

Corrigendum to

"Quantifying the uncertainty in simulating global tropospheric composition due to the variability in global emission estimates of Biogenic Volatile Organic Compounds" published in Atmos. Chem. Phys., 13, 2857–2891, 2013

J. E. Williams¹, P. F. J. van Velthoven¹, and C. A. M. Brenninkmeijer²

¹Royal Netherlands Meteorological Institute, De Bilt, the Netherlands
²Max Planck Institute for Chemistry, Atmospheric Chemistry, Mainz, Germany

Correspondence to: J. E. Williams (williams@knmi.nl)

Some errors occurred in the Appendix Table A2 in the above-mentioned manuscript.

The products in the rows (1), (4) and (5) have been corrected. The reactant name for acetone has been changed from CH_3COCO_3 to CH_3COCH_3 .

Table A2. The photolytic reaction rates included in the modified CB05 chemical mechanism. The reaction products O_2 and H_2O are not shown. The stiochiometery of each photolytic reaction is taken from Yarwood et al. (2005) except for the photolysis of O_2 . The source of the absorption co-efficients and quantum yields are thus: [1] Sander et al. (2011), [2] Matsumi et al. (2002), [3] Atkinson et al. (2006). Further details: ^[a] absorption cross section for a C4 mono-nitrate are adopted (Roberts and Fayer, 1989), ^[b] the absorption cross section for CH₃CHO is adopted, ^[c] set equal to the photolysis frequency of CH₃OOH due a lack of laboratory measurements and ^[d] the absorption cross sections are set equal to an average of methyl vinyl ketone and methacrolein.

Chemical species	Products	Reference
03	O ¹ D	[1,2]
NO ₂	$NO + O_3$	[1]
H_2O_2	OH + OH	[1]
HNO ₃	$OH + NO_2$	[1]
HNO ₄	$NO_2 + HO_2$	[1]
N_2O_5	$NO_2 + NO_3$	[1]
CH ₂ O	CO	[3]
CH ₂ O	$CO + HO_2 + HO_2$	[3]
CH ₃ OOH	$HCHO + OH + HO_2$	[1]
PAN	$C_2O_3 + NO_2$	[1]
NO ₃	$NO_2 + O_3$	[1]
NO ₃	NO	[1]
ORGNTR ^[a]	$NO_2 + 0.51XO_2 + 0.3 ALD2 + 0.9 HO_2 + 0.74 C_2O_3 + 0.74 CH_3O_2 + 1.98 RXPAR$	[3]
ALD2 ^[b]	$CH_3O_2 + CO + 2HO_2$	[3]
ROOH ^[c]	OH + 0.5 XO ₂ + 0.3 ALD2 + 0.9 HO ₂ + 0.74 C ₂ O ₃ + 0.74 CH ₃ O ₂ + 1.98 RXPAR	[1]
CH ₃ COCHO	$C_2O_3 + HO_2 + CO$	[1]
02	$2O(^{3}P)$	[1]
ISPD ^[d]	0.333 CO + 0.067 ALD2 + 0.9 HCHO + 0.832 PAR + 1.033 HO ₂ + 0.7 XO ₂ + 0.967 C ₂ O ₃	[3]
CH ₃ COCH ₃	$CO + 2 CH_3O_2$	[3]
CH ₃ COCH ₃	$C_2O_3 + CH_3O_2$	[3]