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Abstract. This paper is devoted to the modeling of altitude- variations in the trends across altitudes, which highlights the
dependent patterns of ozone variations over time. Umkehbenefits of modeling ozone profiles.

ozone profiles (quarter of Umkehr layer) from 1978 to 2011

are investigated at two locations: Boulder (USA) and Arosa

(Switzerland). The study consists of two statistical stages. )

First we approximate ozone profiles employing an appropri-1  Introduction

ate basis. To capture primary modes of ozone variations with- . .

out losing essential information, a functional principal com- Trends in stratosph.erlc ozone have_ been a concern for hu-
ponent analysis is performed. It penalizes roughness of thdhans and the envwopment ever since the mgchamsm of
function and smooths excessive variations in the shape of th zone depletion was d|scoveref_dr(1tzen_1974 Molina gnd
ozone profiles. As a result, data-driven basis functions (em- owland 1974. As aresult, the mtgrnatlona_l community en-
pirical basis functions) are obtained. The coefficients (prm_forced the Montreal Protocol and its following amendments

cipal component scores) corresponding to the empirical bal® curb emissions of ozone depleting substances (ODSs)

: : ; R WMO, 2007, 201]). The discovery of the Antarctic ozone
sis functions represent dominant temporal evolution in the( ' !
P P hole in the early 1980$-arman et a).1985 Solomon 1999

shape of ozone profiles. We use those time series coeffi- v foll dbv the di ;
cients in the second statistical step to reveal the importanl:'as very recently Tollowed by the discovery of a new 0zone

sources of the patterns and variations in the profiles. We es-OIe in the Arctic observed for an extended period of time

timate the effects of covariates — month, year (trend), quasigManne);] et. al. 201])|' An mcreTjed n the_ oEcgrrence th
biennial oscillation, the solar cycle, the Arctic oscillation, the stratospheric ozone losses could dramatically increase hu-

El Nifio/Southern Oscillation cycle and the Eliassen—Palm™Man €xposure to ultraviolet radiation, causing skin cancer
flux — on the principal component scores of ozone profilesan_?hcat?ricf't d climate ch
using additive mixed effects models. The effects are repre- | € md € V\t/)eer_1 ozone redco;/e(;y E;n hC imate ¢ anged
sented as smooth functions and the smooth functions are e§&SC N€€ds to be investigated. Indeed, there is new an

timated by penalized regression splines. We also impose gtronger ewder;]ce_forhradlatlve gmd dy?am;‘cal "”k"?‘ges ?e-
heteroscedastic error structure that reflects the observed se¥rcc" stratospheric change and specific changes In surtace

sonality in the errors. The more complex error structure en-climate WMO, 2011. In particular,Solomon et al(201Q

ables us to provide more accurate estimates of influence§howeOI that stratospheric water vapor may have slowed the

1 0,
and trends, together with enhanced uncertainty quantifica[ate of warming by as much as 25%. Furthermore, part of

tion. Also, we are able to capture fine variations in the timeLhegbserVid r|<\a/lcovery||r|13total olzone go!umn Ievehls mai’j not
evolution of the profiles, such as the semi-annual oscillation. e due to the Montreal Protocol restrictions on the produc-

We conclude by showing the trends by altitude over Bouldertion of chlorofluorocarbons (CFCs), but rather due to an in-

and Arosa, as well as for total column ozone. There are grea‘frealse In gre_enhouse gases (GH_GS)’ W_h'Ch warm the tropo-
sphere, but increase stratospheric cooling that in turn may

slow ozone depletion. Chemistry—climate models do not yet
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simulate these interactions well, or do it with large uncertain-between goodness-of-fit (fidelity to the data) and smoothing
ties, and some joint effort by the CCMVal and CCMVal-2 (avoiding roughness of the fitted functions). Smoothing pa-
projects focuses on intercomparisons of such modsilteft rameters control the level of smoothing of the fitted func-
et al, 2011). Having good estimates of trends from the lower tions. Data-driven smoothing parameter selection is known
to the upper stratosphere can potentially help disentangle thig be sensitive to misspecified error structure. Thus, we se-
issue and improve numerical modeling. lect the smoothing parameter as a variance component in
We now discuss two ozone trend studies to clarify the re-the mixed effects model framework. As a result, we obtain
lation of our work to these, and also to emphasize the posmore reliable estimates. Finally, we allow a more complex er-
sible improvements we make over theifiller et al. (2009 ror structure that accommodates observed heteroscedasticity
analyzed profiles from 12 ozonesonde station located north¢here seasonal) in the residuals, since unexplained variations
ward of 30 N. The data were collected from the 1970s un- are present that are not purely noise.
til December 2003. For fractional Umkehr altitudes (quarter Unlike Meiring (2007, we carry out an initial smoothing
of Umkehr layer), the time series of ozone concentrationsstep via smoothing splines. We enhance the principal compo-
were regressed on monthly indices of the quasi-biennial osnent decomposition by integrating two steps of data smooth-
cillation (QBO), the solar cycle and Arctic oscillation (AO) ing prior and after the PCA. Furthermore, by modeling all
as well as linear trend terms, with the use of an autoregresmonths in one regression setting, we are able to make use
sive noise.Miller et al. (2006 concluded that there was a of information that is present across months. In this way the
change in the ozone trends around 1996, and that ozone ffitted curves of covariates are easier to interpret, as seasonal
the lower stratosphere has been increasing from that approyeffects are already included in the analysis. By adding the co-
imate time. To borrow strength across a vertical profile, andvariates solar cycle, AO, ENSO and EP flux to the covariate
thus improve trend estimatioMeiring (2007 was the first  QBO used inMeiring (2007, we are able to remove the ef-
to analyze an entire set of ozone data measured at one loc&ects of these influences in the ozone variations, and thus ob-
tion (Hohenpeissenberg) in a single model approach. Due ttain trend estimates that correspond more genuinely to varia-
the irregular measurements in the ozonesonde M&aing tions due to changing emissions of ODSs and GHGs.
(2007 initially interpolated the ozone data to a fine grid of ~ The paper is structured as follows. In Se&ttve describe
regular intervals, followed by multivariate principal compo- the Umkehr ozone data and represent them in terms of a ba-
nent analysis (PCA) of these vectors, and then used a cubisis function expansion in order to convert the discrete data
spline interpolation to retrieve continuous principal compo- into functional data. SectioBexplains the decomposition of
nent functions. This provided a parsimonious representatiorthese functional data using functional principal component
of the major sources of ozone variations across altitudes. Thanalysis (FPCA) in order to perform dimension reduction.
coefficients of the leading principal components were usedSect.4 focuses on finding the effect of proxies (QBO, solar,
to investigate trends and the effects of QBO via a Smooth-AO, ENSO and EP flux) on the modes of ozone variations
ing Spline ANalysis Of Variance (SSANOVA) modeG(, via AMMs. In Sect.5 we discuss the estimation results of
2002. Even thoughMeiring (2007 mentioned the effects of our analysis and we derive trends in Sé&ctFinally, Sect.7
the 11yr solar cycle on the ozone levels, such a cycle wass devoted to conclusions and further discussion.
not directly used in the analysis. Instead, the evidence of
the solar cycle was mentioned through the estimated time-
dependent effect curves that exhibited peaks in 1970, 1982 Data processing
and 1992, at the times the solar cycle was at its maximum.
In Meiring (2007), the model was separately fitted for each 2.1 Umkehr ozone data description
month, therefore the QBO effects and the time trends were
reported only for selected months, so borrowing of informa-Umkehr daily ozone observations in Dobson units (DU)
tion across months was not possible. Findigiring (2007 from January 1978 to December 2011 in Arosa and
also mentioned the possible presence of more complex noisBoulder of latitudes 4870’ N and 400" 54’ N, respec-
structures, but did not deal with it. tively, are used. The source of data is the WMO Ozone
In this paper, we build a regression model that includesand UV Data Centre (WOUDC) and is publicly avail-
month, year, QBO, the solar cycle, AO, El Nifio/Southern able afftp:/ftp.tor.ec.gc.ca/pub/woudc/Archive-NewFormat/
Oscillation (ENSO) cycle and Eliassen-Palm flux (EP flux) UmkehrN14_2.0_1/0zone profiles are retrieved in sub-
as additive terms. We use Additive Mixed effects Models layers (where width is defined in a log pressure scale: a
(AMMSs) to fit the covariate effects as nonlinear functions. change in pressure between the top and bottom is a quar-
The AMM is an extended version of the penalized regressiorter of log(2) or approximately 1.2 km). Since the Umkehr
spline, where each smooth term is represented by a lineamethod does not allow for independent information in high-
combination of spline basis functions, and the coefficientsresolution profiles, sub-layers are traditionally combined in
vector is assumed to be random. The criterion we used fothick Umkehr layers for further use in studies and archives
fitting is penalized least squares, which finds a compromisgPetropavlovskikh et gl.2005. The layers are defined
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according to the pressure level system. For example, the base
pressure of layer 1 is approximately 0.0368 hPa, correspond-

ing to 72.2km of approximate height, while the bottom of Y4/ =Y
layer 61 is at the sea-level pressure 1013.24 hPa. The total
number of layers in the retrieved profile is 61. It fully cov- YY) = Zcik‘pk(x)’

ers the troposphere and the stratosphere and partially covers k=1

the mesosphere. If a station is located above sea level, e.gvherey; (x) is the smooth ozone profile of timieat altitude
Boulder, the information in the one or two bottom layers is level x, ande;; are the associated space and time error. We
not derived. Layers 1-28 (above 45 km) had no sensitivity tochoose a B-spline basidg¢ Boog 2001 with the polynomial
ozone variability due to limitations of the Umkehr method, so order of 4 (i.e., degree 3), so cubic B-splines are used as a
we discarded them from analysis. Hence, we focus on layer§asis function systeni-splinesare known to provide a con-

29-60, corresponding roughly to altitudes ranging from 2 tovenient basis for computational efficiency. Each B-spline ba-
45km. sis functiong,(x) is evaluated at knots and so we have to
At the beginning of the time series, the frequency of obser-choose the number and locations of these knots to define the
vations is considerably less than during the rest of the recordpasis system. The degree of smoothing can be controlled by
and the data are unequally spaced in time. Thus, we crek, as small values ok can resultin a smoother fit. Thus, we
ate monthly data by averaging out the daily record. Monthsdo not view a basis system as defined by a fixed nuniber
for which no profile was observed created missing monthlyof parameters, but rather we skeas itself a parameter that
profiles, e.g., for Boulder 11 monthly profiles were miss- we choose according to the characteristics of the data.
ing in the years 1978, 1979, 1982, 1983, 1998, 2003 and The choice of the number (and locations) of knots is
2005, and for Arosa 4 monthly profiles were missing in the computationally expensive. In order to overcome the com-
years 1978, 1986 and 2011. Finally, we removed the obserputational challenge, some authors proposed a roughness
vations recorded over two volcanic periods: 1982-1983 (Elpenalty approach, e.gsmoothing spline@Vahba 1990 and
Chinchén) and 1991-1993 (Pinatubo). Indeed, these obsepenalized regression splingsiastie and Tibshiranil99Q
vations were not corrected for aerosol interference, and theréRuppert et al. 2003, which alleviates the heavy compu-
fore the profiles based on these two periods are erroneous. tational costs associated with knot selection. In the rough-
ness penalty approach, the numiseiis chosen to be large
2.2 Functional representation of ozone data enough to capture the maximum complexity of the func-
tion, but a penalty term involving a smoothing parameter
Even though the ozone profiles were divided into discreteiakes care of excessive variations resulting from the large
layers, we view them as smooth curves, which reflect theg Roughness of the functiop(x) is often measured by
degree of smoothing of the Umkehr method. With a func- the integrated squared second derivative of the function, i.e.,
tional representation that accommodates smoothness, the O?IDzy(x)]de, whereD™ y(x) is themth order derivative of
servations can be more realistically evaluated and underihe functiony(x). For each sample;(s), we approximate
stood, compared to a multivariate analysis that would nqt Natthe integral using a B-spline basis function expansion, i.e.,
urally account for such smooth dependence across a“'tUdeSZf:lf[ciszqbk (x)]2dx.

