (cropland/grassland
mosaic and cropland/woodland mosaic from USGS, none
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from UMD, and cropland/natural vegetation mosaic from
MODIS); (2) open shrubland (mixed shrubland/grassland
and savanna from USGS, open shrublands from UMD, and
open shrublands and savanna from MODIS); (3) closed
shrubland (shrubland from USGS, wooded grassland and
closed shrublands from UMD, and closed shrublands and
woody savannas from MODIS); and (4) woodland (wooded
wetland and wooded tundra from USGS, woodland from
UMD, and none from MODIS). Figure 1 shows the spa-
tial distributions of the comparison. Both UMD and MODIS
replace the large portions of open shrubland designated in
USGS in the Central Valley of California with croplands. In
comparison to USGS and MODIS, UMD replaces the large
portions of cropland and natural land mosaic with closed
shrubland from northwestern to southeastern Minnesota; the
large portions of cropland with closed shrubland along the
border of Iowa and Missouri; the large potions of croplands,
grasslands, and open shrubland with closed shrubland in
eastern Kansas, central Oklahoma, and eastern Texas; and the
large portions of cropland and cropland mosaic with closed
shrubland in the central Florida. Compared with USGS and
UMD, MODIS expands the urban and built-up land to twice
as much. These LULC differences among the three datasets
would cause large impacts on atmospheric processes and air
quality, as will discussed in the following sections.

The LULC influences the atmospheric processes and air
quality through the various parameters pre-set in NU-WRF.
For example, soil moisture (SM) plays a key role in regulat-
ing the land water and energy balances, as well as in affecting
the exchanges of trace gases and particles between land and
atmosphere (Seneviratne et al., 2010). Its estimate in NU-
WRF is based on a series of LULC parameters. Conceptually,
Eq. (1) governs the land surface water mass balance:

dSM

dt
= P − ET− SR− D, (1)

whereP is the precipitation, ET is the evapotranspiration, SR
denotes for the surface runoff, andD is the drainage. Equa-
tions (2) through (4) depict the land surface energy balance:

dE

dt
= Rn − LH − HFX − GFX (2)

Rn = (1− albedo) · SWin + LW in − LWout (3)

LWout = emissivity· σ · T 4, (4)

whereRn is the net radiation on surface as a function of
surface albedo, incoming short-wave (SWin) and longwave
(LW in) radiation, and outgoing longwave radiation (LWout).
LH is the latent heat flux, HFX is the sensible heat flux, and
GFX is the ground heat flux.σ is the Stefan–Boltzmann con-
stant andT is the land surface temperature. It is readily seen
that surface water and energy balances are coupled through
ET and LH, which are directly linked to SM.

Table 2 summarizes the land areas and key parameters of
each LULC dataset that are employed in the Noah LSM.

Each land cover class is associated with a particular pa-
rameter value as governed by lookup tables in Noah. These
parameters are crucial to the balances of land–vegetation–
atmosphere energy, momentum, and water. For example,
land surface emissivity and albedo are important for deter-
mining L–A energy exchange (Eqs. 2 through 4), while SHD-
FAC, LAI, and RS are keys to estimate ET. Working to-
gether, these LSM parameters contribute to the solving of the
land surface energy and water balance in the model, which
subsequently are coupled to and impact upon important at-
mospheric processes – e.g., temperature, wind, cloud, and
boundary layer structure, as well as atmospheric chemistry
and air quality.

2.4 Model evaluation

The results of the NU-WRF simulations were compared to
the available observations from both ground and space plat-
forms. The measurements of two meteorological parameters,
air temperature at 2 m (T 2) and water vapor content at 2 m
(Q2), were obtained from the NCEP ADP Global Upper Air
and Surface Weather Observations database (ADP:http://rda.
ucar.edu/datasets/ds337.0/). The measurements of two sur-
face air quality components, O3 and particulate matter with
aerodynamic diameter less than 2.5 µm (PM2.5), were ob-
tained from the Air Quality System (AQS) maintained by the
USEPA (http://www.epa.gov/ttn/airs/airsaqs/). The aerosol
optical depth (AOD) observations at various wavelengths
were obtained either from the ground based Aerosol Robotic
Network (AERONET,http://aeronet.gsfc.nasa.gov/) or from
the MODIS sensors on board the satellites Terra and Aqua, as
well as the Multi-angle Imaging Spectroradiometer (MISR)
sensor onboard Terra (http://disc.sci.gsfc.nasa.gov/giovanni/
overview/index.html). Three statistical measures were com-
puted for the model evaluation. They are the normalized bias
(NB), normalized gross error (NGE), and correlation coeffi-
cient (R value).

Table 3 lists the comparison statistics for the experiments.
E USGS is chosen as the baseline simulation due to its wide
usage in the WRF modeling community. The domain av-
erage bias forT 2 is less than 1 K, with the largest nega-
tive bias (approximately 2 K) found in the northeastern US.
The NGE forQ2 ranged from 10.2 % in the southeastern
US to 23.1 % in the Rocky Mountain areas with the domain
average as about 14 %. While NU-WRF simulated surface
O3 shows less than 20 % NGE and more than 0.6R value
when averaged over the entire domain, its performance on
PM2.5 is lackluster. Figure 2 illustrates the probability dis-
tributions of surface O3 and PM2.5 statistics from each in-
dividual site. Overall, 78.6 % of the 994 O3 sites have NB
within ±15 % and 99.2 % have NGE less than 35 %, in which
around 78 % sites satisfy both aforementioned thresholds that
were recommended by USEPA (1991) for acceptable perfor-
mance of a photochemical model. On the other hand, 58.5 %
of the 470 PM2.5 sites have NB within±30 % and 50.2 %
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Fig. 2.Probability distributions of NB and NGE from individual site for the EUSGS.

have NGE smaller than 50 %. When examining the model
results integrated through the entire vertical layers (column
AOD), NU-WRF commonly underestimates aerosols in com-
parison with the AERONET and satellite measurements. It
compares better to the AERONET AODs but noticeably
worse to both the MODIS and MISR observations. Both the
E UMD and EMODIS yield the similar statistics for the
model/observation comparison when averaged over the en-
tire CONUS domain (Table 3). If only urban grids are se-
lected for comparison, however, the EMODIS gives the least
biases for both ozone (2.4 % NB vs. more than 5 % from the
E USGS and EUMD) and PM2.5 (7.7 % NB vs. 26.1 % for
the EUSGS and 16.9 % for the EUMD).

3 Results and discussion

In order to quantify the impacts of LULC data on the com-
plex interactions of the coupled L–A system, the results are
broken down according to the “process chain” of Santanello
et al. (2011). This enables the causal effects of different land
cover types and associated parameters to be distinguished as
the effects are felt into the atmosphere and chemistry com-
ponents of the model.