ThUS, we achieve meaningful dimension reduction with our According tode Boor(ZOO]), the basis system that Opti_

approach. For each station, functional ozone values corremizes the least squares problem with a penalty term is the

sponding to time' (each month and year combination) and cypic B-splines system with knots placed at the observed

layer j were observed: data points. Thus, we placed knots at each layer excluding
i i two end points consequently, in our situatikin= L +r —1

vij (=1..n; j=29,.,60), (1) whereL is the number of interior knots andis the polyno-

mial degree. We use the penalized least squares criterion to

estimate the following coefficient vector for each station:

(xj) +€ijs (2
K

wherey;; is the ozone value, recorded at tithand layer;.
Let us briefly introduce how the functional ozone val-
ues are approximated by spline modé&gline modelfiave ] 32 K 5
become one of the most popular ways of fitting nonlin- MNc; Z()’i/’ — Y cikdr(x)) ®)
ear functions. Splines are piecewise polynomials of de- j=1 k=1
greer, with the polynomial pieces joining together at so- 32 K ) )
called knots and they possess continuity conditions and +t )‘ZZ(CikD b (x))%,
a high degree of smoothness. Using a set of spline basis j=1k=1
functions{¢y (x),k = 1, .., K} and the associated coefficients

{cit,k = 1, .., K}, we achieve smoothing as follows: where A is a smoothing parameter. The first term quanti-

fies goodness-of-fit (fidelity to the data), whereas the second
term penalizes the roughness of the function (avoiding over-
fitting). Instead of the numbek controlling the degree of
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Fig. 1. Smoothed monthly ozone values (profiles) in DU (scaled by 1000) from two locations (Boulder and Arosa), based on the method of
smoothing splines for the selected years of 1984 and 2011. The ozone profiles are represented as a function of altitude in km, or equivalently
of atmospheric pressure inhPa. In each panel, vertical lines are drawn at 0.01 and 0.02. Horizontal lines are drawn at 63 hPa, which is
approximately equivalent to 19 km in altitude.

smoothing, in the roughness penalty approach the smooth-

ing parametek determines the level of smoothing. We used ~

smooth.basis  in thefda library in R to implement the () — 4

estimation. Generalized cross validation (GCV) developedyt ) y(x)+;$l(x)ell’ @

by Craven and Wahb#1979 helps us choose a smooth-

ing parameten.. The GCV scores were examined against awherey(x) is the mean ozone profil€;(x) is the principal
range of the parameter values. A plot of GCV scores againséomponent (PC) an@}; is the uncorrelated random variable,

2 did not pin down a particular value for the parameter, asreferred to as the PC score, associated wtithsample and
the scores were almost invariant regardless of the values dth PC. Since the Umkehr ozone profiles were observed at

2, provided that the values are approximately smaller thardiscrete and dense layensg, .., xe0), the PCs might be built
107°. Thus we selected = 10~° for all samples of Boulder ~as in the multivariate case using eigenvectors of the centered
and Arosa. sample covariance matrix of the data and using an additional

The smooth monthly Umkehr ozone profiles as a functionstep of linear interpolation. However, this naive approach
of altitudes for selected years (1984 and 2011) at two locadoes not consider the functional nature of the data. The func-
tions (Boulder and Arosa) based on the method of smoothingional nature of the ozone data can imply that the PCs are
splines are displayed in Fid. Following standard conven- smooth. We achieve smoothing of the PC by first smooth-
tions in the atmospheric science community, we set the vering the functional data by the method of smoothing splines
tical axis as altitude and the horizontal axis as ozone valuesas described in Sec2.2, and second projecting the PCs on
We provide atmospheric pressure in hPa in addition to alti-2 B-spline basis. Performing smoothing first also yields a
tude in km, but the correspondence is approximate. The figsmoothing of the covariance function of the data. However,
ure illustrates the functional nature of ozone variations (highif we use a large number fak, the level of smoothing is
correlation in ozone values along altitudes). As expected, théninimal. Silverman(1996 incorporated a penalty term into

altitude-dependent ozone profiles exhibit substantial monththe orthonormality constraint imposed on the PCs to smooth
to-month variations. the PCs even further. The detailed estimation procedure is
presented in Appendifl.
Using the truncated Karhunen—Loéve expansion ug to
3 Functional principal component analysis (truncating the infinite expansion in Ecgd)(up to a finite
. . . ) number of component$), we achieve dimension reduction.
The spline model approach presented in S2@achieves di- - \ye retain only the firsé = 5 PCs, which are responsible for

mension reduction, but the dimensidi & 32) is still rather g9 5 and 99.4 % of ozone variability at Boulder and Arosa.
large. We now consider FPCA to reduc_e the dimension eVeRy pically, the PC gets rougher as the ordéncreases. The
further and represent each ozone profile in a more parsimogncated Karhunen—Loéve expansion is often understood as
nious way. FPCA has received a great deal of attention iny \yay of eliminating noise, as higher-order PCs frequently
the functional data analysis (FDA) literature as a device for g, aqent the noise in the data. Also, PCs are often referred to

dimension reduction, which is often an essential step for anaz g e mpjrical basis functions because they provide basis func-
lyzing functional data. The Karhunen—Loéve expansion, €.9-tions to approximate the ozone profiles as seen from4ig. (

in Bosq(2000 tells us that and because they are driven by the data. With the empirical
basis functiorg; (x), the PC scor#;; represents the relative
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Fig. 2. The effects of five PC functions on the mean ozone profile. It displays the mean curve as a solid line, al¢ng anith(—) indicating

the exaggerated consequences of adding and subtracting a multiple of each PC. Dashed lines are drawn in &elglitmimtprove the
visual quality. Ther axis refers to ozone level in DU (scaled by 1000), andthgis to atmospheric pressure (hPa). The variance contribution
in % of each PC to total ozone variability is placed at the top of each panel.

contribution of the corresponding PC to ozone variations.around the overall mean (we subtracted the overall mean pro-
Denoting the estimate of the PC from Silverman’s approactfile before carrying out FPCA). The size of the perturbations
by & (¢), we compute the time series of the score veé@for around the mean curve, shown@s)(—) in each panel, are

for thel/th PC for each station by computed by a multiple of each PC, i.¢(x) £8 x & (x).
Conventionally, a standard deviation of each PC is widely

0, = | 500)Gix) —5eNde (i =1....n). 5 used as the multipliet. However, we employ the same sub-

t /El( Y013 =3(x) ¢ ) ®) jective choice o = 0.02 here for all PCs to inflate the size

R ) . of perturbations in order to enhance the visual quality.
where y; (x) are the fitted Umkehr ozone profiles from the ¢ js yseful to point out that the first five PCs are almost

spline model in Eq.2), andy(x) is the sample mean of the  jentical for Boulder and Arosa; see columns 1 and 3 of
fitted ozone profiles. We have= 337 for Boulder, as there g 3 Each PC shape is associated with sensitivity of the
were 11 missing months and Syr of volcanic periods wereq;ane profiles to major geophysical or chemical variations
deleted337= 408-60—11), whereas we hawe=344for - compinations thereof. The contribution of these variations
Arosa, as there were 4 missing months and the volcanic peg, 5zone variability is not easy to disentangle. The analysis
riods were delete@344= 408—60—4). The time series of  j, \he next sections will provide insight into these variations;
the vectors of the PC scorés, ..,05 with 0, = [6/1,...61.]  for instance, PC 5 can be associated with the semi-annual os-
are assumed to represent dominant temporal evolution in thgjjation. PC scores 3 and 4 for Arosa have larger variability
shape of ozone profiles. Thus, they will be used in the subyya, those PC scores for Boulder, which means that Boulder
sequent statistical analysis, in which we aim to study the as3n4 Arosa have different dynamical contributions, despite the
sociation between altitude-dependent ozone variability withs ot that the PC curves from the two different stations are al-
specific time-dependent atmospheric forcings, such as QBQy st identical. The first two PC scores show a clear annual
solar cycle, AO, ENSO and EP flux (i.e., Sedtincludes  cycle which has been shown to be associated with both up-
regression on those external forcings). welling and in-mixing for the tropics, and thus by extension
_The estimated five PCs and the associated PC scores af§ the mid-latitudes through the Brewer—Dobson circulation
displayed in Fig3. If all PCs are found to be close to zero (konopka et al.2010. Some outliers are detected in the time
at a given altitude level, we can conclude that the profiles arggjes of the PC scores. The beginning of the time series tends

close to its mean at this level, and relatively small variationsq haye rather unstable measurements, possibly related to the
are present. Figurzhelps us inspect the effect of each PC on ¢3¢t that fewer measurements were available then.
the mean ozone variation, since each PC represents variations

www.atmos-chem-phys.net/13/11473/2013/ Atmos. Chem. Phys., 13, 11471301 2013



11478 A. Park et al.: Ozone trends

< <
o o
g S 3 S 1
o o a o
[ € o
£ 9 £g
@ o g 2
2 o 2 o
2 ~ S 8 - o
8 o | ® \ S o | ®
s © 5 3 © 5
Y 8 o o 2 o
o 838 Q %8
2 =t 2 o
S o S o
g &1 “ g &1 o
£ S | E 24
< ? < ?
& &
& o 4
@« T T T T T T T T T T T T «© T T T T T T T T T T T T
-02 00 02 04 1978 1986 1994 2002 2010 02 00 02 04 1978 1986 1994 2002 2010

year PC1 year

16 4

s
o
/\/ \/ :
3

0.005 0.015

16 4

s

0.005 0.015

hPa
63 16 4
| . .
o
\/ o
~
score 3
. . 0.015
I R
hPa
63 16 4
| | .
score 3
0.005 0.015
I

N o

ol S 8 . S 8
g 8 '5 WWWW - "o M WWMWWNN

$ 8

m m

2 8

. g o | g

& ? & ?

2 | 9 |

el S B S
«© T T C‘> T T T T T T T T T «© T T T C|> T T T T T T T T T
-0.2 0.0 0.2 0.4 1978 1986 1994 2002 2010 -0.2 0.0 0.2 0.4 1978 1986 1994 2002 2010

year PC2 year

0
<]
=3 d
S
il WWWWM g W W\MM
<] 8
o | 3 | o | =
& ? & ?
2 | 4 |
3 34 &4 S 4
© T T S T T T T T T ® T T S T T T T T T
-0.2 0.0 0.2 0.4 1978 1986 1994 2002 2010 -0.2 0.0 0.2 0.4 1978 1986 1994 2002 2010
PC3 year PC3 year
< q < R
0 0
B 2
3 3 -
o | = o | S
3 ] 3 |
( s d s
3 3 A
g 8- 2 s g 8+ 2 s
= B o b i | = B o1y a
0 ry
<] 8
o | 3 | o | 3
gl E 2 C:::: s
Pl S 4 S 34
@ T T T S T T T T T T T ® T T T S T T T T T
-0.2 0.0 0.2 0.4 1978 1986 1994 2002 2010 -0.2 0.0 0.2 0.4 1978 1986 1994 2002 2010
PC4 year PC4 year
< q < R
> I
B 2
3 3 -
o | = o | S
3 ] 3 |
< o8 < o 8
s o] 2 27 S o o 2
% © 5 o 1w % © 5 (=}
& 1 Al b LIPS LA L U
0 ry
2 S 2 E2
« ? & ?
2 | g |
PR S 4 &4 24
© T T T ¢ T T T T T T T ® T T T S T T T T T T
-0.2 0.0 0.2 0.4 1978 1986 1994 2002 2010 -0.2 0.0 0.2 04 1978 1986 1994 2002 2010
PC5 year PC5 year

Fig. 3. The estimated five PC curves as a function of altitude in hPa, and the corresponding PC scores of monthly Umkehr ozone profiles
from 1978 to 2011. First and third columns are the PC curves for Boulder and Arosa, respectively. Second and fourth columns represent
the first five time series PC scores associated with the PC curve on their left-hand side. In the plots of the PC scores, two volcanic periods
(1982-1983 and 1991-1993) are omitted.

When we use FPCA it is assumed that ozone values fosome skewness. However, the skewness is not present for
each altitude level are normally distributed with a constantlayers where ozone is highly concentrated. Because we em-
mean and variance. Histograms of the values for some alploy a functional approach, a transformation should be con-
titude levels, e.g., layers 32, 33, 36, 50, 51, and 54, showsistently applied to all altitude levels, and this is why we did
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not consider the transformation. Since skewness occurs onlthe scores of the PC 2 as QBO2. PC 1 and 2 of the QBO
at layers where ozone is not very high, we expect the bias irdata and their associated PC scores, QBO1 and QBO2, are
the FPCA step resulting from using non-normal data to bepresented in Figha. As seen from the shape of PC 1, QBO1
small. is mostly related to QBO winds at 30 hPa, whereas QBO2 is
We subtracted the overall mean ozone profile (altitude-mostly related to QBO winds at 10 and 50 hPa.
dependent) prior to performing FPCA, thus a seasonal cycle Time series of other proxies are plotted in Fip. The
is included in the covariance as well as in the time series ofsolar cycle index represents the variations in the sun’s
the PC scores. Indeed, variations in the PC scores are donactivity, with an average period of about 11lyr. Daily
inated by a strong seasonal cycle; see Féggnd7. Thisis  solar cycle data (2800 MHz Series C) are available at
why we include the month in the regression model in the nexthttp://www.ngdc.noaa.govDaily records were averaged
section (regression of the PC scores on the covariates), as tlout to create monthly solar flux. The AO index represents
seasonal cycle in ozone is identified via a penalized regresthe major sea-level pressure variations North of 1200f
sion cyclic cubic spline model. Further details of the resultslatitude. It does not show any particular periodicity. We
are provided in Sech. use monthly AO data fronhttp://www.cpc.ncep.noaa.gov
The ENSO index is associated with surface tempera-
ture and surface pressure variations over the tropical
4 Modeling effect of covariates on ozone variations Pacific Ocean. We obtain monthly ENSO data from
http://www.esrl.noaa.gov/psd/enso/mei/table.htfihe EP
In this section, we focus on finding the important sourcesFlux can be used as a proxy representing the planetary
of the unrevealed patterns and variations among the monthlyvave propagation to the upper stratosphere where it delivers
Umkehr ozone profiles and on explaining these variations inthe heat, and changes temperatures. The EP flux defines
terms of the relevant covariates. Here, we regress each P@zone transport from the Equator to high latitudes that
score vector separately for each station on known externapuilds up ozone in winter time, but then ozone experiences
forcings. The main purpose of the regression is to partitionrelaxation through photochemistry during the summer and
each score vector into smooth components and random vargarly Fall. However, the rate of ozone destruction is fairly
ability. The smooth components include month, year, twoslow, therefore there is a correlation between ozone built up
modes of variability of the QBO (QBO1 and QB02), the so- through March and the amounts of ozone observed in the
lar cycle, AO, ENSO and EP flux. We use the method of pe-following summer. This is why we used EP flux integrated
nalized regression splines to fit each smooth component anffom October to each consecutive month of the year; see
select the smoothing parameters as a variance component . (1) in Dhomse et al(2003. We use NCEP EP flux
the mixed effects model framework. Sectiéri introduces  re-analysis data (100 hPa, 4521 monthly mean) avail-
the covariates information, Seet.2 focuses on introducing able at http://www.awi.de/en/research/research_divisions/
an additive model, where each smooth term is estimated bglimate_science/atmospheric_circulations_old/projects/
the penalized regression splines. Sectdpresents the re- candidoz/ep_flux_data/
lation between the penalized regression spline and the mixed _ ) )
effects model to show how smoothing is induced by the vari-4-2 Pénalized regression spline
ance component. In Seet.4, we carry out a variance func-

tion estimation to take into account the heterogeneous erro\rNe aim to partition the PC scores for each station into the

additive smooth components:

structure.
, 61 = ¢ + ginn(Monthy) + go(Year) + g3(QBOY,) (6)
4.1 Covariates
+814(QBO2) + gis(solar cycle) + gi6(AO;)
Here, we describe briefly the covariates (QBO, the solar cy- +87(ENSQ) + gig(EPflux) + €;
cle, AO, ENSO and EP flux) to be used in our analysis in €;; ~ N (O, o,z) i=1.,n; 1=1,.,5),

Sect.5. The QBO represents stratospheric zonal wind vari- ) ) . .
ations with a quasi-period of approximately 28 months. WeWherec; is the overall mean and; is the associated i.i.d
use monthly QBO, available 4ttp://gcmd.nasa.govQBO  €ITOr.g;;(F) is the smooth function of the covariatg and
was recorded at seven atmospheric pressure levels, 70, 5B1e/th PC score. We replace each smooth functigmwith a
40, 30, 20, 15 and 10 hPa. We took the time lag in the QBOImear _combmatlc_)n_ of spline basis functiogg (F;) and the
effect from the Equator to mid-latitudes into account by using@Ssociated coefficients;x:

a four-month lag; as a rule of thumb, 1 month per 10 degrees .
of latitude is often used in the literature. Furthermore, we =~ <~ F. 7
used PCA to reduce the dimensionality (from 7 to 2) of the 8= ];al’k(mk( i (7)
QBO records. Only the first and second dominant PC scores -

were kept. We denote the scores of the PC 1 as QBO1 andnd we estimate the coefficients, for all / and ;.
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Following the spirit of a roughness penalty approach, thesplines, the model matriB in Eq. (A2), see Appendix, is
coefficients are estimated by minimizing the penalized leaspartitioned into two parts (a fixed effects part denoted@by
squares criterion with fixed smoothing parametgfs and a random effects part denoted By), and the idea of

penalization is incorporated into the covariance matrix of the
8 8 random effects via a Bayesian approaRhipert et a].2003

gzj(Fij)]2+Z?»1j/[ngzj(Fj)]zdFj, (®)  wood 2006.

=1 j=1 Accordingly, we have the mixed effects model representa-

where the first term ensures the closeness of the estimate N Of the regression model in Eg)(

the data, while the_ second te_rm penalizes the cur\(ature ofol —Bpb +Bruj+¢ )
each smooth function. For estimation, we usephaalized

regression cyclic cubic splindsr the month term angenal- ur~ N (O, 2y)

ized regression cubic splindsr the rest. The penalized re- ¢, ~ N(0, (rlzln),

gression spline is considered a generalization of the smooth- -
ing spline, with a more flexible choice of basis, penalties andVNereé: = (611, .., 6,1 is theith PC score vector, anlr
knots. Unlike the smoothing spline, where knots are placed af"dBr are the model matrix corresponding to the fixed and
each observation, in the penalized regression spline approadgndom effectsb; is the coefficient vector corresponding to

the number of knots is typically far less than the number ofthe fixed effects, e.g., coefficients of a constant and linear
observations. terms in the spline basis, amg is the coefficient vector cor-

A splines basis system is determined by the amount and |O[espondingl to the random effects. The fixed part' is treated
cation of knots. However, in the penalized regression spling®S Unpenalized components and the random part is treated as

literature, it is known that knot selection does not have aPenalized components; therefore, smoothing is induced by
large impact on the results of the model, if the coefficientsthe covariance matrix of the random effects. We denote the

are estimated by a balance between goodness-of-fit and tHgPvariance matrix of the random effects 2y, to emphasize
roughness of the function. FollowirRuppert et al(2003, that the matrix is determined by the vector of smoothing pa-

_ T o : !
we seleck ; = min(n(F;)/4,40) and place the knots at fixed "@MEteA; = [A1. ... hig]” . Sinceu; is not fixed but assumed
quantiles of the covariates, whekg; is the number of ba- to be random, we predict it rather than estimate it. If we know

2 . . oyn
sis functions for covariat¢; andn(F;) is the number of €2,, ando;” then we can prediat; using the conditional mean

the unique values of the covariate. Moreover, the choice of £f % 9iven the responsé, i.e., E(u,|6;). This conditional

class of a basis does seem to have very little impact on the ﬁ@pproaclzh is known as the Best Linear Unbiased Prediction
of the model, provided that it has sufficient flexibility, numer- (BLUP); see, e.gRobinson(1991]). The detailed relation be-

ical stability and appropriate mathematical properties. ThinfWeen the penalized regression splines and the mixed effects
plate penalized regression splines were also used to approX2Cdels is presented in Appendh8. The estimation is im-

imate the smooth functiong; in order to investigate sensi- plemented irmgcv with R-functiongamm
tivity of the fit to the choice of the basis. However, the sta- L€t us consider the notion @fffective degrees of freedom

tistical results from the two models, involving two different fOr the regression model. The effective degrees of freedom

basis systems, were almost indistinguishable. For a detaile§EPF) of €ach covariate assesses flexibility of the term in

fitting procedure of the penalized regression cubic splines fot€ regression model, and is closely related to the smooth-
a given smoothing parameter, see Apperfix ing parameter. As the smoothing parameters increase from
’ 0 to oo, the EDFs decrease smoothly from the maximum