3.1 Soil moisture (SM) and soil temperature (ST)

Figure 3 (top panels) shows the spatial distributions of 5-
day average SM and ST over the CONUS domain from the

E USGS. In general, the soil is wet in eastern US and dry in
the southwest region (left top panel). Over 0.3 m3 m−3 val-
ues are common in the Midwest and the Great Plains, where
the dominant LULC is cropland or cropland/natural land mo-
saic. High SM is also found along the North Pacific coast ar-
eas and northern Montana. On the other hand, low SM (less
than 0.06 m3 m−3) is seen in southeastern California and the
central boarder areas of Arizona and Utah, whose LULC is
barren land or shrubland. The average SM spatial pattern fol-
lows closely to that of the initial SM from the 3.5 yr spin-up
simulation of the offline LIS, implying a long soil memory
that warrants an extended LIS spin-up to allow reaching equi-
librium.

In comparison with the EUSGS, EUMD yields 30–50 %
wetter soil in large portions of eastern Texas and central
Florida (left middle panel) because the woodland and closed
shrubland designated in UMD have larger RS (Table 2) than
that of the designated cropland in USGS, which results in less
ET and thus retains water better. In addition, EUMD pro-
duces approximately 15 mm more precipitation (figure not
shown) over the central Florida for the simulation period that
may also contribute to the wetter soil there. Urban LULC
features large RS and low LAI (Table 2) and urban expan-
sion found in MODIS leads to small ET that explains the
8 % more soil water than that based on USGS whose land
cover is designated as cropland (left bottom panel). Urban
LULC also bears lowalbedoandemissivity(Table 2), which,
based on Eqs. (3) and (4), allows more energy to be ab-
sorbed by land. It subsequently leads to an approximately
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Table 2.Land cover classification and its associated key parameter values.

Land Category Area (km2) Emissivity SHDFAC Z0 (m) LAI RS (s m−1) Albedo

USGS (24)

Urban and Built-up Land 43 600 0.880 0.10 0.50 1.00 200.0 0.15
Dryland Cropland and Pasture 1 303 200 0.92–0.985 0.80 0.05–0.15 1.56–5.68 40.0 0.17–0.23
Irrigated Cropland and Pasture 80 400 0.93–0.985 0.80 0.02–0.10 1.56–5.68 40.0 0.20–0.25
Mixed Cropland and Pasture 0 0.92–0.985 0.80 0.05–0.15 1.00–4.50 40.0 0.18–0.23
Cropland/Grassland Mosaic 977 200 0.92–0.980 0.80 0.05–0.14 2.29–4.29 40.0 0.18–0.23
Cropland/Woodland Mosaic 469 200 0.93–0.985 0.80 0.20 2.00–4.00 70.0 0.16–0.20
Grassland 1 495 200 0.92–0.960 0.80 0.10–0.12 0.52–2.90 40.0 0.19–0.23
Shrubland 2 000 800 0.930 0.70 0.01–0.05 0.50–3.66 300.0 0.25–0.30
Mixed Shrubland/Grassland 26 800 0.93–0.950 0.70 0.01–0.06 0.60–2.60 170.0 0.22–0.30
Savanna 237 600 0.920 0.50 0.15 0.50–3.66 70.0 0.20
Deciduous Broadleaf Forest 951 200 0.930 0.80 0.50 1.85–3.31 100.0 0.16–0.17
Deciduous Needleleaf Forest 0 0.93–0.940 0.70 0.50 1.00–5.16 150.0 0.14–0.15
Evergreen Broadleaf Forest 26 000 0.950 0.95 0.50 3.08–6.48 150.0 0.12
Evergreen Needleleaf Forest 1 673 200 0.950 0.70 0.50 5.00–6.40 125.0 0.12
Mixed Forest 1 054 400 0.93–0.970 0.80 0.20–0.50 2.80–5.50 125.0 0.17–0.25
Water Bodies 5 542 800 0.980 0.00 0.0001 0.01 100.0 0.08
Herbaceous Wetland 0 0.950 0.60 0.20 1.50–5.65 40.0 0.14
Wooded Wetland 11 200 0.950 0.60 0.40 2.00–5.80 100.0 0.14
Barren or Sparsely Vegetated 78 400 0.900 0.01 0.01 0.10–0.75 999.0 0.38
Herbaceous Tundra 0 0.920 0.60 0.10 0.41–3.35 150.0 0.15–0.20
Wooded Tundra 2800 0.930 0.60 0.30 0.41–3.35 150.0 0.15–0.20
Mixed Tundra 0 0.920 0.60 0.15 0.41–3.35 150.0 0.15–0.20
Bare Ground Tundra 0 0.900 0.30 0.05–0.10 0.41–3.35 200.0 0.25
Snow or Ice 0 0.950 0.00 0.001 0.01 999.0 0.55–0.70

UMD (13)

Evergreen Needleleaf Forest 1 105 200 0.950 0.70 0.50 5.00–6.40 125.0 0.12
Evergreen Broadleaf Forest 15 200 0.950 0.95 0.50 3.08–6.48 150.0 0.12
Deciduous Needleleaf Forest 0 0.93–0.940 0.70 0.50 1.00–5.16 150.0 0.14–0.15
Deciduous Broadleaf Forest 683 600 0.930 0.80 0.50 1.85–3.31 100.0 0.16–0.17
Mixed Forests 725 200 0.93–0.970 0.80 0.20–0.50 2.80–5.50 125.0 0.17–0.25
Woodlands 1 358 800 0.950 0.70 0.50 5.00–6.40 125.0 0.12
Wooded Grassland 1 382 400 0.930 0.70 0.01–0.05 0.50–3.66 300.0 0.25–0.30
Closed Shrublands 495 600 0.930 0.70 0.01–0.05 0.50–3.66 300.0 0.25–0.30
Open Shrublands 1 160 800 0.93–0.950 0.70 0.01–0.06 0.60–2.60 170.0 0.22–0.30
Grasslands 1 596 800 0.92–0.960 0.80 0.10–0.12 0.52–2.90 40.0 0.19–0.23
Croplands 1 678 800 0.92–0.985 0.80 0.05–0.15 1.56–5.68 40.0 0.17–0.23
Bare Ground 130 000 0.900 0.01 0.01 0.10–0.75 999.0 0.38
Urban 55 600 0.880 0.10 0.50 1.00 200.0 0.15

MODIS (20)