4.3 Mixed effects model framework of penalized value (K ; defined in Sect.2) to 1. If the smoothing param-
regression spline (AMMSs) eter is large, then the model is less flexible, and so the fitted
smooth curve has very few degrees of freedom. At the op-
The smoothing parametefs; are unknown positive num- posite extreme when the smoothing parameter is zero, then
bers, but they play a crucial role in fitting the penalized re- the penalty term in EQ.8) vanishes; as a result, maximum
gression splines. Generalized cross-validation (GCV) is oneof the EDF is achieved. When EBRF1, the fitted curve is a
of the widely used methods for selecting the smoothing pa-straight line. Here, we cannot discriminate between the lin-
rameter in the spline model literature. However, it is known ear and the insignificant effects because the linear term is in
that the smoothing parameters derived from GCV are heavthe penalty null space, which means that the minimum value
ily affected by a misspecified error structure, e.g., correlatedor the EDF is 1 for both the linear and insignificant effects.
errors Krivobokova and Kauermanr2007. The mixed ef-  We employ a shrinkage methollérra and Wood2011]) as
fects model frameworkRinheiro and Bate2000 may help  variable selectiorand it allows the discrimination. For vari-
us achieve smoothing of the components in the regressioable selection we replace zero values in the penalty m&trix
model @). Mixed effects models are an adaptation of regres-in Eq. (A3) by a small value. ¢ was chosen to be very small
sion models that incorporates a stochastic structure. In theo as not to affect the regression coefficients, except those in
mixed effects model framework of the penalized regressionthe penalty null space, e.g., constant and linear terms. As a

n
[0 —c1—
—~

1

J
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Fig. 4. Diagnostic plots of the regression model in E@). for PC score 1 of Boulder. Upper left panel: plot of normalized residuals versus
fitted values. Upper right panel: log-variance of raw residuals computed for each month. The plots in the second row are box plots of
normalized residuals grouped by month (left) and year (right). Bottom panels: counts of daily ozone observations per month (left) and year
(right) as a time series.

result, regression coefficients are shrunk to zero if their assoin the error, residuals from the fit of the regression model
ciated smoothing parameter is large enough. In other words(6) were graphically inspected. Autocorrelation plots of the
when the EDF is less than 1, then we say the effect of the asresiduals did not suggest that the error is correlated, so we do
sociated covariate is statistically insignificant. This approachnot consider autocorrelation here. Note that the original PC
achieves model selection without involving inference of the scores 1, 2 and 5 present strong autocorrelation, e.g., having
estimatesMarra and Wood2011) present an extensive dis- approximate values of 0.7, 0.8 and 0.5 at lag 1 of Boulder.
cussion about the variable selection for the penalized regresPC scores 3 and 4 have relatively weaker autocorrelations of
sion splines and provide guidance regarding its implementa®.35 and 0.4, possibly due to the fact that PC 3 and PC 4 are

tion for mgcv users. not strongly related to time-dependent sources of ozone vari-
ation. Comparing the estimated autocorrelation of the resid-
4.4 Modeling heteroscedasticity uals from the regression model and the autocorrelation of the

original data, we are allowed to say that the penalized spline
In the regression modet), a particular form (i.i.d normal er- regression model eliminated autocorrelation in the original
ror) was assumed for the error term. Graphical and numericatiata.
summaries help analyze potential shortcomings of this as- Heteroscedasticity is present. Indeed, considerable vari-
sumption. Observations made in adjacent months might havability remains even after the model is fitted, as seen in the
stronger correlation than observations made in non-adjacentlot of fitted values versus normalized residuals; see the up-
months. This potential correlation might not be completely per left panel in Fig4. The plot reveals that the constant dis-
captured by the time covariates, resulting in error correlationtributional assumption on the error is not appropriate. It gives
In order to check the possible presence of serial correlation
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Fig. 5. Covariate(a) QBO: PC 1 and PC 2 correspond to the first and the second dominant modes in the QBO; QBO1 and QBO2 are scores
associated with PC 1 and PC(B) Time series of covariates (solar, AO, ENSO and EP flux).

an indication that an extended model that includes a mordow Pinheiro and Bate€000 and the convenient arbitrary
complicated error system is needed to account for this rechoice of 3;1 and 3;;. To account for the heteroscedas-
maining variability. As a first attempt to trace the cause of theticity, our model in 6) is replaced with a new model in
observed variance pattern, the number of daily ozone obsemhich a complex error structure is assumed. In the new
vations used to create the average monthly data are countechodel, the error vectog; = [¢/1, .., €;,]7 is assumed to be
The counts are taken by month and year, and are displayed iey ~ N (O, alel). A; e R is a positive definite diagonal
the bottom panels of Figt. matrix with ith diagonal elements; Var(e;;), where we de-
Log-variances of the normalized residuals (for PC score ]Tin e Vare; o
of Boulder) are computed for each month and displayed in l
the upper right panel in Figl. The plot shows high ozone

) in Eq. (10). By usinglthe variance function in
Eq. (10), we largely reduced the number of parameters to
R I ; model heteroscedasticity. In other words, instead of estimat-
var!ab|I|ty In winter and spring months. The plqt of the-log- ing a whole set of diagonal elementsAn, we only estimate
variances together with the box plot of normalized reS|duaIs(S ands
grouped by month — see the plot in the second row and the'* 12
first column of Fig.4 — show that the residual variability has
a strong annual cycle. It is possibly due to ozone transpor Estimation results
in the upper and middle stratosphere associated with move-
ment of jets (both in polar and subtropical) close and awayin this section, we present the estimation results of the effects
from the station, and also due to the stratosphere—troposphersf the time covariates and the external forcings on the PC
exchange. The errors in retrieved ozone in the upper stratoscores. Before presenting the results, we discuss two poten-
sphere could also be related to the unaccounted stray light itial approaches that we considered to improve the model fit.
the measurements that results in the underestimated values Bfrstly, because we subtracted the overall mean ozone profile
retrieved ozone. The stray light in the band-pass is depletedaltitude-dependent) prior to carrying out FPCA, a seasonal
more with increased total ozone, therefore the contributioncycle is still included in the covariance as well as in the time
of the out-of-band light becomes more significant; as a reseries of the PC scores. We attempted to filter out the sea-
sult, the errors can increadedtropaviovskikh et g12017). sonal cycle in the FPCA step by subtracting the mean sea-
The log-variance versus month plot shows a periodic patsonal cycle from the profiles before performing FPCA. We
tern. This pattern can be modeled by the sine and cosineomputed sample mean ozone profiles for each month via the
waves: method of smoothing splines and used these sample means
log(Var(e;;)) = 281 SN2 M; ) + 28;2c0927 ;) (10) as estimates of seasonal and. aI_titude—dependent mean pro-
i ~ - files. When the seasonal cycle is filtered out, the PC scores no
< Var(e;) = exp(281SIn(2r M;)) exp(2812COS2m M;)). longer include the seasonal pattern, and month becomes sta-
whereM; = Month; /12. The log transformation converts the tistically insignificant in the regression model for PC scores
multiplicative variance function into the additive one. We fol- 1, 2, 4, and 5. Note that in the original analysis where the
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Table 1.Estimated EDFs of each covariate on ozone scores. EDF indicates the influence and level of linearity of a covariatenteaRs
linear relation; ED= 0 implies non-significance; EDF 1 means (possibly) nonlinear significance.

Scores Mon Year QBO1 QBO2 solar AO ENSO EPflux

Boulder

score 1 7.5 0.5 0 0 1.2 0 1.7 1.6
score 2 8.2 1.2 0.7 0 1.9 0 0 1.7
score 3 6.6 3.4 2.8 0.9 1.5 0.7 1.3 2
score 4 4.9 1.8 1.9 0.9 23 0.9 0.8 0
score 5 7.9 4.5 1.6 0 1.4 0 0 1
Arosa

score 1 6.9 1.4 0 0 0 1.2 0 1.7
score 2 7.9 2.2 0 1.2 1.1 0 0 0.9
score 3 4.2 1.9 0 0.2 0.9 0 0 0
score 4 4.5 1.9 2 0 0 1.2 0 2.7
score 5 7.5 4 0 0 0 0 0 1.5

seasonal pattern is not considered in the FPCA step (thus iearly related iiller et al., 2006 to ozone than months (an-
the PC scores), month is statistically significant for all PC nual cycle) or years (highlighting a trend change). Graphi-
scores. In the end, however, the new statistical approach netally, the covariate effects are represented as smooth curves
ther changes the fitted curves of covariates but month nor théFig. 6 and Fig.7). The estimates of the covariate effects are
estimated ozone trends. As a result, we decided to keep thghown as solid lines and their 95 % Bayesian confidence in-
seasonal cycle in the analysis, as it displays different featuretervals are maked as shaded areas. Even though the penalty
by score (e.g., semi-annual oscillation) that can be of scienterm in the fitting criterion compromises goodness-of-fit with
tific use. By removing seasonality in the first place, we would the roughness of the curve, it biases estimates of parameters.
not be able to analyze such seasonal features (probably duks a result, confidence intervals based on a frequentist ap-
to shrinkage). proach generally give poor results with regard to realized
Secondly, in order to investigate interaction effects be-coverage probabilities. Alternatively, a Bayesian approach
tween covariates (e.g., QBO-solar, AO-solar and QBO—-(Wahba 1983 Silverman 1985 Ruppert et a].2003 Wood,
AO), we used products of the values and created new2006§ among others, is widely used. Since the posterior dis-
variables, i.e., QS QBO1xsolar, AS=AO x solar and tribution of the model parameters can be obtained, the con-
QA =0QBO1x AO. Then, we fitted those three new variables struction of these confidence intervals is relatively straight-
(as interaction effects) via penalized regression cubic splinedorward. In addition to an easy implementation, simulations
For variable selection, following/larra and Wood2011), show that these Bayesian intervals have good observed fre-
we add a very small number to the penalty matrix affectingquentist coverage properties, resulting from the fact that they
only the penalty null space, but not the penalty space. Froninclude both a bias and a variance componbBiythka 1988
the shrinkage approach, the EDF, an indicator of statisticaWahba et a].1995.
significance, corresponding to the interaction terms, were all The confidence intervals marked as shaded areas should
less than 1, with p-values larger than 0.2. Consequently, wéve interpreted with caution. Close to nhominal coverage prob-

conclude that the interaction effects are negligible. abilities (here 95%) are achievable for intervals obtained
from a Bayesian approach when the interval performances
5.1 Estimation results of covariate effects are assessed across the function, provided that heavy over-

smoothing is avoidedMarra and Wood2012. However,
Here, we report estimation results (numerical and graphicalthe intervals for smooth functions that are in the penalty
of the covariate effects (from regression of the PC scores omull space, for instance straight lines, are problematic. When
the covariates). As a numerical result, we give the estimate@¢ombined with the identifiability constraints necessary for
EDFs of each covariate term; see Table 1. The EDFs indicatghe AMM estimation, estimates in the penalty null space of-
the level of nonlinearity, or equivalently the influence of the ten have confidence intervals that are almost of zero width at
corresponding covariate on ozone (significance). When th&ome points. Zero or narrow width implies that the estimation
EDF is 1, then the term is linearly related to the correspond-hias exceeds its variance. Consequently, it undermines the

ing mode. If the EDF is smaller than 1, then the covariate istheoretical argument that a Bayesian type of interval achieves
statistically insignificant according to our regression model.close to nominal coverage.

As expected, the geophysical covariates tend to be more lin-
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Fig. 6. Fitted smooth curves (black solid lines) and their 95% Bayesian confidence intervals (shaded areas) from AMMs of Boulder for
selected covariates (AO and QBO2 are excluded for all scores as none of these covariates are significant; see Table 1). The associated P
score and the covariate are marked as x and y labels. When the associated covariate is insignificant, under the 5 % significance level,
added to the x label. The unticked years in the fitted curves of year represent volcanic periods omitted from our analysis.