Evergreen Needleleaf Forest 1 114 400 0.950 0.70 0.50 5.00–6.40 125.0 0.12
Evergreen Broadleaf Forest 120 800 0.950 0.95 0.50 3.08–6.48 150.0 0.12
Deciduous Needleleaf Forest 0 0.93–0.940 0.70 0.50 1.00–5.16 150.0 0.14–0.15
Deciduous Broadleaf Forest 752 800 0.930 0.80 0.50 1.85–3.31 100.0 0.16–0.17
Mixed Forests 1 327 200 0.93–0.970 0.80 0.20–0.50 2.80–5.50 125.0 0.17–0.25
Closed Shrublands 29 200 0.930 0.70 0.01–0.05 0.50–3.66 300.0 0.25–0.30
Open Shrublands 1 741 600 0.93–0.950 0.70 0.01–0.06 0.60–2.60 170.0 0.22–0.30
Woody Savannas 107 200 0.930 0.70 0.01–0.05 0.50–3.66 300.0 0.25–0.30
Savannas 11 600 0.920 0.50 0.15 0.50–3.66 70.0 0.20
Grasslands 2 375 600 0.92–0.960 0.80 0.10–0.12 0.52–2.90 40.0 0.19–0.23
Permanent Wetlands 4000 0.950 0.60 0.30 1.75–5.72 70.0 0.14
Croplands 1 691 600 0.92–0.985 0.80 0.05–0.15 1.56–5.68 40.0 0.17–0.23
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Table 2.Continued.

Land Category Area (km2) Emissivity SHDFAC Z0 (m) LAI RS (s m−1) Albedo

MODIS (20)

Urban and Built-up 115 600 0.880 0.10 0.50 1.00 200.0 0.15
Cropland/Natural Vegetation Mosaic 912 000 0.92–0.980 0.80 0.05–0.14 2.29–4.29 40.0 0.18–0.23
Snow and Ice 0 0.950 0.00 0.001 0.01 999.0 0.55–0.70
Barren or Sparsely Vegetated 102 000 0.900 0.01 0.01 0.10–0.75 999.0 0.38
Water 5 568 400 0.980 0.00 0.0001 0.01 100.0 0.08
Wooded Tundra 0 0.930 0.60 0.30 0.41–3.35 150.0 0.15–0.20
Mixed Tundra 0 0.920 0.60 0.15 0.41–3.35 150.0 0.15–0.20
Barren Tundra 0 0.900 0.30 0.05–0.10 0.41–3.35 200.0 0.25

Table 3.Summary of statistics comparing with observations.

Data Source T 2 Q2 O3 PM2.5 550 nm 555 nm 380 nm 500 nm 675 nm 870 nm

ADP ADP AQS AQS MODIS MISR AOD from AERONET

# of pairs 177 022 153 350 73 267 52 895 3718 2897 110 112 115 132

E USGS

NB (%) −0.37 0.10 −5.10 3.77 −26.6 −55.4 −29.4 −24.9 −11.7 −16.4
NGE (%) 0.89 14.1 18.8 57.1 86.3 59.8 43.2 40.1 40.5 41.7
R value 0.86 0.87 0.62 0.35 0.20 0.23 0.46 0.53 0.49 0.43

E MODIS

NB (%) −0.33 0.05 −4.51 2.68 −26.6 −55.6 −30.2 −25.5 −12.4 −16.9
NGE (%) 0.88 14.3 18.8 56.9 86.3 59.8 42.6 39.4 39.9 41.4
R value 0.86 0.86 0.61 0.35 0.20 0.24 0.48 0.55 0.50 0.43

E UMD

NB (%) −0.25 0.00 −3.89 2.98 −26.6 −55.5 −30.9 −26.0 −13.1 −17.4
NGE (%) 0.88 14.0 18.7 57.1 86.0 59.8 43.0 40.1 40.4 41.7
R value 0.86 0.86 0.62 0.34 0.20 0.23 0.47 0.53 0.49 0.42

NB =
sim-obs

obs × 100%; NGE=
|sim-obs|

obs × 100%; R value= correlation coefficient.

3 K higher soil temperature (right bottom panel) found in ur-
ban LULC of EMODIS than that found in the same loca-
tions of EUSGS where the LULC is cropland. The differ-
ences ofalbedoandemissivityin various LULC also explain
the changes in ST found between the EUMD and EUSGS
(right middle panel).

Averaged over the land of the CONUS domain, the av-
erage SM and ST are 0.2289 m3 m−3 and 291.22 K, re-
spectively, from the EUSGS. After receiving 1.98 % (i.e.,
0.25 mm grid−1, or approximately 2.61 km3 water over the
domain’s land) more precipitation, EUMD’s SM is 1.92 %
more than that based on the EUSGS. Although it pro-
duces 0.38 % (i.e., 0.05 mm grid−1) more precipitation, the
E MODIS gives an almost same average SM as that from the
E USGS. Compared with the average ST from the EUSGS,
E UMD models approximately 0.22 K higher ST, while
E MODIS estimates around 0.02 K lower ST.

3.2 Latent heat flux (LH) and sensible heat flux (HFX)

The most direct impact of SM in the LSM is on the cal-
culation of ET, as reflected in upward moisture flux (QFX)
and LH. As expected, QFX (figure not shown) and LH bear
the very similar spatial distribution patterns as illustrated
in Fig. 4, left panels. High QFX results in high LH. Typi-
cally, higher LH is found over the wetter soil. High (up to
200 W m−2, left top panel) LH is seen over the large por-
tions of the Great Plains where SM is generally more than
0.3 m3 m−3, while low (less than 25 W m−2) LH is common
over the areas of southern Nevada, southeastern California,
and southwestern Arizona, where SM is typically smaller
than 0.1 m3 m−3. It is worth noting that there is compara-
ble SM along the North Pacific coast areas of Washington
and Oregon to that of the Great Plains, but its LH ranges be-
tween 25 and 100 W m−2, only 1/4 to 1/2 of its counterparts
in the Great Plains. This is because the cropland/grassland
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Fig. 3. Spatial distribution of top soil moisture (SM, %, left panels) and average top soil temperature (ST, K, right panels) simulated using
the USGS LULC and their differences with the results using the UMD (umd-usgs) and MODIS (modis-usgs) LULC.

designated in the Great Plains have much smaller RS than
the evergreen needleleaf forest in the North Pacific coast ar-
eas (40 vs. 125 s m−1, Table 2), which leads to the higher ET
and the subsequent higher LH in the Great Plains. Contrary
to LH, high HFX is typically seen over the dry soil (Fig. 4,
right panels). The high HFX found in the dry soil agrees with
the study by Bindlish et al. (2001), who used the microwave
remote sensing data to model the linkage between SM and
HFX. The dry southwestern US typically sees an HFX more
than 130 W m−2, while the wet eastern US experiences a less
than 40 W m−2 of HFX. The major metropolitan areas gen-
erally experience higher HFX than the surrounding areas fol-
lowing the land–air temperature gradient, exactly the oppo-
site spatial pattern of that of LH. Taking the EUSGS as an
example and defining the surrounding areas as one grid ex-
tension of each direction of an urban grid, the average ur-
ban LULC sees an approximately 93 % higher HFX but 68 %
lower LH.

Compared to the EUSGS, the EUMD generates 15 to
25 W m−2 lower LH in the Central Valley areas of Califor-
nia, the corridor areas extending from eastern Kansas, cen-
tral Oklahoma, to northern Texas, and the sporadic areas in
the eastern US. On the other hand, the EUMD generates
up to 35 W m−2 more LH in the limited area of northeast-

ern Texas and the sporadic areas of the eastern US. This
can all be traced back to the different LULC assignments in
USGS and UMD, as well as the resulting precipitation con-
trast found in the EUSGS and EUMD. For example, USGS
designates the LULC in the aforementioned corridor areas as
grassland/mixed forest (RS= 125 s m−1) but UMD denotes
it as closed shrubland (RS= 300 s m−1). Obviously with the
similar precipitation, closed shrubland tends to retain water
better and then causes the lower QFX and LH. Meanwhile,
although the limited areas of northeastern Texas is designated
as cropland and evergreen needleleaf forest in USGS as op-
posed to closed shrubland in UMD, it receives at least 20 mm
more rainfall, which leads to the higher QFX and LH found
in the EUMD. Again, the large urban (RS= 200 s m−1) ex-
pansion shown in MODIS explains the lower QFX an LH
simulated over the major metropolitan areas in comparison to
that from the EUSGS. The domain-wide average QFX and
LH for land are approximately 107 g m−2 h and 74 W m−2,
respectively, from the EUSGS. The discrepancies among
the results from the EUSGS, EUMD, and EMODIS are
all within 0.3 %.

In comparison with the EUSGS, the EUMD (Fig. 4, right
middle panel) produces approximately 1.3 % higher HFX
over the land, with the largest increases (up to 35 W m−2)
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Fig. 4.Same as Fig. 3 except for average latent heat flux (LH, W m−2, left panels) and sensible heat flux (HFX, W m−2, right panels).

occurring in the scattering regions in the Midwest and the
Great Plains. The detailed LULC investigation reveals that
the LULC changes with the large RS contrast give the big dif-
ferences in temperature gradient and HFX. The areas with the
largest HFX increases are usually designated as the closed
shrubland in UMD while as the cropland or grassland in
USGS. The largest HFX decreases occur where the LULC is
forest or shrubland mixture in USGS and grassland or crop-
land in UMD. On average, the EMODIS (Fig. 4, right bot-
tom panel) generates around 1 % lower HFX over the land
than the EUSGS. However, the expanded urban areas found
in MODIS do see a higher HFX and temperature gradient.
The observation that large RS contrast results in big HFX
change holds for this instance as well.

3.3 Air temperature at 2 m (T 2) and water vapor
content at 2 m (Q2)

The land surface energy and water budgets reflected in QFX,
LH, and HFX would impact the near-surface air temperature
and moisture as illustrated in Fig. 5. The left panels display
the spatial distributions ofQ2. Similar to SM, the eastern US
generally finds a highQ2 (more than 0.01 kg kg−1) and the
southwestern US sees less than 0.004 kg kg−1 Q2. However,
the northwestern US, where the high SM comparable with
the eastern US is modeled, sees about half ofQ2 as that of the

eastern US, which follows that of QFX, reflecting that some
LULCs retain soil water better than the others. In comparison
to the EUSGS, the EUMD simulates lowerQ2 in the large
portions of the Midwest and the Great Plains but higherQ2
in the sporadic areas of the eastern US. The spatial pattern of
the lowerQ2 appears to correspond to the lower LH (Fig. 4,
left middle panel) but the spatial distribution of the higher
Q2 seems more of the effect of boundary layer structure –
shallow PBLH implies less entrainment of dry and warm air
into the PBL from the free atmosphere, thus a higherQ2.
The urban and built-up land tends to have lowerQ2, as can
be seen in Fig. 5, left bottom panel. In the region where it is
designated as urban and built-up land in MODIS but not in
USGS,Q2 is around 3 % higher from the EUSGS than from
the EMODIS.

The spatial distribution ofT 2 (Fig. 5, right panels) follows
the ST distribution closely with high temperature (up to 303
K) found in Texas and low (approaching the freezing point)
found along the Rocky Mountains. This is anticipated since
the heat conduction by the land contributes significantly to
warm up the near-surface air. TheT 2 difference maps (i.e.,
E UMD vs. E USGS, and EMODIS vs. EUSGS) mimic
those of the ST as well but with a smaller contrast – typically
0.5 ∼ 1 K lower than the corresponding ST differences. As
expected, the spatial distribution of ST-T 2 gradient mimics
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Fig. 5.Same as Fig. 3 except for average water vapor content (Q2, %, left panels) and air temperature (T 2, K, right panels) at 2 m.

the one of HFX sinceT 2 is determined with HFX and sur-
face skin temperature (e.g., Miglietta et al., 2009). The wet
eastern US has a small temperature gradient (less than 0.2 K
for the vast areas), while the dry southwestern region expe-
riences a high (typically more than 4 K) temperature gradi-
ent. Following the case of HFX, the average urban LULC
sees an approximately 1 K warmerT 2 than the surround-
ing areas. The LULC-difference-induced temperature change
would influence biogenic emissions and thermal chemical
reaction processes that consequently would alter the atmo-
spheric composition and air quality.

3.4 Wind speed and planetary boundary layer height
(PBLH)

The LH, HFX, and QFX calculated from the land surface
model provide the lower boundary conditions for the verti-
cal transport simulation, and thus impact the PBL structure
and its evolution, as reflected in PBLH. Figure 6 (left pan-
els) displays the average PBLH spatial distribution from the
E USGS (left top panel) and its comparisons with the results
from the EUMD (left middle panel) and EMODIS (left bot-
tom panel). It can be found that the PBLH distribution ap-
pears similar to the HFX distribution. This agrees with the
physical basis for PBL growth being primarily driven by the
buoyancy fueled by surface heating, and was confirmed by

observations obtained from the AMMA campaign (Kohler et
al., 2010). The high PBLH is found in the dry southwest-
ern US, with the maximum (more than 1700 m) being in
western Texas and central New Mexico and the minimum
(less than 400 m) in eastern Mississippi and central Alabama.
The daytime PBLH map closely mimics the daily average
map with the maximum PBLH exceeding 4000 m in western
Texas. During nighttime, however, the highest PBLH (up to
700 m) is found in the Great Plains. It is worth noting that
during daytime the average PBLH over the urban areas (ap-
proximately 1400 m) is about 14 % higher than that of the
surrounding areas, while at night the average PBLH over the
urban areas is about 10 m smaller than that over the surround-
ing areas. The daily average urban PBLH (around 620 m) is
approximately 11 % more than the PBLH of the surrounding
areas.