Figures6 and 7 show covariate fits into five PC scores dence that we can eventually pin them down with more time
for Boulder and Arosa, respectively. The covariates and PCpoints (to improve estimates) when such changes become
scores are indicated by the labels of thendy axes. The fit-  significant. We will give a detailed discussion of estimated
ted month curve of PC score 5, both for Boulder and Arosa,ozone trends in Seds.
shows very interesting features. Indeed, accordin(G&o- It is also important to notice the difference between sig-
cia et al.(1997), the semiannual oscillation of stratospheric nificant covariates that explain variation in PC scores for
ozone has an M shape that peaks in March and October anBoulder and Arosa. For example, QBO1 (corresponding to
mostly occurs in the upper stratosphere (score 5). To be abl®BO winds at 30 hPa) is a prevalent covariate for PC scores
to pick up such a small variation in stratospheric ozone levels3, 4 and 5 for Boulder, while for Arosa, PC scores 2 and
is an achievement of well-tuned AMMSs. The fitted curves of 4 are related to QBO2 (having maximum response at 10
year show the trends. Nevertheless, looking at these trendsnd 50 hPa level) and QBO1, respectively. Also, one notices
we cannot claim here that a recovery in stratospheric ozon¢hat PC score 3 (corresponding to ozone variation at alti-
occurs for specific modes, but we have increased our confitudes between 63 and 16 hPa) for Arosa has no explanatory
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Fig. 7. Fitted smooth curves (black solid lines) and their 95 % Bayesian confidence intervals (shaded areas) from AMMs of Arosa for selected
covariates (ENSO for all scores, and QBO2 for score 4, as well as QBOL for scores 1, 2, 3 and 5, are excluded, as none of these covariate
are significant; see Table 1). The associated PC score and the covariate are marked as x and y labels. When the associated covariate
insignificant under the 5 % significance levet) is added to the x label. The unticked years in the fitted curves of year represent volcanic
periods omitted from our analysis.

parameters that are significant, except for the month and th&ar vortex; as a result, less ozone is transported to the high
year. On the other hand, PC score 3 for Boulder receives éatitudes. The opposite happens when the AO index is low.
significant contribution from additional covariates, such asTherefore, an increase in AO could result in apparent ozone
QBO1, solar, ENSO and EP flux. depletion. However, some of the influence from the negative
Another interesting difference is that PC scores for Boul- AO index is related to the blocking of the meteorological
der are associated with the ENSO covariate, while PC scorepressure systems (correlated with the Polar Eurasia index),
for Arosa show strong correlation with the AO, which prob- and so creates very cold temperature over Eurdsiairf-
ably makes sense since Arosa is farther north and thus hdsrecht et al. 2011). This can cause chemical ozone deple-
more influence from AOAppenzeller et aJ.2000. AO in- tion and a change in ozone over Arosa associated with differ-
fluences winter stratospheric ozone variability by changingent meteorological patterns (up to 25-40 % springtime ozone
the Brewer—Dobson stratospheric circulation, such that wherlecline) as compared to the patterns that govern the mid-
the AO index is high, there is less wave breaking in the Po-dle latitude ozone over the US (Boulder). There is also an
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unresolved differentiation between NAO (North Atlantic os- over the US, while a change in total ozone is found to be
cillation) and AO indices, although many papers referencenegative over Europe. However, results might be less signif-
them interchangeably. icant; see Fig. 6 ifFrossard et al(2013. Our AMM anal-

It is interesting to see that the solar covariate is significantysis of PC score 3 for the Boulder and Arosa data does not
only for PC score 2 for Arosa data. According to some au-find a significant contribution from QBO2 (ED£0.9 and 0
thors Reinse] 2002 Newchurch et a).2003 Dhomse eta).  respectively). However, for PC score 2 the QBO2 covariate
2003 Hood and Soukharex005 Miller et al., 2006, the  shows a significant contribution (ERF1.2) for Arosa but
solar cycle is usually one of the major contributors to ozoneno contribution (EDF= 0) for Boulder.
trend in the upper and middle stratosphere (PC scores 2, 3, Thirdly, we compare our analysis with the analysis of total
5). On the other handirossard et al2013 showed that the ozone data irRieder et al(2010 andRieder et al(2013.
contribution of the solar signal to total ozone is highly re- Our AMM analysis finds a significant contribution of ENSO
gional and seasonal. The reason is that the effect of the solan Boulder (US) ozone variability for PC score 3 (where
signal in the lower stratosphere is indirect, and of a mostlyozone is maximum), which is similar to the resultRieder
dynamical nature that corresponds to the changes in transt al. (2010 analysis that also found a positive contribution
port. However, in the upper stratosphere (or score 5), the conever the US region. Note that the contribution is significant
tribution of the solar cycle should be closely related to theonly for Winter and Spring months. According ®ieder
photochemical reactions that govern ozone concentrationset al. (2013, over Europe the total ozone analysis showed
Further investigation is required to address this issue in the negative effect of ENSO, but not significant, which is sup-
analysis of Arosa Umkehr time series. It is possible that theported by our analysis of PC score 3 for Arosa that shows
solar cycle is masked by other processes that have a signifthe non-significant influenc&ieder et al(2013 also indi-
cant contribution to ozone variability at Arosa station, or it is cated the seasonal difference in the ENSO contribution. For
restricted by the sampling issues in Umkehr data that are liminstance, in Winter months (see their Fig. 2) contributions to
ited by the fair-weather conditions. The peaks of the solar cytotal ozone are similar to the case for the full year, but only
cles are around 1981, 1992 (and 2003) and indeed match tHer Europe thep value is very low (meaning significance).
two volcanic periods that we removed (1982-1983; 1991—For Spring (see their Fig. 3), both the US and Europe would
1993). Nevertheless, we feel that this lack of information for gain a positive contribution, but only the US would have a
large values of the solar proxy will have a limited impact smallp value (significant). Since our analysis does not assess
on our analysis (probably making some confidence intervaldhe ENSO contribution by season, we cannot fully compare
wider). our yearly ENSO results to tHeieder et al(2013 findings.

We can compare our estimation results of covariate effectRieder et al(2013 also gave an analysis of the NAO signal
with other studies. First of all, we can compare them with contribution to the total ozone column data set (based on the
Fig. 4 of Miller et al. (2006, which showed a negative in- SBUV satellite time series) and found that negative ozone
fluence of AO on ozone in the lower stratosphere, and wechanges are related to NAO over the US and European re-
do also find a negative relationship for PC scores 1 and 4 ofjion, and that the changes are significant in both areas; see
the Arosa data, associated with such altitudes. Furthermoresig. 8 in Rieder et al.(2013. Since our analysis uses AO,
Miller et al. (2006 found a positive influence of solar on there may be a difference between AO and NAO patterns.
ozone in the upper stratosphere, and we do also find a slightly The model that includes a more complex stochastic struc-
positive relationship for PC scores 2, 4 and 5 of Boulder andture (heteroscedastic error) led to modest (not that signifi-

PC score 2 of Arosa, associated with such altitudes. cant) changes in the shape of estimated curves. Nevertheless,
Secondly, the sensitivity of total ozone variability to the Fig.10a and ¢ support the need for the more complex model.
QBO signal has been discussedRrossard et al(2013. 95 % Bayesian confidence intervals in Fidc take the dis-

They found that QBO 30hPa (QBO1) has a negative con-ssimilar variability among months into account, which man-
tribution to total ozone variability over the US (Boulder) ifests itself in a greater uncertainty of the estimated curve
and some of Europe (Arosa), and the contribution is signif-through February to April but a decrease through Autumn.
icant (smallerp value than 1%). Although the results are Thus, a periodic pattern in the log-variances of residuals is
obtained for total ozone time series we can expect similaiwell adapted to the measure of the uncertainty. The param-
results for Umkehr ozone profiles at altitudes of ozone max-eters in Table 2 show the magnitude of seasonal pattern in
imum (Umkehr layers 4 and 5, or between 64 and 16 hPa, othe variance of the residuals, or equivalently, the extent of
PC score 3). From our AMM analysis of PC score 3 for Boul- heteroscedasticity in the residuals. Besides, the fact that the
der, we find that negative values (reduced ozone) correspondMMs treat the noisy part of a curve as random might lead
to the positive range of the QBO1 covariate (although mostlyto more robust estimates, reducing bias and avoiding overfit-
nonlinear). However, for Arosa’s PC score 3 the QBO1 co-ting. Note that the fitted curves of the covariate effects are
variate has EDF of 0.2 (Table 1), thus it is insignificant. In smooth. It might be more realistic to assume that the curves
addition,Frossard et a[2013 found that the total ozone ex- of the covariate effects are smooth.

hibits an increase due to variability in QBO 50 hPa (QBO2)

Atmos. Chem. Phys., 13, 114734501 2013 www.atmos-chem-phys.net/13/11473/2013/
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Fig. 8. Monthly contributions of covariates QBO1, QBO2 and ENSO for Boulder, QBO2 and ENSO for Arosa (covariates indicated in y
labels) to changes in ozone profiles for selected altitudes (indicated on top of each plot with station name). The contributions (%) are grouped
by year and displayed as box plots.

Explained devianceB; in Table 3 demonstrate the quality
of the regression model fit and are defined as
Table 2. Estimates of variance component paramedgrandds in -2
Eq. (L0). The parameters shows the magnitude of seasonal pattenbl —1— Zézi/(” —df)

in the variance of the residuals. S (6 — 0)2/(n—1) (11)
Boulder | Arosa where €;; is the normalized residuals defined in EG2Y
Scores 5, 52| o 5 and df; is the sum of the .EDFs of_ all smooth_ Ferms for
thelth PC score. The explained deviance quantifies the por-
scorel 0.48 04§ 045 0.35 tion of the variations that can be explained by our model.
score2 032 0.19 0.20 0.30 These numbers are high for scores 1, 2 and 5, but low for
score3 044 0.3 028 0.32 scores 3 and 4. This may be due to the nature of the vari-

score4 0.13 0.26 0.11 0.24

ations associated with PC 3 and PC 4. These components
score5 045 0.13 0.13 0.093

may be associated with short-term dynamics that are neither
easily captured by seasonal changes, significant trends, nor
by the main medium-term variations of the encapsulated at-
mosphere considered here. Changes in dynamical parame-
ters would come from radiative and chemical mechanisms
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Table 3.Explained devianc®; (%) in Eqg. (L1) and the estimates of 0zone profiles at an altitude af are computed by Eq4j,
the noise levels; in Eq. ©). Explained deviance indicates overall but truncating the infinite series lat= 5 andé;; replacingg;;,

quality of model fit. whered); are the fitted PC scores from the AMMs. The fit is
good, as variations are captured by our explanatory variables.
Boulder Arosa Even though model flexibility of the AMMs allows compli-
Scores D 012 D, 012 cated fitting of time §eries, it does not fully qapture high and
sharp peaks. We believe that the random spikes not accounted

scorel 94 5.8%10°°
score2 91 1.04& 1076
score3 40 3.8%10°
score4 39 6.0%10°°
score5 67 1.6%10°°