The PBLH contrast maps (Fig. 6, left middle and bot-
tom panels) appear to follow those of HFX as well. The
replacement of the low/high RS LULC in USGS with the
high/low RS LULC in UMD tends to enhance/suppress the
PBLH found in the EUMD. The enhanced PBLH (around
116 m larger than that from the EUSGS) found in the urban
LULC from the EMODIS is explained by the large expan-
sion of urban coverage in MODIS that reduces the ET. The
PBLH change caused by the LULC change would impact
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Fig. 6.Same as Fig. 3 except for average PBL height (PBLH, m, left panels) and surface wind speed (m s−1, right panels).

the vertical mixing of heat, moisture, momentum, and mass,
and have a profound effect on air quality. In addition, deeper
PBLH growth implies larger entrainment of dry and warm air
into the PBL from the free atmosphere. This feedback then
favors a warmer, drier PBL as reflected in the resultantT 2
andQ2 conditions with implications for atmospheric chem-
istry.

Figure 6 (right panels) illustrates the surface wind speed
that is directly affected by the LULC through friction and,
to a lesser extent, through the LULC impacts on heat fluxes
as demonstrated in the previous sections. As compared to
the EUSGS, the EUMD and EMODIS generate slightly
higher average surface wind (1.98 m s−1 and 1.99 m s−1 vs.
1.97 m s−1, respectively) for the land with the largest changes
(approximately 1 m s−1) occurring in southern Texas, the
central Florida, and the scattered areas across the rest of the
US (right middle panel), as well as the noticeable decrease
(up to 0.6 m s−1) in south Wyoming and the scattered ar-
eas of the other parts of the US (right bottom panel). The
LULC examination reveals that, in general, the wind speed
increases when the LULC with largeZ0 in USGS is re-
placed with the LULC with smallZ0 in the other datasets,
and vice verse. For example, the LULC in southern Texas
is designated as cropland or cropland/natural land mosaic
(Z0= 0.05–0.20 m) in USGS. When it is replaced with the

closed shrubland (Z0= 0.01–0.05 m) in UMD, the average
wind speed increases by 0.6–1.0 m s−1. On the other hand,
when the LULC in south Wyoming designated as the shrub-
land or shrubland mixture in USGS is replaced with the
grassland (Z0= 0.10–0.12 m) in MODIS, the average wind
speed decreases by 0.6 m s−1. The changed surface wind
impacts soil erosion and dust emissions, as well as affects
the horizontal movements of mass and energy, which subse-
quently impact air quality, as will be discussed in the follow-
ing sections.

3.5 Emissions of dust and biogenic volatile organic
compound (BVOC)

The dust emissions in this study are estimated using the GO-
CART dust model (Ginoux et al., 2001). The emissions only
occur in the region where the erodibility map designates it
as a dust source. Soil texture and moisture, together with the
surface wind speed, determine the total dust emissions. The
drier the soil and the stronger the wind, the more dust emit-
ted over the areas where its erodibility is more than zero.
Figure 7 (left top panel) displays the average dust emis-
sions from the EUSGS and its differences with the results
from the EUMD (left middle panel) and the EMODIS (left
bottom panel). Large dust emissions (up to 30 kg km−2 h)
are obtained over the Mojave Desert located primarily in
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Fig. 7.Same as Fig. 3 except for average dust emissions (kg km−2 h, left panels) and biogenic isoprene emissions (mol km−2 h, right panels).

southeastern California. The noticeable dust emissions are
also found over the Sonoran Desert located in southern Cali-
fornia, southwestern Arizona, and northwestern Mexico, as
well as over the Chihuahuan Desert in southern Arizona
and New Mexico, southwestern Texas, and northern Mex-
ico. The average daily dust emissions over the CONUS are
37 735, 39 221, and 39 105 metric tons from the EUSGS,
E UMD, and EMODIS, respectively, which are comparable
with the April average dust load (40 500 metric tons day−1)
over North America estimated by Park et al. (2010) using
their newly developed windblown dust module. The SM role
in the change in dust emissions due to the LULC data selec-
tion is negligible and the increase/decrease in emissions is
almost all attributed to the wind speed difference induced by
the different LULC data usage.

Biogenic emissions depend on the LULC and the sur-
rounding environment (Guenther et al., 2006). In this study,
the LULC data used in the biogenic emissions module,
MEGAN2, are based on both AVHRR and MODIS that are
different from either LULC used in the experiments. There-
fore, the discussion on the impact of the LULC data on
BVOC emissions is limited to the indirect effects through the
emissions adjustment by the ambient temperature and solar
radiation that would be altered by the LULC change, as dis-
cussed in the previous sections. Figure 7 (right panels) illus-

trates the spatial distribution of the average biogenic isoprene
emissions from the EUSGS and its contrast maps in compar-
ison with the EUMD and EMODIS. Large isoprene emis-
sions are observed in the eastern US with the peak (more than
35 mol km−2 h) occurring in the Ozarks (covering southern
Missouri and northern Arkansas) and eastern Texas/western
Louisiana. This spatial distribution matches the results by
Xu et al. (2002), who employed the AVHRR data and the
Biogenic Emission Inventory System (BEIS) model to esti-
mate the isoprene emissions for the eastern US, and by Tao et
al. (2003), who also employed BEIS. The isoprene emissions
contrast maps (right middle and bottom panels) closely fol-
low the spatial distributions of the surface temperature con-
trasts (Fig. 5, right panels). The difference can reach more
than 6 mol km−2 h. Over the CONUS domain, the daily av-
erage isoprene emissions are approximately 88 752 metric
tons based on the EUSGS. The results from the EUMD
and EMODIS are 3.1 % and 1.5 % higher than that of the
E USGS, respectively, and are largely a function of higher
T 2 from the EUMD and EMODIS. As an ozone precur-
sor, isoprene emissions changes are therefore reflected in air
quality difference.
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Fig. 8.Same as Fig. 3 except for average surface ozone concentration (ppbv, left panels) and NO2 concentration (ppbv, right panels).

3.6 Air quality

The LULC change induces changes in meteorological fields,
e.g., the temperature, wind, and PBLH, as well as in emis-
sions, which results in a profound impact on air quality. High
temperature generally favors ozone formation. Strong wind
moves the pollutants fast and further away. Deep PBL is good
for pollutant vertical mixing. Emissions directly enter the at-
mospheric pollutants mass balance. Three pollutants – ozone,
nitrogen dioxide (NO2), and PM2.5 – are used as proxy to
discuss the LULC impact on air quality. Ozone is a criterion
pollutant regulated by the USEPA. As a secondary pollutant
(i.e., not directly emitted from a source), ozone forms in the
presence of its precursors under the favorable meteorologi-
cal conditions, e.g., stagnant high-pressure system featuring
strong solar radiation and high air temperature (e.g., Seinfeld
and Pandis, 2006). NO2, on the other hand, is a primary pol-
lutant that is emitted from a large pool of anthropogenic and
natural sources. It is also regulated by the USEPA and is one
of the two (the other is VOC) key precursors of ozone.

Figure 8 displays the spatial distributions of average sur-
face ozone concentration (left panels) and NO2 (right pan-
els) from the EUSGS and their contrast maps to the results
from the EUMD and EMODIS. As a primary pollutant,
NO2 distributes heterogeneously in space with high concen-
trations centering in the major metropolitan regions and the

Ohio River Valley, where large emissions sources are identi-
fied. The urban grids observe, on average, more than twofold
of surface NO2 than the surrounding areas (14.2 ppbv vs.
6.7 ppbv). On the other hand, the secondary ozone experi-
ences a relatively homogenously spatial distribution. Rela-
tively high ozone (more than 45 ppbv) is seen in the south-
ern Great Plains and southern California. The difference be-
tween urban and the surrounding areas is small with the ur-
ban grids observing less than 2 ppbv of surface ozone than
the surrounding grids.

In comparison with the EUSGS, both the EUMD and
E MODIS produce higher NO2 along the Missouri/Kansas
border and northeastern Oklahoma, and generate remarkably
lower NO2 in the major metropolitan regions. The reasons
are multifold. First, in northeastern Oklahoma and the bor-
der areas of Missouri/Kansas, the EUMD and EMODIS
observe a shallower PBLH (Fig. 6, left panels), which, due to
the more limited volume for vertical mixing, leads to higher
NO2 concentrations. Second, the lower temperature found
in the above regions slows down the thermal decomposi-
tion of peroxyacyl nitrates (PAN, Atkinson et al., 2006), an
important atmospheric reservoir species of NO2, thus keep-
ing NO2 in the air longer and supporting its buildup. Last
but not the least, the oxidized formation of HNO3 from
NO2 by hydroxyl radicals and the subsequent dry/wet HNO3
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deposition represent the major NO2 removal mechanism in
the atmosphere (e.g., Seinfeld and Pandis, 2006). The dry
deposition velocity of HNO3 (figure not shown) is lower
in those regions reducing the NO2 removal from the atmo-
sphere. The aforementioned reasons also explain what hap-
pens in the metropolitan areas. In the regions where all three
datasets designate the LULC as urban and built-up land, the
E UMD and EMODIS observe the respective 0.25 ppbv and
0.78 ppbv lower NO2 concentrations averaged over the ur-
ban grids as compared to the results from the EUSGS. The
averaged HNO3 dry deposition velocity and surface temper-
ature from the EUMD and EMODIS are approximately
0.2 cm s−1 larger and 0.5 K higher, respectively, than from
the EUSGS favoring the reduced NO2. The largely en-
hanced PBLH from the EUMD (around 35 m deeper) and
E MODIS further dilutes NO2 as compared to that from the
E USGS.

In the rural areas where ozone formation is almost always
limited to the availability of NOx (i.e., NO2 + NO), mete-
orology can largely explain the difference among each ex-
periment. For example, up to 4 ppbv more ozone is observed
in the stretched areas of the Midwest from the EUMD than
from the EUSGS (Fig. 8, left middle panel). HigherT 2 sim-
ulated in those areas is one of the key drivers for this obser-
vation – higher temperature not only increases soil NO emis-
sions (e.g., Williams et al., 1992; Tao et al., 2003) that fuel
ozone formation there but also favors the thermodynamics of
ozone generation. The replacement of cropland designated in
USGS with forest/closed shrubland in UMD results in the re-
duced ozone dry deposition velocity for the aforementioned
areas, thus the increased ozone concentration. The smaller
ozone dry deposition velocity found in forest than in crop-
land is consistent with the results from a model study by
Miao et al. (2006). The deeper PBLH from the EUMD in
those areas (Fig. 6, left panels) reduces surface ozone con-
centration but not enough to totally offset the ozone increase
due to the changes in temperature and dry deposition. More-
over, as discussed in Sect. 3.4, deeper PBLH tends to entrain
more warm and dry air from the free troposphere that may
favor ozone generation. The net PBLH effect on ozone air
quality therefore highly depends on the competition of ver-
tical mixing and photochemical formation. In the urban ar-
eas, however, where either NOx or VOC can limit ozone for-
mation, the explanation is not that straightforward. As dis-
cussed in the NO2 comparison, the PBLH and surface tem-
perature from the EMODIS are both higher than from the
E USGS. The effects of these two factors on ozone forma-
tion are potentially opposite. In addition, in the NOx-limited
regime the deep PBLH-induced surface NOx decrease would
further suppress ozone formation, while in the VOC-limited
regime the reduced NOx tends to produce more ozone due
to the reduced NOx titration effect (e.g., Seinfeld and Pandis,
2006). Together these effects cause a moderate average ozone
differences (within 0.5 ppbv) over the urban grids among the
three experiments.

From the air quality regulation perspective, it is also in-
teresting to know how the LULC impacts the frequency
of high ozone occurrences. It is found that there are 467
occurrences of surface 8 h-average ozone concentration ex-
ceeding 75 ppbv, the National Ambient Air Quality Standard
for ozone set by the USEPA (http://www.epa.gov/air/criteria.
html), from the EUSGS. The EUMD and EMODIS gener-
ate 32 % and 3 % more high ozone occurrences, respectively.

PM2.5 is another criterion pollutant and can be both pri-
mary and secondary origin. The spatial distributions (figures
not shown) of average surface PM2.5 from the EUSGS and
its difference with the EUMD and EMODIS are similar to
those of NO2 (Fig. 8, right panels), with more than 10 µgm−3

being common in major metropolitan areas and the Mid-
west. The main difference between spatial distributions of
NO2 and PM2.5 is that very high concentrations (greater than
35 µgm−3) are found in southern California, southwestern
Arizona, and northwestern Mexico, where the wind-blown
dust emissions dominate. The smaller PBLH and less rainfall
(thus less wet removal) found in the Missouri/Kansas border
and northeastern Oklahoma from the EUMD as compared
to that from the EUSGS largely explains the higher PM2.5
(up to 4 µgm−3) in those regions based on the EUMD. Sim-
ilarly, the larger PBLH in the urban areas simulated from the
E MODIS contributes the reduced PM2.5 there.