88 1.11x10°° for by the regression model correspond to a smaller scale

91 1.34x10°° variability that is not captured by proxies, and they can be re-

31 582x10°° lated to sudden stratospheric warmigpfieva et al.2011),

44 9.77x 10’ wave breaking Klolton, 1983 and other solar high proton

50 3.19x 107" events Geppala et al.2004 that are not included in the
model. There is some information in the upper stratosphere
(e.g., 3.9hPa, Arosa) that is not captured by the regression

imposed by increases in GHGs. Increases in GHGs caﬁmdel' In order to improve the fit, it is important to study dy-

warm the stratosphere, and thus directly affect ozone destrucf]am'c"’II processes to find their effects on long-term changes

tion rates that are temperature-dependent (so-called supel? 929"® distribution in midde latitudes and in the upper

recovery). It could also change the transport patterns geo%rigonstﬂgﬁ,[% nSSe(\)/fe(;alnzt;ciJ(I:ZT hi)vfezggizsﬁ) ith'?ersrlr?r:)lggizce
graphically and seasonally that can alter ozone at the lowef y P 9

stratosphere where dynamics play an important role. There(_:hangesAppenzeller et 2]200Q Weiss et al.2001, Wohi-

fore, it is important to study these contributions and estimate?rzgga?g aelt. i?ggll\aﬂ?g;:: ;L'§02007i§ ﬁgﬁrefta?l'zzool?
tsri\;l]r f?tontnbutlon to ozone variability to improve the regres- Several papers-arris et al, 2008 WMO, 2007 found that a
Figu.resll and 13 show Umkehr monthly ozone profiles significant part of the change in total ozone after the middle

and the estimated monthly profiles using the fitted PC scoreé)f the 1990s and until 2005 was caused by dynamical vari-

from the AMM (under the heteroscedastic error assumption)ab'“ty' Therefore, it is important to assess the contribution

for selected altitude levels. Note that the estimated monthlymc dynamical parameters in order to derive ODS-associated

Atmos. Chem. Phys., 13, 114734501 2013 www.atmos-chem-phys.net/13/11473/2013/
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trends in Umkehr ozone profiles. Figuré$ and 13 show ENSO does not show any significant contribution to Arosa
the time series plots of the monthly ozone profiles (Umkehrozone levels. However, it plays a significant role in modulat-
and estimated) and thus they have large seasonal variabilityng ozone below 53 hPa (up te4 %) for the Boulder data;
To show how well the time series are fitted by the model for see the bottom row of Fig8. This is expected, as the in-
each year, we display them as annual mean data (compute ttiience of ENSO should be larger over North America than
annual mean of the Umkehr and estimated ozone profiles) iover Europe. Also, it is interesting to see that since 2004
Figs.12 and14. They will help us show how the covariates there is general negative trend in ozone forced largely by
contribute to ozone variability from one year to another (seeENSO. Positive ENSO signals in 1987 (for all months) and
Figs.8 and9). 1997-1998 (for most months) are observed at Boulder as a
We compute the monthly contribution of each covariate positive contribution to ozone levels. Unfortunately, we do
to changes in ozone profiles, and plot these monthly timenot see a positive ENSO effect on Umkehr ozone variabil-
series of % contributions as box plots by year in Fjand ity in 1983, since it was coincident with large aerosols re-
9. The QBO2 (associated with winds at 10 hPa and 50 hPajnaining in stratosphere after El Chinchon eruption in 1982,
contributions at Boulder and at Arosa are very different, aswhich caused errors in Umkehr ozone retrieval. This is why
seen in the second and third row of F&).For example, at we had to remove the Umkehr records during the 1982-1983
150 hPa this is a positive contribution up to 1% at Boulder, period. A negative phase of the ENSO index (La Nifia) was
while at Arosa there is no contribution from QBO2 at this observed in 1989, 1999/2000 and 2010/2011, and led to a
pressure level. The opposite occurs at 16 and 8 hPa, whedarge reduction in Boulder ozone. The apparent decline in
QBO2 does not affect ozone at Boulder, but affects ozone aBoulder ozone since 2004 is most likely related to the effects
Arosa (mostly a positive effect up to 1.5%). In addition, in of ENSO on ozone variability. Arosa does not show any sen-
the Boulder data we see that QBO2 mostly decreases ozorgitivity to ENSO. This may be one of the reasons for the ob-
at 53 and 16 hPa, while this is not the case at Arosa. QBOXerved differences in middle stratospheric ozone trends over
has a relatively large negative effect (up-td %) on ozone the 2000s at Boulder and Arosa.
at 253 hPa level in Boulder (see the first row of F8y. but AO time series feature a positive phase in 1989-1995, and
the effect is slightly smaller (up te 3 %) at 150 hPalevel; in  again in 2007-2009, while a large negative excursion oc-
the middle stratosphere (50-30 hPa) the response is mostigurs in 2001 and 2010. Since 2000 the year-to-year variabil-
positive (up to 4 %). ity in the AO has been found to be very large compared to

www.atmos-chem-phys.net/13/11473/2013/ Atmos. Chem. Phys., 13, 11471301 2013
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Fig. 11.Umkehr monthly ozone profiles (in black) and the estimated Fig. 12. Umkehr yearly ozone profiles (in black) as mean values of
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of Boulder. Volcanic years are removed. The ozone profiles are inearly profiles (in red) as mean values of the estimated monthly

DU.

ozone profiles Figl1 of Boulder. Volcanic years are removed. The
ozone profiles are in DU.

the 1980s (mostly negative) and 1990s (mostly positive). In
Boulder, the AO contributions are significant at 253 hPa (up ) )
to 3% increased ozone), at 90 hPa and 50 hPa (decrease gp? Residual analysis

to —2 % and—1 % respectively). Similarly, in Arosa, at alti-

tude levels of 253-53 hPa, ozone is significantly influencedComparing the residual plots from AMMs with and without
by AO (up to==4 %). However, the AO contributions to ozone the heteroscedastic error structure is appropriate for model
variability in the low and middle stratosphere are smaller atchecking. FigurelOb gives normalized residuals versus fit-
Boulder compared to Arosa, and this can be explained by théd PC score 1 of Boulder when constant variance is as-
fact that AO brings stronger dynamical variability to higher Sumed, while Figl0d demonstrates the same plot when het-

latitudes.

Atmos. Chem. Phys., 13, 114734501 2013

eroscedasticity is accounted for. In Figd, the residuals are
evenly distributed around zero compared to Rigo, where
they are not. This supports the need for a more complex
error structure in the model and the appropriateness of the
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variance function we proposed. Note that in Figb the nor-
malized residuals are obtained&y= (6;;—6;;)/0;, whereas
in Fig. 10d they are defined by

& — O1i — O
' 614/ Var(e)

The estimated variance of erroaiﬂ,2 is summarized in Ta-
ble 3.

(12)

ozone profiles Figl3 of Arosa. Volcanic years are removed. The
ozone profiles are in DU.

scores 1 and 2 in Fig.0e—h. Large absolute values of resid-

uals tend to occur in the early years when the measurements
are considered to be less reliable or noisy. Indeed, the be-
ginning of the Boulder record has fewer measurements and
the observations were taken in manual mode (thus prone to
operator errors). For Arosa, observational methods were es-

As mentioned earlier, there is a clear improvement upontablished back in the 1960s and were not changed until the
the assumption of constant variance of errors, as periodid980s. Also, a smaller number of measurements per Umkehr
patterns in residuals have disappeared. Normalized residuatsurve was collected prior to the automation of the measure-
computed by Eq.12) were grouped by year, and we plot- ments system in 1986. The abrupt changes in the size of the
ted them as box plots. We only display the box plot of PC normalized residuals in PC score 1 of Boulder data are found
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Fig. 15.Estimated ozone trends as % changes in Boulder at selected layers, with 95 % confidence intervals. The trends from the full regression
model are in black solid lines together with their 95 % confidence intervals in dotted lines. The trends from the regression model without EP
flux are in red solid lines. Volcanic years are omitted from the trend analysis.

in 2001; see FiglOe. PC score 1 captures atmospheric vari- column ozone trends from two sources for the purpose of
ability between 250 and 68 hPa. This feature could be relatedomparison. Finally, in Secé.3 we investigate the effect of
to the mechanism that caused an abrupt decrease in the stratéP flux on ozone, as the EP flux is found to be the most
spheric water vapor observed over the tropics in 2Bdn{  significant proxy for explaining ozone variations.
del et al, 2006 Solomon et al.2010. The changes were
related to an increase in tropical upwelling and a change irf-1 Estimated trends for profiles using a functional
the transport patterns. Note that a decrease in the low strato- ~ approach
spheric water vapor was also observed at around the same )
time over Boulderfurst et al, 2013). Finally, in PC score 1 From AMMs we estimated the ozone trends for each PC
for Boulder, we might detect the influence of the ENSO cycle SCOTe, and the estimation results are discussed in Sect.
(supported by the fact that the EDF of ENSO is 1.7) — r]eg_Here, to derive ozone trends thqt take all PC scores into ac-
ative in 2001 (for all months) and positive in 1998 (for most count after other effects of covariates (month, QBO, the solar
months) in the residuals. Indeed, ENSO influences transportY¢!e; AO, ENSO and EP flux) are removed, we compute the
patterns and positively affects lower and middle stratospherid"€nd, for a given altitude leved, by
ozone at the northern middle latitudes. 5

0i(x) = ) _&i(x)éra(Year). (13)

=1

6 Estimated ozone trends

0;(x) is the estimated ozone at altitudeand yeat, g;> are
Here we focus on the ozone trend analysis. In S&dtwe the fitted scores (only for the year term) from AMMSs, and
derive the trends for selected altitude levels using a functiona; (x) are the smoothed PCs as in E4).4nd are computed by
approach. In Sec6.2we also carry out an analysis of total Eq. (Al). Estimated ozone trend curves (in black solid lines)
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Fig. 16.Estimated ozone trends as % changes in Arosa at selected layers, with 95 % confidence intervals. The trends from the full regression
model are in black solid lines together with their 95 % confidence intervals in dotted lines. The trends from the regression model without EP
flux are in red solid lines. Volcanic years are omitted from the trend analysis.

with their 95 % confidence intervals (in dotted black lines) transient Rossby wave breaking frequency between 1979 and
for Boulder (Fig.15) and Arosa (Figl6) at selected altitudes 1998 during the month of February. It is important to quan-
are reported. For Boulder, the trends seem to show a typicdify dynamical transport associated with changes in atmo-
decrease and a beginnning of a recovery from 1996 onwardspheric circulation that affects long-term ozone changes in
but at 32—-8 hPa from 2003, there is a sharp decline in esticomparison to chemically driven changes in ozone. For ex-
mated ozone trends (possibly attributed to the ENSO effect)ample,Hood and Soukharef2005 also discussed that the
Note that the fitted trend curve of the PC score 3 largely conpole-ward and equator-ward horizontal transport at middle
tributes to the sharp decline (the fitted trend curve associatethtitudes (as predicted by the EP flux variability and is related
with PC 3, see Fig6, displays a sharp decline after 2003). to planetary wave forcing and changes in adiabatic Brewer—
There is also a detected increase in the troposphere, as wdllobson circulation) can be considered zonally averaged and
as a leveling off in the upper stratosphere. should contribute similarly to Boulder and Arosa ozone vari-
For Arosa, the very same PC decomposition as for Boul-ability. According toHood and Soukhare{2005, the im-
der does not yield similar trends. The different trend esti-pact of the EP flux on ozone trends should increase with lat-
mates might be related to various aspects. Nonlinear synoptitude, so it should be more significant at Arosa as compared
waves can affect stratospheric ozone through vertical transto Boulder.
port on time scales that are shorter than photochemical life- Let us discuss the possible impact of the solar radiation.
time, and can produce sufficient contributions to long-termSeveral papers recently published analyses of stratospheric
variability on regional scales — meaning that there will be ozone and temperature changes, related to the spectral out-
a difference between ozone variability at Boulder or Arosaput of the solar radiation during maximum and minimum
(Hood and Soukhare2005. Hood et al.(1999 andHood of the last solar cycle 23Haigh et al, 201Q Oberlander
and Soukhare(2005 estimated that 40 % of the middle lat- et al, 2012. Solar radiation measurements made by the so-
itude ozone trend can be attributed to the increase in théar Stellar Irradiance Comparison Experiment (SOLSTICE)
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and the Spectral Irradiance Monitor (SIM) instruments on thecarrying out our profile analysis, the trend is also negative for
SORCE satellite indicate a spectral dependence in the U\altitudes below approximately 63 hPa, but can be positive for
and visible part of the solar spectrum observed between 2004ltitudes slightly above 63 hPa over 1978—2011; see the black
and 2007. The radiative chemical transport models were usedolid lines in Fig.16. Rieder et al(2010 also found a nega-