3.7 Implication of urbanization effect on ozone air
quality

According to the 2010 US census, approximately 80.7 % of
the population lives in urban areas (http://www.census.gov/
geo/www/ua/2010urbanruralclass.html). The highly popu-
lated urban areas present a distinct local climate featuring
some unique phenomenon such as urban heat islands as a re-
sult of complex interactions between humans and nature –
e.g., changes in short/long-wave solar radiation due to large
emissions (albedoandemissivity), changes in airflow due to
increased friction (Z0), and reduced ET due to vegetation
removal (RS) (e.g., Coutts et al., 2007). The subsequent im-
pacts on air quality and human health can be large and need
to be investigated.

The two LULC datasets used in this study, USGS and
MODIS, present a large difference in urban LULC coverage,
with MODIS designating over twofold as much urban area as
USGS doing. Although the large increase in urban coverage
in MODIS is not solely caused by physical urban expansions
over the periods 1992–1993 and 2001 (land class definition
in the LULC datasets also plays an important role), it does
provide an opportunity to study what would be expected if
urban expansions continue to occur. It should be noted that
the emissions inventory employed in the experiments are the
same; therefore, the air quality change discussed below is
solely caused by the LULC-induced meteorological change.
This change can be as a result of gradients between urban
and the surrounding land and/or local effects. Over the areas
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Table 4.Comparison of key parameters associated with urban ozone air quality over the MODIS urban areas.

USGS Land Category Area (km2) SM (%) T 2 (K) Wind (m s−1) PBLH (m) O3 Dry Dep. (cm s−1)

usgs modis usgs modis usgs modis usgs modis usgs modis

Urban and Built-up Land 42 400 31.5 32.7 294.4 295.2 1.55 1.51 626 686 0.27 0.28
Dryland Cropland and Pasture 14 000 24.4 32.0 297.8 299.6 1.55 1.62 694 913 0.51 0.53
Cropland/Grassland Mosaic 6800 28.3 33.0 295.0 296.6 1.40 1.33 668 837 0.57 0.59
Cropland/Woodland Mosaic 8800 28.4 31.9 294.9 296.3 1.21 1.28 509 659 0.46 0.46
Grassland 8000 23.5 31.3 296.2 297.4 2.28 1.89 997 1110 0.43 0.46
Shrubland 5200 14.6 24.5 294.2 295.5 1.99 1.72 822 852 0.34 0.43
Mixed Shrubland/Grassland 2400 24.4 24.0 291.1 291.7 1.38 1.48 412 428 0.37 0.40
Savanna 3600 29.8 31.8 291.5 291.8 2.48 2.49 505 518 0.41 0.41
Deciduous Broadleaf Forest 9600 28.2 29.7 292.7 293.6 1.63 1.63 548 615 0.51 0.51
Evergreen Needleleaf Forest 8800 27.2 32.3 293.9 295.5 1.35 1.33 594 753 0.48 0.52
Mixed Forest 1200 29.1 32.6 294.1 295.6 1.53 1.78 560 712 0.45 0.45
Water Bodies 4000 – 12.2 292.2 292.5 2.98 3.01 294 352 0.21 0.21
Wooded Wetland 800 30.6 34.5 300.0 301.1 1.90 2.10 730 867 0.40 0.41
Areal Weighted Average – 28.0 31.6 294.6 295.7 1.65 1.61 634 736 0.39 0.40

designated as urban by both MODIS and USGS, the gradi-
ents are the major driving force of the modeled differences
since the land characteristics are the same for the same land
categories from the different LULC datasets (see Table 2).
Over the areas designated as urban by MODIS but defined
as non-urban by USGS, however, both local effects (through
different land characteristics, e.g.,roughness, albedo, LAI,
and RS) and gradients play roles in modeled discrepancies
between the EUSGS and EMODIS.

Table 4 summarizes the averages of some parameters key
to ozone air pollution. It can be found that only 36.7 % of
the MODIS urban is designated as urban and built-up land
in USGS, with various croplands (25.6 %), various forests
(17.0 %), grassland (6.9 %), and shrubland (4.5 %) rounding
up to the top five LULC in USGS for the MODIS urban. As
a result, the SM increases by 13 % over the MODIS urban
areas as compared to the same regions from the EUSGS
with the large SM change (greater than 30 %) occurring
where shrubland, dryland cropland/pasture, or grassland is
converted into urban area. On average,T 2 increases by 1.1 K
based on the EMODIS, with the large increases observed
where urban area sprawls into cropland or forest. PBLH ex-
periences the increase across all the USGS LULCs that are
designated as urban by MODIS, with the largest enhance-
ment (219 m) happening in the places that used to be dryland
cropland/pasture. Surface wind speed changes in both direc-
tions. While converting grassland and shrubland into urban
tends to decrease it, urban sprawling into mixed forest or
wooded wetland is likely to increase wind speed. On aver-
age, surface wind speed displays a small decrease (less than
3 %) during the urbanization. Ozone dry deposition velocity
undergoes a moderate change (less than 5 %) as well with the
largest increase (approximately 26 %) occurring in the places
where shrubland in USGS changes to urban in MODIS.

Fig. 9.Probability distributions of surface 8 h-average ozone for the
E USGS and EMODIS.

The net effect of the aforementioned factors on surface
ozone is to increase its mean 8 h-average concentration by
1 ppb when converting the non-urban grids in USGS into ur-
ban coverage in MODIS, with the large changes occurring
where croplands (1.7 ppb increase) or forests (1.4 ppb in-
crease) are cleared for urban settings. Figure 9 illustrates the
probability distributions of surface 8 h-average ozone over
the non-urban grids in USGS but the urban grids in MODIS.
It can be seen that urbanization generally tends to produce
more ozone (MODIS vs. USGS). It reduces the occurrence
of low ozone (i.e., less than 30 ppbv) by approximately 12 %
and increases the high ozone frequency (i.e., more than
70 ppbv) by over 50 %. However, the average peak ozone
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(i.e., more than 75 ppbv) appears reduced from 79 ppbv in the
E USGS to 77 ppbv in the EMODIS. It should be noted that
the anthropogenic emissions change due to urbanization has
not been taken into account in this study. Depending on the
urban emissions characteristics (e.g., NOx sensitive or VOC
sensitive), such change can complicate the urban ozone is-
sues.

4 Summary and conclusion

Three commonly used LULC datasets – i.e., USGS, UMD,
and MODIS – have been applied to the newly developed NU-
WRF system to investigate the land cover effects on atmo-
spheric processes and air quality over the CONUS domain.
These three datasets display large differences in land cover
classifications and assignments, where the overall agree-
ments of MODIS/USGS, MODIS/UMD, and USGS/UMD
are 55.8 %, 53.7 %, and 47.8 %, respectively, when the eight
common land classifications employed in all three datasets
are considered. There are two major model procedures for
this study. The three LULC datasets are first plugged in the
offline LIS system for spin-up to achieve the soil equilibrium
state, and the results from the offline LIS then provide the
surface boundary and initial conditions to the NU-WRF. The
NU-WRF results are compared with the available observa-
tions and the results show NU-WRF does a reasonably good
simulation of physical, chemical, and biological processes.