to investigate effects of the solar spectrum perturbations orive TO trend at Arosa (see their Fig. 4 for 1978—2008). From
photolysis rates and the temperature of the upper and middleur analysis at Arosa, using WOUDC data, we first notice
stratosphere. The change in ozone at 4 hPa level over norththat our trends are approximately linear; see High. The

ern middle latitudes between solar maximum and minimumlinear trend (and associated standard error) for 1980-1990
was increased from 0.7 % to 1.8 % when the SIM data werds —1.2 % (0.4 %), for 1990-2000 it is-1.3 % (0.4 %),

used in the model simulation as compared to the climato-and for 2000—2010 it is-1.1 % 0.4 %). The linear trends
logical solar spectrum results. The attribution of the solarfor TO at Arosa fromRieder et al(2010, see their Table 3,
cycle in the regression model fitted to the Aura MLS (Mi- are not as negative as those found here. For the only over-
crowave Limb Sensor) ozone time series was found to confapping period of 1980-1990, the trend-i$.9 % 0.3 %)
tribute about 4% decrease in ozone at 10-6.8 hPa pressuger decade when extreme events are excluded. Note that the
levels from 2004 to 2007. This effect is related to the spectratrends fromRieder et al(2010 are much higher when all ob-
variability of cycle 23 and was not found in the previous cy- servations are kept, at2.4 % @0.5 %) per decade. We can
cles. The nonlinear fit of the PC score 4 of Boulder for solarnow discuss the differences between our analysis and theirs.
cycle signal, see Fig, indicates that the AMM model could Our method does not take out extreme eventRiéder et al.

not produce the best fit for the solar cycle in ozone data at th€2010, many of the extreme events are associated with vol-
middle stratosphere and troposphere (score 4). This could beanic eruptions, whereas we remove two entire volcanic peri-
related to the changes in the spectral distribution of the solabds from the start. Other extreme events are associated with
radiation over the last 3 solar cycles that might have createdENSO, NAO, the amount of ODSs and the strength of the

a different response in middle latitude ozone. Polar vortex. Although this study did not account for ODSs,
the influence of ENSO (not significant in Arosa, while sig-
6.2 Estimated trends for total column ozone nificant in the Boulder analysis) and AO (significant in both

data sets) is attributed in a regression setting, in contrast to

We included an analysis of total column ozone from two the approach oRieder et al(2010 that excluded extreme
sources (WOUDC published total ozone, and Umkehr totalevents. We also accounted for solar and QBO effects, unlike
ozone by summing up all layers across the profile). It only Rieder et al(2010, but used EP flux, not Polar vortex ozone
uses the second step (i.e., the AMMs on the covariates: théoss contribution to northern mid-latitudes, as the dynamical
only possible common solution to the trend analysis problemcontribution.
for profile and total column data sets) of our statistical anal- Rieder et al(2010 also studied the occurrence of the ex-
ysis to derive trends as well as influences of covariates. Totreme high and low events in the Arosa TO record. Results of
tal column ozone is the integral of the profile, and thereforetheir analysis indicate that since the 1990s, the Polar vortex
the influences of covariates are somehow integrated along thieas strengthened, which also creates a lower TO column at
profile when carrying out the regression: this can result in ahigh latitudes Chipperfield and Jone4999 Hadjinicolaou
loss of accuracy whenever a covariate’s influence varies wittet al, 2002. The evidence for strengthening of the vortex is
altitude, as we noticed in our full analysis for, e.g., solar or supported by the increase in the negative vortex index from
EP flux. So, we emphasize that the total column ozone analthe 1980s to 2000; see Fig. 1Rieder et al(2010. Results
ysis may not yield as precise outcomes as a full profile ap-of Rieder et al.(2010 imply that depleted ozone after the
proach. break of the Arctic Polar vortex is mixed into middle lati-

For Boulder, the trends derived from the two total column tudes, which dilutes high spring ozone, thus the frequency of
data sets differ in the middle of the analyzed period (1990-extreme high ozone events at Arosa is reduced in the last two
2005); see Figl7a. It creates almost a linear trend in Umkehr decades. This effect likely produces more negative trends in
total ozone (TO) data (trend in red solid line and the 95%TO at Arosa. Since these extreme values are strongly asso-
confidence intervals in red dotted line), while the WOUDC ciated with dynamicsRieder et al. 201Q Frossard et al.
data set suggests very strong decline in TO until 1996 an®013 Rieder et al.2013, and we aim to account for these
then a very slow recovery until 2011 (trend in black solid effects through the use of AMMs on the covariates, our trend
line and the 95 % confidence intervals in black dotted line).analysis of TO over Arosa is in good agreement viribder
When the ENSO signal is not used as an explanatory paranet al. (2010, though not fully due to the differences in the
eter, the WOUDC trend becomes more negative at the en@pproaches.
of the time series and more in agreement with the Umkehr Rieder et al.(2010 mention the sensitivity of total col-
TO-based trend; see Fity7b. umn ozone variability over Arosa to NAO and ENSO events,

For Arosa, we find that for total column ozone, the trend is such as a decrease in TO associated with the positive phase of
negative over the full period 1978-2011; see Biga. When  NAO. Rieder et al(2010 also mention many more positive
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NAO events after 1990 (1992-1993, 1995, 2000, 2005, 2007 N
and 2008) as compared to negative NAO events (only 1996).
It means that the frequency of these events has changed with
time. This may result in an increase in extreme low TO
values in the recent years (after 1990). Indeed, the positive
NAO events are associated with decreased ozone over Eu- A
rope. Therefore, after 1990, predominantly the positive NAO

events would create a tendency for ozone trends to become (a) Trend (TO) at Boulder
more negative in Arosa, in contrast to the tendency for TO to
increase due to reduction in ODSs.

The EP flux proxy plays an important role in deriving
trends for both the WOUDC and Umkehr records (of Arosa)
by making the 1997-2011 trend more negative; seeTHg.
and d and Figl8b and c. Without using the EP flux proxy, the
derived trend in Boulder Umkehr TO data (see Hig.(d))
shows an increase in ozone from 1995 to 2006, with a subse-
quent decrease through 2011. Note that our profile analysis (b) Trend (WOUDC TO) at Boulder
results in trends that are of various shapes for Boulder (see

=

the black solid lines in Figl6), so they cannot readily be

compared with TO trend analyses.
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6.3 The effect of EP flux on ozone trend
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The EP flux has the greatest influence for most scores, so it 1080 1985 1990 1905 2000 2005 2010
is the most influential covariate for explaining ozone vari-
ability. To see its effect on the estimated trends, we compare (¢) Trend (WOUDC TO) at Boulder

trends from the full regression model (including covariates of

month, year, QBO1, QBO2, solar, AO, ENSO and EP flux) o =

in black solid lines with the trends from the regression model § T \ - -

without EP flux in red solid lines; see Figk5 (Boulder) and g7 S

16 (Arosa). e 77 _
We find that adding EP flux to the explanatory parame- 5] = oo

ters changed the long-term trends in Boulder Umkehr data in " loe0 19m5 1990 1995 2000 2005 2010

two different ways. First of all, we found a difference in the

trends in the middle of time series (1985 and 2000) when an- (d) Trend (Umkehr TO) at Boulder

alyzing trends with and without EP flux at altitude between
360 and 105 hPa. At the same time, at altitudes between 1

and 45hPa, we found an increased difference in trends at thgolid line) TO, with their 95 % confidence intervals in dotted lines

end of time series (2000 to 2011). However, we found NOyw the matching colob) Ozone trends for WOUDC TO obtained
significant effect of the EP flux contribution on ozone trends from the full regression model (on black) and the model without

at higher altitudes (15-2hPa), where transport plays a IesSgNSO (in red).(c) Ozone trends for WOUDC TO obtained from
important role as compared to the lower and middle strato-+he full regression model (in black) and the model without EP flux
sphere. (in red). (d) Ozone trends for Umkehr TO obtained from the full
We find that use of the EP flux in trends analysis of the regression model (in black) and the model without EP flux (in red).
Arosa Umkehr data at altitudes above 32 hPa produces sim-
ilar effects to what we found for Boulder. It appears that in
the upper stratosphere the effect of EP flux on Arosa trendsribution to the trend estimation at these altitudes of the EP
is slightly greater than for Boulder. In the upper stratosphereflux is significant and makes the trends less positive (how-
trends tend to be less negative in the last 10yr if EP flux isever, it does not make trends negative). Note that from the
used in the regression. Thus, we can say that upper stratgglots for WOUDC TO at Arosa, see Fig8b, the removal
spheric ozone recovery (above 8 hPa or 35km) in Arosa iof the EP flux covariate reduced the trend frerd to —3
more pronounced when we attribute some of the recent 10 y% when EP flux was removed. At lower altitudes, trends
of ozone changes to the EP flux variability. However, in thein Arosa start to change and become negative below 64 hPa
middle stratosphere (16—64 hPa) in Arosa, we do not find(below 20 km), whereas in Boulder trends become positive
negative trends as compared to trends for Boulder. The conin the lower stratosphere. The Arosa analysis shows a large

ig. 17. Estimated trends for total column ozone at Boulda).
zone trends for Umkehr (in red solid line) and WOUDC (in black
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- the CFCs and other ODSs in the stratospheebe et al.
of L Lo = mar 2012. The age of air terminology is used to predict how
D \ i much of the EESC remains in the stratosphere after the ODS

are released at the surface. The quality of prediction is related

ozone change (%)

= to the uncertainties in estimates of the transport of chemi-
i T e T e 2071‘0 cals and the fractional rele_ase factors of thfa chlorine in the
stratosphere. The age of air related to the time for transport
(2) Trend (TO) at Arosa from troposphere to stratosphere and then to the higher lati-
tudes from tropics has been reassessed based on the changes
in the Brewer—Dobson circulation. Recently, more emphases
— R have been put on increases in the HydroChloroFluoroCarbon
] S T wiouERIex (HCFC) concentrations that are used to replace CFCs under
] \ the Montreal Protocol. The HCFCs are one class of chemi-
cals being used to replace the CFCs. They contain chlorine
i T e T i s s and so deplete stratospheric ozone, but to a much lesser ex-
tent than CFCs. However, HCFCs have a large global warm-
(b) Trend (WOUDC TO) at Arosa ing potential and thus cannot be ignored.