The offline LIS results show that large initial SM differ-
ence (30–50 %) exists in the regions where woodland/closed
shrubland changes to cropland or cropland is cleared for ur-
ban areas. The initial SM difference carries over into the NU-
WRF simulation to be reflected in the similar spatial pattern
of the average SM distribution. It also results in a notice-
able precipitation change – in comparison to the EUSGS,
the EUMD and EMODIS produce 0.25 mm grid−1 and
0.05 mm grid−1 more rainfall averaged over the domain land.
LH and HFX distributions are closely coupled to the SM as
well. Wet soil generally leads to high LH and low HFX, while
dry soil does the opposite. When land with small RS changes
to the one with large RS (e.g., cropland/grassland to shrub-
land/urban area), LH tends to decrease and HFX appears to
increase. This is because RS is one key to estimate ET that
is important to both water and energy cycles between the
land and the atmosphere. Large RS restricts ET and allows
more energy into HFX. The energy change due to land cover
change at the land surface would propagate into the overlay-
ing atmosphere and lead to changes in temperature, PBLH,
and wind that are important to the atmospheric composition
evolution and air quality. For example, regions with high
HFX tend to have high surface temperature and deep PBLH.
Therefore, change in LULC from the one favoring large ET
to the one with small ET would increase surface temperature
and enhance PBLH. This is what happens when cropland is
converted into urban land, where the averageT 2 increases by

approximately 1 K and the PBLH is around 11 % larger. Land
with large Z0 tends to have reduced surface wind, as evi-
denced by the 0.6–1.0 m s−1 decreases in the average wind
speed in southern Texas where the shrubland in UMD is con-
verted into the cropland in USGS.

The LULC-change-induced meteorology change would
subsequently affect land surface emissions and air qual-
ity. SM and surface wind directly determine how much
dust is produced and enters into the atmosphere. This study
shows that it is mainly wind that dictates the dust emission
changes due to the selections of different LULC datasets.
Domain-wide, the EUMD and EMODIS respectively pro-
duce 3.9 % and 3.6 % more dust than the EUDSG. Bio-
genic emissions are affected as well. As compared to the
E USGS, the EUMD and EMODIS respectively generate
3.1 % and 1.5 % more isoprene, and 2.7 % and 0.8 % more
terpenes. Air quality responds to the meteorology and emis-
sions changes in a complex way. The surface concentration
of the primary pollutant NO2 tends to decrease where the
deep PBL develops, such as the case of converting USGS’s
cropland/grassland into MODIS’s urban area. The enhanced
dry deposition of HNO3, a major NO2 terminal species, over
urban areas also contributes to the NO2 reduction under the
cropland-changed-to-urban scenario. The response of surface
ozone, a secondary pollutant, to the LULC change is more
complex. Although high temperature and weak wind mostly
favor ozone formation, depending on the local emissions
characteristics, surface ozone can be enhanced or suppressed
in response to PBLH change, as evidenced under the same
cropland-changed-to-urban scenario. For the simulation pe-
riod, the EUMD models noticeably more high ozone that
exceeds the US surface ozone standard and the EMODIS
yields a relatively smaller increase in ozone standard viola-
tions as compared to the EUSGS.

The impact of urbanization on air quality is investigated
in the context of the conceptual land cover change found
in USGS and MODIS. MODIS carries greater than 100 %
more urban coverage than USGS. The virtual urban expan-
sion in MODIS produces higher SM, lower LH, higher HFX,
higher surface temperature, weaker wind, and deeper PBLH.
As a result, surface NO2 tends to reduce, whereas surface
ozone can change in both directions due to the compensating
feedbacks. Overall, urbanization appears to cause less low
ozone (smaller than 30 ppbv) but more high ozone (greater
than 70 ppbv) occurrences.

There are several caveats in the study. First, the LULC in-
formation from different datasets has not been directly cou-
pled into the biogenic emission and dust emission models.
The LULC mismatch between the LSM and emission models
brings in uncertainty in emission estimation and the subse-
quent air quality evaluation. As shown in Chen et al. (2009)
and Wu et al. (2012), the LULC-change-induced biogenic
emissions change could be large. In the future endeavor,
making the LULC consistent in the different components of a
modeling system would be extremely valuable. However, as
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intended, this study is able to isolate the impact of secondary
(via meteorology) effects of land and atmosphere feedbacks
on emissions and chemistry. Second, although it provides
some insights into the consequences of LULC changes on at-
mospheric processes and air quality, this study employs three
datasets derived from the different satellite sensors and clas-
sification methods that make the land definition inconsistent
across the datasets. In the future, application of time series
LULC data derived from the same sensor and same classi-
fication method will greatly improve the understanding of
the impacts of LULC change on air quality, especially over
the populated urban areas. The forthcoming MODIS 2010
data that will be ready for NU-WRF application (vs. MODIS
2002 as used in this study) will provide a good opportunity
to do such investigation. Last but not the least, the model
internal variability, which arises from the nonlinear nature
of atmospheric processes such that the model is sensitive to
perturbations of initial conditions (ICs) (e.g., Giorgi and Bi,
2000; Vanvyve et al., 2008), is not explored in this study.
Changes in atmospheric parameters due to physical modifi-
cations of a model are only significant when outside of the
model internal variability. Based on the study by Vanvyve et
al. (2008), who investigated the regional model internal vari-
ability by randomly altering the ICs, the maximum variabil-
ity for 5-day-average air temperature at 10 m and boundary
layer wind speed ranged from 0.03 to 0.18 K, and from 0.06
to 0.31 m s−1, respectively, depending on the location in their
West African domain. Giorgi and Bi (2000) conducted the
model internal variability study for the eastern China domain
and concluded that the model response to perturbations was
insensitive to the origin, location, and the magnitude of per-
turbation but sensitive to the perturbation timing. The vari-
ability for the daily average surface temperature, wind speed,
and water vapor content over late May to early June was
within 0.1 K, 0.1 m s−1, and 0.1 g kg−1, respectively. If those
numbers are assumed to be the model random error bounds,
it is obvious that the modeled differences (Fig. 5 and right
panel of Fig. 6) due to the usage of different LULC datasets
are well beyond the model internal variability.

In conclusion, this study has shown the importance of land
cover data on offline and coupled L–A and chemistry predic-
tion. There is inconsistency amongst ancillary dataset appli-
cation in the Earth system models to date, and the uncertainty
introduced as a result has gone largely ignored. With contin-
ued advancements of satellite-based land cover datasets, it
is therefore critical to make such assessments as were per-
formed here.
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