The use of AMMs, with seasonal variance, for ozone pro-
files enables better quantification of uncertainties than pre-
— R vious methods. It thus gives us more confidence in the es-
i = R timates of the influences of the various variables. In partic-
| \ ular, the trends over the years displayed for the few modes
1 of variability in the atmosphere identified by the functional
i A PCs show interesting and significant b(_ehaviors. As a result

we are able to identify features present in the data that could
be associated with the semi-annual oscillation; this reinforces
our faith in the statistical model. Furthermore, the statistical
Fig. 18. Estimated trends for total column ozone at Aroéa). detection of a recovery is more likely to occur using meth-
Ozone trends for Umkehr (in red solid line) and WOUDC (in black ods that treat influences from various factors in a nonlinear
solid line) TO, with their 95 % confidence intervals in dotted lines fashion, adjust for heteroscedasticity, and consider modes of
with the matching coloib) Ozone trends for WOUDC TO obtained y/ariability across altitudes for more robust results. Neverthe-
from _the full regression model (in black) and the mogel without EP less, one may consider adding more covariates such as strato-
flux (in red). (c) Ozone trends for Umkehr TO obtained from the opq e water vapor to pin down the trends more precisely.
full regression model (in black) and the model without EP flux (in . . . -
red). That increase ||_’1_compIeX|ty of the model might not howeyer

result in a significant improvement. One may also consider

removing extreme values — to be defined possibly as large

contribution of the EP flux in the lower stratosphere and Values of the scores — as these can have a large influence on
troposphere (below 20 km) and makes resulting trends eveff€nds Rieder et al.2010 but be associated with dynamical
more negative. This is consistent with the fact that the TOf€atures, not a genuine long-term evolution. However, great
derived from Arosa WOUDC and Umkehr data continues €are in the selection of these values is necessary: see the dis-
to decrease after 1996. It is not clear what other processe€uSsion about exceedances over a threshold dadgest or-
might have contributed to these changes over the last 1§ler statistics models iRrossard et a(2013. _

yr. We only account for the large-scale transport contribu- FOr further study, we could specify a model that includes
tion toward the Arosa trends. There might be additional syn-2 latitude (and possibly longitude) argument as a covariate.
optic scale fluctuations that create recent negative changeS @ result, we could borrow strength across the stations
in ozone in the troposphere and the lower stratosphere, antp improve the estimation of the influence of covariates. In-

therefore these are observed in the Arosa TO treBtr(- deed, the spatial fingerprints of the dynamical and chemi-
brecht et al.2011). cal contributions to ozone variationBrpssard et al.2013

Rieder et al.2013 have highlighted such coherence (albeit

only for total column ozone). An advanced formulation in
7 Conclusions this direction may require building spatial covariance mod-

els on the sphere (see, eBalin and Lindgren(2011) or Jun
The recovery of ozone is strongly related to the remaining(2011) for multivariate spatial processes if one wants to con-
concentration of equivalent effective stratospheric chlorinesider other chemical species jointly). As a result, one could
(EESC). Recently, several publications revised lifetimes of

-1 0 1
I

ozone change (%)
-3

-10 1
|

ozone change (%)
-3

(c) Trend (Umkehr TO) at Boulder
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potentially obtain a clearer picture of the evolution of ozone & (x) = Zle Zikdr(x). The R-functiorpca.fd intheFDA
levels throughout altitudes on a global scale. library is used to compute the coefficienis.

Another improvement would be to include short-term dy-
namical terms to potentially better fit scores 3 and 4. AndA2 Representation of penalized regression splines as
one possibility would be to focus on extreme values of these ~ additive terms

scores, since for total column ozone, the relationship between . qditi dels wh h .
long-term dynamical terms is stronger for extreme values €' We review additive models where each term is repre-

than for mean valuesFfossard et al.2013, and is likely sented by the penalized regression cubic spline. For each

to be even stronger for short-term dynamical terms. AnotheSM0Oth term;; related to covariaté’;, for j jxléj-’ 8, we
possibility would be to use reanalysis data to see if dynamica'@ve the model matrix of; denoted b ; € R"**/, where
transport information could yield a larger explanatory power”, IS the number of samples ard; is the number of ba-
for the AMM. However, such an effort would require some SIS functions for covariaté’; without a constant basis. De-
adequate dimension reduction of the dynamical terms to b&°ting M;; theith row vector of the model matri ;, we

o lrr. F2 B3 (m._ o3 o3
able to include these. One approach might be to let a nuhaveM; = [Fi;, iy Fij (Fij =s1)3 .. (Fij su)3], where

merical model compute the effect of such short-term dynam-(F — 1)+ = max{0, (F —s)} with knotss;, (Ruppert et al.

ical terms only Guillas et al, 2004 Kobayashi and Shibata 2.003' SFacking up all smooth terms and an i(r;ter(iept,.we de-
2019). fine theith row of the model matrixB € R"*Ka+D ' yith

Ky = Z?Zl K;, by B; =[1,M;1, .., M;g]. Denoting the co-
efficient vector of each smooth term by; = [oy;1, .., ajk;]

Appendix A and stacking up all coefficient vectors including an intercept,
i.e.,a; = [c, a1, ..,0u8]" , we minimize the following penal-

Statistical details ized least squares fitting criterion with respecijo

Al FPCA min{||01 —Ba1||2+0t1T51061}~ (A2)

Silverman (1996 proposed a method of estimating smooth Here 6; = [0;1, .., 6;,]7 € R" is the Ith score vector. The
PCs by incorporating a penalty term into the orthonormal-penalty matrixS is a block diagonal matrix with blocks
ity constraint imposed on the PCs. Further, followiRgm- ;A ;:

say and Silverma(2005 Ch. 8-9), we used a B-spline basis

to represent the PCs, e.gi(x) = Y1, zix¢x (x) and mea- 0 0 0 0

sured its roughness by the integrated squared second deriva- 0 AL

tives of the function. Then the roughness of each PC is eass, = 0 ri2A2 (A3)
ily quantified by using approximation to the integral, i.e., 0 : :

Z?ilz,le[z,szqsk(xj)]z. We placed the knots at each 0 iehs

layer, excluding the two end layers 29 and 60, and used cu-

bic B-splines, thusk' = 32. After projecting the PCs onto a whereA ; is the penalty matrix corresponding to the covariate
B-spline basis, the fitting criterion for the coefficient vectors F;, which consists of the squared second derivatives of the
z; of the PCs becomes basis functions we use. Note that the second derivatives of
linear terms are zero, thus the first row and columrAgf

are all zero (penalty null space), which means that the linear
terms are not penalized;; is the smoothing parameter that
controls the smoothness of the functign. Given ,;, the
penalized least squares estimatoaptan be written as

le<I>T\A(T\A(<I>zl
ax T T s
zZ) (g +2P'P)z

(A1)

where we (ienoté( e R™XK the matrix consisting ofi, ;)
entry y;; — = > ", 9;;, the centered fitted values of ozone . 7 AT

from thle sr’zr%g)lth%ng/ splines, see E®),(and denote® ¢ o =@B"B+S)B 0. (A4)
R32<K the B-splines basis matrix composed(gfk) entry A3 Penalized regression splines as mixed effects models

¢ (x;). PTP is the penalty matrix angf P7 Pz, quantifies

the roughness of each PC. The smoothing parameten-  We compare the penalized regression splines with the mixed
trols the level of smoothing. We applied the same smooth-effects models to understand how the variance—covariance
ing parameter to obtain all PCs. We selecieg 10-°, the matrix §2,, achieves smoothing. In other words, we show
same number used in fitting the smoothing spline modelghat in AMMs the idea of penalization is incorporated into
for Umkehr ozone profiles. Note that the numerator is thethe variance—covariance matrix of a random vector via a
objective function to be maximized and that the denom-Bayesian approach.

inator is the orthonormal constraint imposed on the PCs. Denotingp(X) the density function of a random variable
Oncez are estimated from EqA(), we obtain the PC by X, we impose some prior beliefs on the coefficient vector of
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the random effects, i.eu; ~ N (0, 2),); see Eq. 9); thus we Denoting Covd,) := X;, we deduce Co¥;) = BRSZMBg +
havep (u;) « exp(—%ufﬂ{llu;). Stacking up the coefficient o,zln, under the Gaussian and the independenee ahdu;
vector of the fixed and random effeats [bT, ]T we aSSUmptionS. Then the BLURQb”]SOﬂ 199:0 of uj is giVen
define the inverse covariance matrix of the coeff|C|ent vectody

o by R ~ ~ ~
it; = @,BLE, 10, — Brby) (A11)

00
Q= [O 9—1] (A5)  where,,, £, andb; are the estimates &,,, X; and b;.
M By incorporating the random components in E®).iato the
where rows and columns of zero in the inverse matrix cor-error term, i.e.e = Bru; + €;, we write the model as
respond to the variances or covariances of the coefficients 0 —Brb AL2
related to the fixed effects. Then we write the density of the ' — ~F/ te (A12)
coefficient vector, i.e.p(e;) oc exp(— e/ @ 1)), and have €~ N0, Zp).

the conditional density of; givene: Then the ML estimate ofd; is computed by b =
1 , (BLS'Br)BrE ;.

p(0;ley) O<<9XIII—F(01 —Bay)" (0, —Bay)]. (A6) Estimation of; and prediction ofu; requires the esti-
]

mate¥;, and the commonly used algorithms for estimation
Using Bayes’ rule, i.e.p(o;|0;) o p(8;]a;) p(e;), we com-  Of the variance components are ML and REstricted Maxi-

pute the posterior density: mum Likelihood (REML). It is known that ML estimates of
variance parameters tend to become seriously biased, as the
pley]0;) o exp[— 2(0, Ba;)” (6, — Bay) (A7) humber of fixed parameters in the model increases, because
the ML method does not account for the degrees of free-
1 dom lost resulting from the fixed effects estimatidhiood,
—o% [ ] 2006. In the REML method, instead of maximizing the log-
1 likelihood function with respect to the variance parameter,
x exq——g(((’l —Ba)" (0 — Bay) the average of the likelihood over all possible values,df
maximized. More specifically, the log-likelihood function of
—i—al a Sl Yoy 0,
(A8) 1
. . . o LO1br, X)) < —[log|X] (A13)
Differentiating the posterior density with respect to the vec- 2
tor a;, we have the equation +(60; — pr/)T):fl(Bz —Brb))]
B'9, = B"B+o 2 Y. (A9) is replaced by the integralz(6;/%;) = [ £(6,/%;)db;. For

a more detailed discussion of the REML criterion, see, e.g.,
Therefore the Maximum Likelihood estimate @f is given Harville (1977). The closed form of the integral can be writ-
by ten as

) e 1
& =B"B+ofe !B, (A10) ER(0[|):,)=£—§log|B;ZleF|, (A14)

We can compare the ML estimate in E41Q) with the pe-
nalized least squares estimate in E&4). Then, we deduce
0?Q~1=S. This implies that in the mixed effects model
framework of the penalized regression splines, smoothing i
induced by the two variance components, i ,and 2.
Because in the penalty matr§ we have known quantities
of A; and the unknown parameteis, the estimation of the
covariance matrix of the random effecs, suffices to es- cation of the error structuréOpsomer et al.2001), and it

timate the smoothl_ng parameterli;. Estimation of the vari- __avoids overfitting Pinheiro and Bate2000).
ance components in the mixed effects model framework will

be given in Appendipd4.

where/ is in Eq. (A13). The restricted log-likelihood z is

not analytically maximized. Thus, numerical approximation
(e.g., Newton—Raphson methods) is widely used. migev
Spackage in R fit; by a moderate number of expectation—
maximization (EM) iterations to refine the starting values fol-
lowed by a Newton—Raphson optimization. The consequence
of the REML is a more robust estimate of the misspecifi-
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